A NONCOMMUTATIVE BUT INTERNAL MULTIPLICATION ON THE BANACH ALGEBRA A,

KUN SIK RYU AND DAVID SKOUG

1. Introduction

In [1], Johnson and Lapidus introduced a family $\{A_t:t>0\}$ of Banach algebras of functionals on Wiener space and showed that for every F in A_t , the analytic operator-valued function space integral $K_{\lambda}^{t}(F)$ exists for all nonzero complex numbers λ with nonnegative real part. In [2,3] Johnson and Lapidus introduced a noncommutative multiplication * having the property that if $F \in A_{t_1}$ and $G \in A_{t_1}$, then $F * G \in A_{t_1+t_2}$, and

$$K_{\lambda}^{t_1+t_2}(F^*G) = K_{\lambda}^{t_1}(F)K_{\lambda}^{t_2}(G),$$

Note that for F,G in A_i , F^*G is not in A_i but rather is in A_{2i} and so the multiplication * is not internal to the Banach algebra A_i . In this paper we introduce an internal noncommutative multiplication \otimes on A_i having the property that for F,G in A_i , $F\otimes G$ is in A_i and

$$K_{\lambda}^{t}(F \otimes G) = K_{2\lambda}^{t}(F) K_{2\lambda}^{t}(G)$$

for all nonzero λ with nonnegative real part. Thus \otimes is an auxiliary binary operator on A_t .

2. Preliminaries

We will adopt much of the notation and terminology used in [1, 3]. However we will include a brief description of the Banach algebra A_t and the operator-valued function space integral $K_{\lambda}(F)$. Let C, C_+ and C_+ denote the complex numbers, the complex numbers with positive real part, and the nonzero complex numbers with nonnegative real part respectively. Let $L^2(\mathbb{R}^N)$ denote the space of

Received February 13, 1988. Revised July 29, 1988.

Borel measurable, C-valued functions ϕ on \mathbb{R}^{N} such that $|\psi|^{2}$ is integrable with respect to Lebesgue measure on \mathbb{R}^{N} .

For given t>0, let C[0,t] denote the $\mathbb{R}^{\mathbb{N}}$ -valued continuous functions on [0,t] and let $C_0[0,t]$ denote Wiener space; that is the set of all functions in C[0,t] that vanish at 0. Let $m_{(0,t)}$ denote Wiener measure on $C_0[0,t]$.

Let $F: C[0,t] \rightarrow C$ be Borel measurable. For given $\lambda > 0$, $\phi \in L^2(\mathbb{R}^N)$, and $\xi \in \mathbb{R}^N$, consider the expression

$$(2.1) \quad (K_{\lambda}(F)\phi)(\xi) = \int_{C_0[0,t]} F(\lambda^{-1/2}x + \xi)\phi(\lambda^{-1/2}x(t) + \xi) dm_{[0,t]}(x).$$

The operator-valued function space integral $K_{\lambda}^{a}(F)$ exists for $\lambda > 0$ if (2.1) defines $K_{\lambda}^{a}(F)$ as an element of $L(L_{2}(\mathbf{R}^{N}))$, the space of bounded linear operators on $L_{2}(\mathbf{R}^{N})$. If, in addition, $K_{\lambda}^{i}(F)$, as a function of λ , has an extension to an analytic function on C_{+} and to a strongly continuous function on C_{+}^{\sim} , we say that $K_{\lambda}^{i}(F)$ exists for $\lambda \in C_{+}^{\sim}$. When λ is purely imaginary, $K_{\lambda}^{i}(F)$ is called the analytic operator-valued Feynman integral of F.

Let M[0,t) denote the space of C-valued Borel measures on [0,t). Given $\eta \in M[0,t)$, let $L_{\infty 1:\eta}[0,t)$ denote the class of all Borel measurable functions $\theta:[0,t)\times \mathbb{R}^{N} \to \mathbb{C}$ such that

$$\|\theta\|_{\infty_{1}:\eta}=\int_{\Gamma(0,I)}\|\theta(s,\cdot)\|_{\infty}d|\eta|(s)<\infty.$$

 A_t consists of all functions (actually equivalence classes of functions) on C[0,t] of the form

$$F(x) = \sum_{n=0}^{\infty} \prod_{k=1}^{m_n} \int_{\{0,t\}} \int_{n,k} (s, x(s)) d\eta_{n,k}(s)$$

where

(2.2)
$$\sum_{n=0}^{\infty} \prod_{k=1}^{m_n} \|\boldsymbol{\theta}_{n,k}\|_{\infty_1:\eta_{n,k}} < \infty.$$

For $F \in A_i$, let $||F||_t$ be the infimum of the left-hand side of (2.2) over all such representations of F. In [1, Theorem 6.1], Johnson and Lapidus show that $(A_t, ||\cdot||_t)$ is a commutative Banach algebra under pointwise multiplication and addition. In addition they show that given $F \in A_t$, $K_{\lambda}^t(F)$ exists for all $\lambda \in C_{+}^{\infty}$ and satisfies $||K_{\lambda}(F)|| \leq ||F||_t$.

3. A lemma concerning Wiener measure

Let a and b be positive real numbers. Let $E_{a,b}:C[0,a]{\to}C[0,b]$ be given by the formula

$$E_{a,b}(x)(s) = \sqrt{\frac{b}{a}}x\left[\frac{as}{b}\right]$$
 for $0 \le s \le b$.

Then $E_{a,b}$ is bijective and continuous under the topology of uniform convergence.

LEMMA 3.1. $m_{[0,a]} = m_{[0,b]} \circ E_{a,b}$.

Proof. It will suffice to show that $m_{[0,a]}(I) = m_{[0,b]}(E_{a,b}(I))$ where I is an arbitrary interval in $C_0[0,a]$. So let

$$I = \{x \in C_0[0, a] : (x(t_1), \dots, x(t_n)) \in B\}$$

with $0 < t_1 < \dots < t_n < a$ and B a Lebesgue measurable subset of R_n . Then it is quite easy to see that

$$E_{a,b}(I) = \left\{ y \in C_0[0,b] : \left(y \left(\frac{bt_1}{a} \right), \dots, y \left(\frac{bt_n}{a} \right) \right) \in \sqrt{\frac{b}{a}} B \right\}.$$

But by the definition of Wiener measure we see that

$$m_{[0,b]}(E_{a,b}(I)) = \left\{ \prod_{k=0}^{n} \left[2\pi \frac{b}{a} (t_k - t_{k-1}) \right]^{-n/2} \right\} .$$

$$\int \sqrt{\frac{b}{a}} \exp \left\{ -\frac{a}{2b} \sum_{k=1}^{n} \frac{|u_k - u_{k-1}|^2}{t_k - t_{k-1}} \right\} du_1 \cdots du_n$$

$$= \left\{ \prod_{k=1}^{n} \left[2\pi (t_k - t_{k-1}) \right]^{-n/2} \right\} .$$

$$\int_{B} \exp \left\{ -\sum_{k=1}^{n} \frac{|v_k - v_{k-1}|^2}{2(t_k - t_{k-1})} \right\} dv_1 \cdots dv_n$$

$$= m_{[0,a]}(I),$$

where $t_0=0$, $u_0=0$, and $v_0=0$.

From the change of variable, we have following lemma.

Lemma 3.2. Let f be a real or complex valued functional defined on $C_0[0,a]$. Then f is Wiener measurable on $C_0[0,a]$ if and only if $f \circ E_{a,b}^{-1}$ is Wiener measurable on $C_0[0,b]$. Furthermore,

(3.1)
$$\int_{c_0[0,a]} f(x) dm_{[0,a]}(x) = \int_{c_0[0,b]} f\left(\sqrt{\frac{a}{b}} y\left(\frac{b}{a}(\cdot)\right)\right) dm_{[0,b]}(y),$$

where existence of one side implies that of the other and their equality.

4. A main result

In this section, for given F in A_i , we define a function \overline{F} in $A_{a/2}$ and then show that $K_{\lambda}^{a}(F) = K_{\lambda/2}^{a/2}(\overline{F})$ for all λ in C_{+}^{∞} .

Let F be a function in A_a . Then we can write F in the form

(4.1)
$$F(x) = \sum_{n=0}^{\infty} \prod_{k=1}^{m_n} \int_{[0,a)} \theta_{n,k}(s, x(s)) d\eta_{n,k}(s)$$

where each $\eta_{n,k}$ is in M[0,a) and each $\theta_{n,k}$ is in $L_{\infty_1:\eta_{n,k}}$. Now for each n and k we define a measure $\overline{\eta}_{n,k}$ in $M\left[0,\frac{a}{2}\right)$ by the formula $\overline{\eta}_{n,k}(B) = \eta_{n,k}(2B)$

for each Borel subset B of $\left[0,\frac{a}{2}\right]$, we also define $\bar{\theta}_{n,k}$ in $L_{\infty 1:\eta_{n,k}}$ by $\bar{\theta}_{n,k}(s,v) = \theta_{n,k}(2s,v)$ for all $(s,v) \in \left[0,\frac{a}{2}\right] \times R^{N}$. We note that $\|\eta_{n,k}\| = \|\bar{\eta}_{n,k}\|$ and $\|\bar{\theta}_{n,k}\|_{\infty 1:\eta_{n,k}} = \|\theta_{n,k}\|_{\infty 1:\eta_{n,k}}$. Now we define $F: C\left[0,\frac{a}{2}\right] \to C$ by

(4.2)
$$\overline{F}(y) = \sum_{n=0}^{\infty} \prod_{k=1}^{n} \int_{\left[0, \frac{a}{2}\right)} \overline{\theta}_{n,k}(t, y(t)) d\overline{\eta}_{n,k}(t).$$

It is quite easy to verify that \bar{F} is in $A_{a/2}$ with $\|\bar{F}\|_{a/2} = \|F\|_a$.

THEOREM 4.1. Let F in A_a be given by (4.1) and let \overline{F} be given by (4.2). Then $K_{\lambda}^{\alpha}(F) = K_{\lambda/2}^{\alpha/2}(\overline{F})$ for all λ in C_{λ}^{α} .

Proof. Let
$$F_n(x) = \prod_{k=1}^{m_n} \int_{[0,a]} \theta_{n,k}(s, x(s)) d\eta_{n,k}(s)$$
.

We will show that $K_{\lambda}^{\alpha}(F_n) = K_{\lambda/2}^{\alpha/2}(\bar{F}_n)$, The general case will then follow by use of the dominated convergence theorem.

First let $U_n: C_0[0,a] \times [0,a)^{m_n} \to C_0\left[0,\frac{a}{2}\right] \times \left[0,\frac{a}{2}\right]^{m_n}$ be defined by

$$U_n(x, s_1, \dots, s_{m_n}) = (E_{a,a/2}(x), \frac{1}{2}s_1, \dots, \frac{1}{2}s_{m_n})$$

$$= \left(\frac{1}{\sqrt{2}}x(2\cdot), \frac{1}{2}s_1, \dots, \frac{1}{2}s_{m_n}\right).$$

Then by use of Lemma 3.1 it follows that

$$(4.3) m_{[0,a]} \times \eta_{n,k} = m_{[0,a/2]} \times \overline{\eta}_{n,k} \circ U_n.$$

Next let $\lambda > 0$, $\psi \in L^2(\mathbb{R}^N)$ and $\xi \in \mathbb{R}^N$ be given. Then, we obtain the following equalities:

A noncommutative but internal multiplication on the Banach algebra A_t

$$(K_{\lambda/2}^{a/2}(\bar{F}_n)\psi)(\xi)$$

$$(1) \int_{c_{0}[0,a/2]} \prod_{k=1}^{m_{n}} \int_{[0,a/2)} \bar{\theta}_{n,k}(t,(\lambda/2)^{-1/2}y(t) + \xi d\bar{\eta}_{n,k}(t) \\ \psi((\lambda/2)^{-1/2}y(a/2) + \xi) dm_{[0,a/2]}(y)$$

$$(2) \int_{c_{0}[0,a/2]} \prod_{k=1}^{m_{n}} \int_{[0,a]} \theta_{n,k}(s,(\frac{\lambda}{2})^{-1/2}y(\frac{s}{2}) + \xi) d\eta_{n,k}(s) \Big].$$

$$\psi((\frac{\lambda}{2})^{-1/2}y(\frac{a}{2}) + \xi) dm_{[0,a/2]}(y)$$

$$(3) \int_{c_0[0,a]} \prod_{k=1}^{m_n} \int_{[0,a)} \theta_{n,k}(s,\lambda^{-1/2}x(s)+\xi) d\eta_{n,k}(s).$$

$$\psi(\lambda^{-1/2}x(a)+\xi) dm_{[0,a]}(x)$$

(4)
$$(K_{\lambda}^{a}(F_{n})\psi)(\xi)$$
.

Equalities (1), and (4) follow by definition, (2) follows from the Lemma 3.2 and (3) follows from equation (4.3). Thus $K_{\lambda/2}^{\alpha}(F_n)$ and $K_{\lambda/2}^{\alpha/2}(\bar{F}_n)$ are equal for $\lambda>0$. But each is an analytic function of λ on C_+ and each is strongly continuous on C_+^{∞} which concludes the proof of the the theorem.

5. The multiplication operator \otimes

In this section we introduce the internal noncommutative multiplication \otimes on A_a and then we proceed to obtain a formula for $K_a^a(F\otimes G)$.

For $x \in C[0, a]$ let $R_1(x)$ be the restriction of x to [0, a/2]; that is to say $R_1: C[0, a] \to C[0, a/2]$ is given by $R_1(x)(s) = x(s)$ for $0 \le s \le a/2$. Also for $x \in C[0, a]$ let $R_2(x)$ be the restriction of x to [0, a/2]; that is to say $R_2: C[0, a] \to C[a/2, a]$ is given by $R_2(x)(s) = x(s)$ for $a/2 \le s \le a$. Also let $T: C[a/2, a] \to C[0, a/2]$ be the translation map

$$T(x)(s) = x(s+a/2), 0 \le s \le a/2.$$

Definition. For F and G in A_a , we define $F \otimes G : C \lceil 0, a \rceil \rightarrow C$

by the formula

$$(F \otimes G)(x) = \overline{F}(R_1(x))\overline{G}(T(R_2(x)))$$

= $(\overline{F} \circ R_1)(x)(\overline{G} \circ T \circ R_2)(x)$.

Remark. In view of the definition of * given by equation (3.2) of [3] we see that $F \otimes G = \overline{F} * \overline{G}$.

THEOREM 5.1. For F, G in A_a , $K^a_{\lambda}(F \otimes G) = K^a_{2\lambda}(F) K^a_{2\lambda}(G)$ for all λ in C_+° .

Proof. Let F and G be in A_a , Then by Theorem 4.1, \overline{F} and \overline{G} are in $A_{a/2}$ and we have that $K_{2\lambda}^a(F) = K_{\lambda}^{a/2}(\overline{F})$ and

$$K_{2\lambda}^a(G) = K_{\lambda}^{a/2}(\overline{G})$$

for all λ in C_+^* . But $F \otimes G = \overline{F} * \overline{G}$ and so by Theorem 5.3 of [3] if follows that

$$K^a_{\lambda}(\overline{F}^*\overline{G}) = K^{a/2}_{\lambda}(\overline{F})K^{a/2}_{\lambda}(\overline{G}).$$

Hence

$$K_{\lambda}^{\alpha}(F \otimes G) = K_{\lambda}^{\alpha}(\bar{F}^*\bar{G})$$

$$= K_{\lambda}^{\alpha/2}(\bar{F})K_{\lambda}^{\alpha/2}(\bar{G})$$

$$= K_{2\lambda}^{\alpha}(F)K_{2\lambda}^{\alpha}(G).$$

References

- G. W. Johnson and M. L. Lapidus, Generalized Feynman diagrams, the Feynman integral and Feynman's operational calculus, Mem. Amer. Math. Soc. 62, No. 351(1986), 1-78.
- 2. G. W. Johnson and M. L. Lapidus, Une multiplication non commutative des fonctionnelles de Wiener et le calcul operationnel de Feynman, Comptes rendus de l'Academie des Science, 7(1987), 523-526.
- 3. G.W. Johnson and M.L. Lapidus, Noncommutative operations on Wiener functionals and Feynman's operational calculus, to appear in Journal of Functional Analysis.

Han Nam University Daejeon 300-791, Korea and University of Nebraska A noncommutative but internal multiplication on the Banach algebra A_t Lincoln, Nebraska 68588 U.S.A.