• Title/Summary/Keyword: T-note

Search Result 301, Processing Time 0.027 seconds

ON THE DOMAIN OF NULL-CONTROLLABILITY OF A LINEAR PERIODIC SYSTEM

  • Yoon, Byung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.95-98
    • /
    • 1985
  • In [1], E.B. Lee and L. Markus described a sufficient condition for which the domain of null-controllability of a linear autonomous system is all of R$^{n}$ . The purpose of this note is to extend the result to a certain linear nonautonomous system. Thus we consider a linear control system dx/dt = A(t)x+B(t)u in the Eculidean n-space R$^{n}$ where A(t) and B(t) are n*n and n*m matrices, respectively, which are continuous on 0.leq.t<.inf. and A(t) is a periodic matrix of period .omega.. Admissible controls are bounded measurable functions defined on some finite subintervals of [0, .inf.) having values in a certain convex set .ohm. in R$^{m}$ with the origin in its interior. And we present a sufficient condition for which the domain of null-controllability is all of R$^{n}$ .

  • PDF

A NOTE ON THE GENERALIZED HEAT CONTENT FOR LÉVY PROCESSES

  • Cygan, Wojciech;Grzywny, Tomasz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1463-1481
    • /
    • 2018
  • Let $X=\{X_t\}_{t{\geq}0}$ be a $L{\acute{e}}vy$ process in ${\mathbb{R}}^d$ and ${\Omega}$ be an open subset of ${\mathbb{R}}^d$ with finite Lebesgue measure. The quantity $H_{\Omega}(t)={\int_{\Omega}}{\mathbb{P}}^x(X_t{\in}{\Omega})$ dx is called the heat content. In this article we consider its generalized version $H^{\mu}_g(t)={\int_{\mathbb{R}^d}}{\mathbb{E}^xg(X_t){\mu}(dx)$, where g is a bounded function and ${\mu}$ a finite Borel measure. We study its asymptotic behaviour at zero for various classes of $L{\acute{e}}vy$ processes.

A NOTE ON PRIMITIVE SUBGROUPS OF FINITE SOLVABLE GROUPS

  • He, Xuanli;Qiao, Shouhong;Wang, Yanming
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • In [5], Johnson introduced the primitivity of subgroups and proved that a finite group G is supersolvable if every primitive subgroup of G has a prime power index in G. In that paper, he also posed an interesting problem: what a group looks like if all of its primitive subgroups are maximal. In this note, we give the detail structure of such groups in solvable case. Finally, we use the primitivity of some subgroups to characterize T-group and the solvable $PST_0$-groups.

A Note on All Stabilizing PD Controllers for Continuous LTI Systems (연속선형계의 PD 안정화기의 전체 이득 셋 결정)

  • Kim, Keun-Sik;Kim, Young-C. Dattal
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.10-12
    • /
    • 2004
  • Recently, Datta at al. [1] have developed a metDattad of obtaining the complete set of stabilizing PI, PID controllers for a given LTI system, in which tDattase are determined by solving a set of linear inequalities parameterized by the proportional(P) gain. In this paper, we provide a note about Dattaw Datta's idea can be extended to the problem of finding all stabilizing PD controllers and about an improved metDattad that allows us to calculate the admissible range of P gain more rigorously. An illustrative example is given.

  • PDF

A Study on the Recognition and Preference of Korean Traditional Cookie among College Students (한국 전통 한과류에 대한 대학생들의 인지도 및 기호도에 관한 연구)

  • 정효선;신민자
    • Korean journal of food and cookery science
    • /
    • v.19 no.3
    • /
    • pp.328-338
    • /
    • 2003
  • The purpose of his study was to investigate the perceptions and preferences of college students to Korean traditional cookies. Self administered questionaires were collected from 512 college students in the Seoul, Kyunggi, Chungchung, Kyungsang, Junla and Gangwondo areas. The data were statistically analysed using t-tests, one-way ANOVA and their correlation. The recognition of Korean traditional cookie was generally low with the exception of these items as either a seasonable or festive food. There were significant differences in the mean recognition and preference values for each kind of Korean traditional cookie between the major subject studied, gender and subject grade. (Eds note: how were the mean values different for the 3 specified variables\ulcorner) The preference of some Korean cookies was relatively higher than estimated, (Eds note: how was the original estimate arrived at\ulcorner) such as Yugwa, Gangjeong, Han-gwa, Hobak-yeot, Ddangkong-yeot-gangjeong and Ssal-yeot-gangjeong. However, it is impossible to discriminate low preference, as over 80% of the low preference values had not been completed on the questionnaires.

A NONCOMMUTATIVE BUT INTERNAL MULTIPLICATION ON THE BANACH ALGEBRA $A_t$

  • Ryu, Kun-Sik;Skoug, David
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.11-17
    • /
    • 1989
  • In [1], Johnson and Lapidus introduced a family { $A_{t}$ :t>0} of Banach algebras of functionals on Wiener space and showed that for every F in $A_{t}$ , the analytic operator-valued function space integral $K_{\lambda}$$^{t}$ (F) exists for all nonzero complex numbers .lambda. with nonnegative real part. In [2,3] Johnson and Lapidus introduced a noncommtative multiplication having the property that if F.mem. $A_{t}$ $_{1}$ and G.mem. $A_{t}$ $_{2}$ then $F^{*}$G.mem. A$t_{1}$+$_{t}$ $_{2}$ and (Fig.) Note that for F, G in $A_{t}$ , $F^{*}$G is not in $A_{t}$ but rather is in $A_{2t}$ and so the multiplication * is not internal to the Banach algebra $A_{t}$ . In this paper we introduce an internal noncommutative multiplication on $A_{t}$ having the property that for F, G in $A_{t}$ , F G is in $A_{t}$ and (Fig.) for all nonzero .lambda. with nonnegative real part. Thus is an auxiliary binary operator on $A_{t}$ .TEX> .

  • PDF

A NOTE ON ITO PROCESSES

  • Park, Won
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.731-737
    • /
    • 1994
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measures on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$- algebras of F. If $r > 0$, let $J = [-r, 0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert_C = sup_{s \in J} $\mid$\gamma(x)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$ with the norm $\Vert T \Vert = sup {$\mid$T(x)$\mid$_F : x \in E, $\mid$x$\mid$_E \leq 1}$.

  • PDF

A Note on the Pettis Integral and the Bourgain Property

  • Lim, Jong Sul;Eun, Gwang Sik;Yoon, Ju Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.159-165
    • /
    • 1992
  • In 1986, R. Huff [3] showed that a Dunford integrable function is Pettis integrable if and only if T : $X^*{\rightarrow}L_1(\mu)$ is weakly compact operator and {$T(K(F,\varepsilon))|F{\subset}X$, F : finite and ${\varepsilon}$ > 0} = {0}. In this paper, we introduce the notion of Bourgain property of real valued functions formulated by J. Bourgain [2]. We show that the class of pettis integrable functions is linear space and if lis bounded function with Bourgain property, then T : $X^{**}{\rightarrow}L_1(\mu)$ by $T(x^{**})=x^{**}f$ is $weak^*$ - to - weak linear operator. Also, if operator T : $L_1(\mu){\rightarrow}X^*$ with Bourgain property, then we show that f is Pettis representable.

  • PDF

MONOTONICITY AND LOGARITHMIC CONVEXITY OF THREE FUNCTIONS INVOLVING EXPONENTIAL FUNCTION

  • Guo, Bai-Ni;Liu, Ai-Qi;Qi, Feng
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.387-392
    • /
    • 2008
  • In this note, an alternative proof and extensions are provided for the following conclusions in [6, Theorem 1 and Theorem 3]: The functions $\frac1{x^2}-\frac{e^{-x}}{(1-e^{-x})^2}\;and\;\frac1{t}-\frac1{e^t-1}$ are decreasing in (0, ${\infty}$) and the function $\frac{t}{e^{at}-e^{(a-1)t}}$ for a $a{\in}\mathbb{R}\;and\;t\;{\in}\;(0,\;{\infty})$ is logarithmically concave.

  • PDF

AN INTERPOLATING HARNACK INEQUALITY FOR NONLINEAR HEAT EQUATION ON A SURFACE

  • Guo, Hongxin;Zhu, Chengzhe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.909-914
    • /
    • 2021
  • In this short note we prove new differential Harnack inequalities interpolating those for the static surface and for the Ricci flow. In particular, for 0 ≤ 𝜀 ≤ 1, α ≥ 0, 𝛽 ≥ 0, 𝛾 ≤ 1 and u being a positive solution to $${\frac{{\partial}u}{{\partial}t}}={\Delta}u-{\alpha}u\;{\log}\;u+{\varepsilon}Ru+{\beta}u^{\gamma}$$ on closed surfaces under the flow ${\frac{\partial}{{\partial}t}}g_{ij}=-{\varepsilon}Rg_{ij}$ with R > 0, we prove that $${\frac{\partial}{{\partial}t}}{\log}\;u-{\mid}{\nabla}\;{\log}\;u{\mid}^2+{\alpha}\;{\log}\;u-{\beta}u^{{\gamma}-1}+\frac{1}{t}={\Delta}\;{\log}\;u+{\varepsilon}R+{\frac{1}{t}{}\geq}0$$.