
Bull. Korean Math. Soc. 55 (2018), No. 5, pp. 1463–1481

https://doi.org/10.4134/BKMS.b170835

pISSN: 1015-8634 / eISSN: 2234-3016

A NOTE ON THE GENERALIZED HEAT CONTENT

FOR LÉVY PROCESSES

Wojciech Cygan and Tomasz Grzywny

Abstract. Let X = {Xt}t≥0 be a Lévy process in Rd and Ω be an

open subset of Rd with finite Lebesgue measure. The quantity HΩ(t) =∫
Ω Px(Xt ∈ Ω) dx is called the heat content. In this article we consider

its generalized version Hµ
g (t) =

∫
Rd E

xg(Xt)µ(dx), where g is a bounded

function and µ a finite Borel measure. We study its asymptotic behaviour

at zero for various classes of Lévy processes.

1. Introduction

Let X = (Xt)t≥0 be a Lévy process in Rd with the distribution P and such
that X0 = 0. We denote by pt(dx) the distribution of the random variable Xt

and we use the standard notation Px for the distribution related to the process
X started at x ∈ Rd.

Let Ω be a non-empty open subset of Rd such that its Lebesgue measure |Ω|
is finite. We consider the following quantity associated with the process X,

HΩ(t) =

∫
Ω

Px(Xt ∈ Ω) dx =

∫
Ω

∫
Ω−x

pt(dy)dx, t ≥ 0.(1)

Observe that the function u(t, x) =
∫

Ω−x pt(dy) is the weak solution of the
initial value problem

(2)

∂

∂t
u(t, x) = Lu(t, x), t > 0, x ∈ Rd,

u(0, x) = 1Ω(x),

where L is the infinitesimal generator of the process X, see (4). Therefore,
HΩ(t) can be interpreted as the amount of heat in Ω if its initial temperature is
one whereas the initial temperature of Ωc is zero. The quantity HΩ(t) is called
the heat content. The asymptotic behaviour - as t goes to zero - of the heat
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content related to the Brownian motion, either on Rd or on compact manifolds,
were studied in many papers among which [18–23]. The heat content for the
isotropic stable processes in Rd was studied in [3], see also [1] and [2]. The
direct forerunner of the present paper is article [8] where asymptotic behaviour
of (1) were found for numerous examples of Lévy processes.

In this note we study an extended version of the heat content (1). Namely,
for a bounded function g and a finite Borel measure µ, we consider the quantity

Hµ
g (t) =

∫
Rd

Exg(Xt)µ(dx) =

∫
Rd
v(t, x)µ(dx), t ≥ 0.

Here, the function v(t, x) = Exg(Xt) is the weak solution to equation (2) with
the initial condition v(0, x) = g(x). Thus, Hµ

g (t) can be interpreted as the
amount of heat in the set supp(µ) if its initial temperature is governed by the
function g. On the other hand, the measure µ can be regarded as the initial
distribution on Rd. Notice that taking g = 1Ω and µ(dx) = 1Ωdx we obtain
that Hµ

g is equal to the heat content defined at (1).
On the basis of the methods developed in [8], we study the asymptotic

behaviour of the quantity Hµ
g (t). We now display the results together with

necessary facts and definitions.

Notation

By BR we denote the closed ball {x ∈ Rd : ‖x‖ ≤ R} and by Sd−1 the unit
sphere in Rd. Positive constants are denoted by c, C,C1 etc. We write: f(x) �
g(x) if there are c, C > 0 such that cg(x) ≤ f(x) ≤ Cg(x); f(x) = o(g(x)) at x0

if limx→x0
f(x)/g(x) = 0, and f(x) ∼ g(x) as x→ x0 if limx→x0

f(x)/g(x) = 1.
The generalized inverse V − of the function V is given by V −(u) = inf{x ≥ 0 :
V (x) ≥ u}. Cb(Rd) is the set of all bounded and continuous functions in Rd
whereas C0(Rd) is the set of all continuous functions which vanish at infinity.

Results and basic facts

The Lévy-Khintchine exponent ψ(x) of the Lévy process X is given by the
formula

ψ(x)=〈x,Ax〉−i〈x, γ〉−
∫
Rd

(
ei〈x,y〉−1−i〈x, y〉1{‖y‖≤1}

)
ν(dy), x ∈ Rd,(3)

where A is a symmetric non-negative definite d× d matrix, γ ∈ Rd and ν is a

Lévy measure, that is ν({0}) = 0 and
∫
Rd

(
1 ∧ ‖y‖2

)
ν(dy) <∞.

The heat semigroup {Tt}t≥0 related to the Lévy process X is

Ttf(x) =

∫
Rd
f(x+ y)pt(dy) for f ∈ C0(Rd),

and the generator L of the process X is a linear operator defined by

Lf = lim
t→0+

t−1 (Ttf − f) ,(4)
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with the domain Dom(L) which is the set of all f such that the right-hand side
of (4) exists in the sense of uniform convergence. By [17, Theorem 31.5], we
have C2

0 (Rd) ⊂ Dom(L) and for any f ∈ C2
0 (Rd) it has the form

Lf(x) =

d∑
j,k=1

Ajk∂
2
jkf(x) + 〈γ,∇f(x)〉

+

∫
Rd

(
f(x+ z)− f(x)− 1‖z‖<1〈z,∇f(x)〉

)
ν(dz), x ∈ Rd,

(5)

where (A, γ, ν) is the triplet from (3). We refer the reader to [17, Section
31] or [5, Section 3.3] for a detailed discussion on infinitesimal generators of
semigroups related to Lévy processes.

To start our discussion on the small time behaviour of Hµ
g (t) we make an

important observation. Let g be a bounded function and µ a finite Borel
measure. We set µ̌(G) = µ(−G) for any Borel set G ⊂ Rd and consider the
following convolution

r(x) = g ∗ µ̌(x) =

∫
Rd
g(x+ y)µ(dy).

We can then write

Hµ
g (t) =

∫
Rd

Exg(Xt)µ(dx) =

∫
Rd

∫
Rd
g(y + x)pt(dy)µ(dx)

=

∫
Rd
g ∗ µ̌(y) pt(dy) = Ttr(0)

(6)

and therefore

lim
t→0+

t−1
(
Hµ
g (t)−Hµ

g (0)
)

= Lr(0),

whenever r belongs to Dom(L). Notice that in front of formula (6), we are
rather interested in the pointwise limit in (4) instead of the uniform conver-
gence. Thus, for some special classes of Lévy processes we will weaken the
assumption that r ∈ Dom(L). This is summarized in Theorem 1.

Recall that according to [17, Theorem 21.9] a Lévy process X has finite
variation on any interval (0, t) if and only if A = 0 and

∫
‖x‖≤1

‖x‖ν(dx) <∞.

In this case the Lévy-Khintchine exponent has the simplified form

ψ(x)= i〈x, γ0〉+
∫
Rd

(
1−ei〈x,y〉

)
ν(dy), with γ0 =

∫
‖y‖≤1

y ν(dy)−γ.(7)

Notice that for symmetric Lévy processes with finite variation we have∫
‖y‖≤1

y ν(dy) = 0.
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Theorem 1. Let X be a Lévy process in Rd with the triplet (0, γ, ν) and such
that ∫

‖x‖<1

‖x‖βν(dx) <∞ for some 0 ≤ β < 2.

Assume that g is bounded, µ is finite Borel measure and that the function
r = g ∗ µ̌ is in Cb(Rd). We distinguish the following cases.

1. 0 ≤ β ≤ 1. In this case we assume that γ0 = 0 and |r(x)− r(0)| ≤ C‖x‖β
for ‖x‖ < 1. Then

lim
t→0+

t−1
(
Hµ
g (t)−Hµ

g (0)
)

=

∫
Rd

(r(x)− r(0))ν(dx).

2. 1 ≤ β < 2. We consider two cases.

(i) If X is symmetric (i.e., γ = 0 and ν is symmetric) we assume that

function r satisfies |r(x) + r(−x)−2r(0)| ≤ C‖x‖β for ‖x‖ < 1. Then

lim
t→0+

t−1
(
Hµ
g (t)−Hµ

g (0)
)

=
1

2

∫
Rd

(r(x) + r(−x)− 2r(0))ν(dx).

(ii) If X is arbitrary, assume that r is differentiable at 0 and such that

|r(x)− r(0)− 〈x,∇r(0)〉| ≤ C‖x‖β for ‖x‖ < 1. Then

lim
t→0+

t−1
(
Hµ
g (t)−Hµ

g (0)
)

=
〈
γ, ∇r(0)

〉
+

∫
Rd

(
r(x)− r(0)− 〈x,∇r(0)〉1{‖x‖≤1}

)
ν(dx).

We emphasize that Theorem 1 was recently obtained by Kühn and Schilling
[14] for a wider range of stochastic processes, namely for the class of rich
Lévy-type processes, cf. Theorem 3.5 and Theorem 4.1 in [14]. Our result is
expressed in terms of the heat content and extends slightly an admissible classes
of functions for Lévy processes.

The next theorem provides the asymptotic behaviour of the generalized heat
content under the assumption that the Lévy-Khintchine exponent ψ is a mul-
tivariate regularly varying function, see condition (10) and [16, Chapter 6] for
an elaborate approach. Recall that in the one-variable case a function f(r) is
regularly varying of index α at infinity, denoted by f ∈ Rα, if for any λ > 0,

limr→∞
f(λr)
f(r) = λα. The following property, so-called Potter bounds, of regu-

larly varying functions appears to be very useful, see [6, Theorem 1.5.6]. For
every C > 1 and ε > 0 there is x0 = x0(C, ε) > 0 such that for all x, y ≥ x0

(8)
f(x)

f(y)
≤ C max

{
(x/y)α−ε, (x/y)α+ε

}
.

For a given function ψ we define the related non-decreasing function ψ∗ by

ψ∗(u) = sup
‖x‖≤u

ψ(x).
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Theorem 2. Let β ∈ [1, 2) be fixed. Let X be a symmetric Lévy process in Rd
with the Lévy-Khintchine exponent ψ. We assume that

ψ(x) � ψ∗(x) for ‖x‖ ≥ 1.(9)

Suppose that there is a function V ∈ Rα with α ∈ (β, 2] and a continuous
function Λ: Sd−1 → (0,∞) such that

lim
s→∞

ψ(sθ)

V (s)
= Λ(θ), θ ∈ Sd−1.(10)

Let g be a bounded function and µ a finite Borel measure. Set r = g ∗ µ̌ and
assume that the below limit exists

lim
t→0+

t−β (r(tθ) + r(−tθ)− 2r(0)) = Rβ(θ) for all θ ∈ Sd−1.

Moreover, suppose that r satisfies

|r(x) + r(−x)− 2r(0)| ≤ L‖x‖β for L > 0.(11)

Then

lim
t→0+

[V −(1/t)]β
(
Hµ
g (t)−Hµ

g (0)
)

=
1

2

∫
Rd
Rβ (x/‖x‖) ‖x‖βpΛ(x)dx,

where the density function pΛ(x) is uniquely determined by the formula

e−Λ( x
‖x‖ )‖x‖

α

=

∫
Rd
ei〈x,y〉pΛ(y)dy.(12)

The particular choice g = 1Ω and µ(dx) = 1Ωdx leads to the result for
the classical heat content defined at (1). Then the function r(x) = g ∗ µ̌(x) =
|Ω∩(Ω+x)| is the covariance function of the set Ω and the function Rβ for β = 1
is determined in terms of the related directional derivative, cf. [8, Subsection
2.1] for more details.

The following corollary gives the asymptotic behaviour when the Lévy pro-
cess X is isotropic and its (radial) Lévy-Khintchine exponent ψ(r) is a regularly
varying function at infinity with index greater than one. Let us recall that a
Lévy process X is isotropic if the measure pt(dx) is radial (rotationally invari-
ant) for each t > 0, which is equivalent to saying that the matrix A = λI
for some λ ≥ 0, the Lévy measure ν is rotationally invariant and γ = 0. For
isotropic processes the Lévy-Khintchine exponent has the specific form

ψ(x) =

∫
Rd

(1− cos〈x, y〉) ν(dx) + λ‖x‖2

for some λ ≥ 0. We usually abuse notation by setting ψ(r) to be equal to ψ(x)
for any x ∈ Rd with ‖x‖ = r > 0.

By ψ− we denote the generalized inverse of ψ∗. Using [6, Theorem 1.5.3],
if ψ ∈ Rα for some α > 0, then ψ∗ ∈ Rα and thus ψ− ∈ R1/α, which implies

that limt→0 ψ
−(1/t) =∞.

The precise constant in the below formula is found by an application of a
variant of [17, Eq. (25.6)].
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Corollary 1. Let β ∈ [1, 2) be fixed. Let X be an isotropic Lévy process in Rd
with the Lévy-Khintchine exponent ψ such that ψ ∈ Rα, α ∈ (β, 2]. Let g be a
bounded function and µ a finite Borel measure. Assume that r = g ∗ µ̌ satisfies
the assumptions of Theorem 2. Then

lim
t→0+

[ψ−(1/t)]β
(
Hµ
g (t)−Hµ

g (0)
)

= π−d/24β/2−1Γ

(
d+ β

2

) Γ
(

1− β
α

)
Γ
(

1− β
2

) ∫
Sd−1

Rβ(θ)σ(dθ).

The next theorem treats about the assumption on the Lévy measure, that
is we require it is regularly varying according to the presentation by Resnick
[16].

Theorem 3. Let β ∈ [1, 2) be fixed. Let X be a symmetric Lévy process in Rd
with the triplet (0, 0, ν). Suppose that there is a measure η on Rd \ {0} such
that

lim
s→0+

ν(sG)

ν (Bcs)
= η(G) for G ⊂ Rd \ {0} with η(∂G) = 0,(13)

where V (t) = ν(Bc1/t) is regularly varying at infinity of index α ∈ (β, 2). Let

g be a bounded function, µ a finite Borel measure and r = g ∗ µ̌. Assume that
there is a real function Rβ defined on the sphere Sd−1 such that

lim
t→0+

sup
θ∈Sd−1

∣∣∣r(tθ) + r(−tθ)− 2r(0)

tβ
−Rβ(θ)

∣∣∣ = 0.

Moreover, suppose that r satisfies (11). Then

lim
t→0+

[V −(1/t)]β
(
Hµ
g (t)−Hµ

g (0)
)

=
1

2

∫
Rd
Rβ (x/‖x‖) ‖x‖βpη(x)dx,

where the density function pη is uniquely determined by the formula

e−
∫
Rd (1−cos〈ξ,y〉)η(dy) =

∫
Rd
ei〈ξ,x〉pη(x)dx.

It is worth pointing out that Theorem 3 (as well as Theorem 2) applies in the
case when X is the stable process in Rd. We also emphasize that the support of
the measure η in (13) may be contained in some hyperplane of Rd, see Example
5. Further, condition (13) forces the scaling property of the measure η, that is
there exists some α ≥ 0 such that η(tG) = t−αη(G) for all t > 0 and sets G
with η(∂G) = 0. This in turn implies that η in Theorem 3 is the Lévy measure
of the α-stable law.

In the rest of the paper we first present a list of examples and concluding
Section 3 is devoted to the proofs of the aforementioned results.
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2. Examples

Let Ω be a non-empty open subset of Rd such that its Lebesgue measure |Ω|
is finite.

Example 1. Let X be a Lévy process with finite variation and L0 be the
generator of the process X0

t = Xt + tγ0. Let g(x) = 1Ω(x) and µ(dx) =
f(x)dx, where f ∈ C1

0 (Rd) with ∇f bounded. In particular, f is Lipschitz
and lim‖x‖→∞ f(x) = 0. In this case r(x) = g ∗ f̌(x) and it is Lipschitz with

lim‖x‖→∞ r(x) = 0, belongs to Dom(L0) and ∇r = g ∗∇f̌ . Moreover, we claim

that L0r(0) =
∫

Ω
L0f(x)dx. Indeed, applying [8, Lemma 2] we obtain that

L0r(0) =

∫
Rd

(r(y)− r(0)) ν(dy)

=

∫
Rd
ν(dy)

∫
Rd
f(−x) (1Ω(y − x)− 1Ω(−x)) dx

=

∫
Rd
ν(dy)

∫
Ω

(f(x+ y)− f(x)) dx

=

∫
Ω

∫
Rd

(f(x+ y)− f(x)) ν(dy)dx

=

∫
Ω

L0f(x)dx.

Hence, by Theorem 1,

lim
t→0+

t−1
(
Hµ
g (t)−Hµ

g (0)
)

=

∫
Ω

L0f(x)dx+ ‖γ0‖∇ γ0
‖γ0‖

r(0)1Rd\{0}(γ0).

Example 2. Let X be a Lévy process in Rd. Let g(x) = 1Ω(x) and µ(dx) =
1Ω0

dx for some Ω0 ⊂ Rd with |Ω0| < ∞. We have r(x) = |Ω ∩ (Ω0 + x)| and
it is bounded, uniformly continuous and vanishes at infinity. We consider two
cases:
Case 1. Let Ω∩Ω0 = ∅ with dist(Ω,Ω0) = D > 0. Then r(x) = 0 for ‖x‖ < D
and, applying [17, Corollary 8.9], we obtain

t−1Hµ
g (t) = t−1

∫
Rd
r(x)pt(dx) −→

∫
Ω

ν (y − Ω0) dy as t→ 0+.

Case 2. If Ω ⊂ Ω0 with dist(Ω,Ωc0) > 0, we similarly get that, as t→ 0+,

t−1(Hµ
g (t)−Hµ

g (0)) = t−1

∫
Rd

(r(x)− r(0))pt(dx) −→ −
∫

Ω

ν(y − Ωc0) dy.

Example 3. Let X be a Lévy process in Rd. Let µ(dx) = f(x)dx with the

function f(x) = (2π)−d/2e−‖x‖
2/2 and suppose that g ∈ L∞(Rd). Then f̌ = f

and g ∗ f ∈ C∞0 (Rd), and whence it also belongs to Dom(L). Since ∇f is
bounded, we deduce that f is Lipschitz. By (6) we obtain that

lim
t→0+

t−1

(
Hµ
g (t)−

∫
Rd
f(x)g(x)dx

)
= L(g ∗ f)(0).
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Similarly we can apply Theorem 1.

Example 4. Let S(α) be the α-stable process in Rd with 0 < α < 2 and with
the Lévy measure ν(α) given by the formula

ν(α)(B) =

∫
Sd−1

m(α)(dθ)

∫ ∞
0

1B(rθ)
dr

r1+α
for B ∈ B(R),

where m(α) is a finite measure on the sphere Sd−1, cf. [17, Theorem 14.3]. We
abuse notation and we write just m for the measure m(α). We additionally
assume that there is no hyperplane V of Rd such that m is supported in V.
The corresponding Lévy-Khintchine exponent ψ(α) takes the form

ψ(α)(x) =

∫
Sd−1

∫ ∞
0

(1− cos〈x, rθ〉) dr

r1+α
m(dθ).

Consider a symmetric Lévy process X of which the Lévy-Khintchine exponent
ψ equals

ψ(x) =

∫
Sd−1

∫ ∞
0

(1− cos〈x, rθ〉) f(1/r)

r
drm(dθ)

for a given function f ∈ Rα. The corresponding Lévy measure is

νf (B) =

∫
Sd−1

m(dθ)

∫ ∞
0

1B(rθ)
f(1/r)

r
dr for B ∈ B(R).

It follows, cf. [17, Remark 14.4], that for any non-negative and measurable
function F we have∫

Rd
F (x)νf (dx) =

∫
Sd−1

∫ ∞
0

F (rθ)
f(1/r)

r
drm(dθ).(14)

Our aim is to apply Theorem 2 to the process X. For that reason we need
to verify condition (9) for the function ψ. We first show that there are some
R > 0 and positive constants c = c(f), C = C(f) such that for all s ≥ R we
have

cf(s) ≤ ψ(sθ0) ≤ Cf(s) for each θ0 ∈ Sd−1.(15)

Indeed, for the upper bound, by a suitable change of variable we write

ψ(sθ0)

f(s)
=

∫
Sd−1

∫ ∞
0

(
1− cos

(
ρ〈θ0, θ〉

)) f(s/ρ)

f(s)

dρ

ρ
m(dθ).

By (8), for any ε > 0 there is R > 0 such that

f(s/ρ)

f(s)
≤ 2 max{(1/ρ)α+ε, (1/ρ)α−ε}, s ≥ ρR, s ≥ R.

Thus we get for s ≥ R
ψ(sθ0)

f(s)
≤ 2

∫
Sd−1

∫ 1

0

(
1− cos

(
ρ〈θ0, θ〉

)) dρ

ρα+ε+1
m(dθ)

+ 2

∫
Sd−1

∫ s/R

1

(
1− cos

(
ρ〈θ0, θ〉

)) dρ

ρα−ε+1
m(dθ)
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+

∫
Sd−1

∫ ∞
s/R

(
1− cos

(
ρ〈θ0, θ〉

)) f(s/ρ)

f(s)

dρ

ρ
m(dθ).

Since 1 − cos
(
ρ〈θ0, θ〉

)
≤ 2 min{1, ρ2}, we can estimate the two first integrals

by the quantity Km(Sd−1) for some K > 0. To the last integral we use formula
(14) which yields∫

Sd−1

∫ ∞
s/R

(
1− cos

(
ρ〈θ0, θ〉

)) f(s/ρ)

f(s)

dρ

ρ
m(dθ)

=
1

f(s)

∫
‖x‖> 1

R

(1− cos〈θ0, x〉) νf (dx) ≤ 2

f(s)
νf (Bc1/R).

As f diverges to infinity, the upper bound independent of θ0 is found. For the
lower bound we use again Potter bounds (8). For ε > 0 there is R > 0 such
that

f(s/ρ)

f(s)
≥ 1

2
min{(1/ρ)α+ε, (1/ρ)α−ε}, s ≥ ρR, s ≥ R.

Taking ε = α/2 we obtain

ψ(sθ0)

f(s)
≥ 1

2

∫
Sd−1

∫ 1

0

(
1− cos

(
ρ〈θ0, θ〉

)) dρ

ρ1+α
2
m(dθ) =

1

2
ψ̃(α/2)(θ0),

where ψ̃(α/2) is the Lévy-Khintchine exponent of the pure-jump truncated
(α/2)-stable process with the Lévy measure ν(α/2)|B1

. In particular, the func-

tion ψ̃(α/2) is continuous. We finally observe that infθ∈Sd−1 ψ̃(α/2)(θ) > 0.
Indeed, suppose a contrario that this infimum is zero. Then there must exist

θ1 ∈ Sd−1 such that ψ̃(α/2)(θ1) = 0. But then the support of the measure m
is contained in the subspace {λθ1 : λ ∈ R}⊥. This contradicts our assumption
and hence we have also found the lower bound in (15).

Since f ∈ Rα with α > 0, we have supR≤r≤s f(r) � f(s), cf. [6, Theorem
1.5.3]. With the aid of (15) we conclude that supθ∈Sd−1, R≤r≤s ψ(rθ0) � f(s)
and thus condition (9) is satisfied for all ‖x‖ ≥ R. But clearly continuity of
ψ allows us to deduce the result also for 1 ≤ ‖x‖ ≤ R and the proof of (9) is
finished.

We next observe that

lim
s→∞

ψ(sθ)

f(s)
= ψ(α)(θ), θ ∈ Sd−1.

This follows by an application of the Lebesgue dominated convergence theorem
which is justified by an analogous argument to that one used for the upper
bound in (15).

Finally, let µ be a finite measure and g be a bounded function. Assume that
the function r = g ∗ µ̌ satisfies all the conditions of Theorem 2. We obtain

lim
t→0+

[f−(1/t)]β
(
Hµ
g (t)−Hµ

g (0)
)

=
1

2

∫
Rd
Rβ (x/‖x‖) ‖x‖βp(α)(x)dx,
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where the density function p(α)(x) is uniquely determined by e−ψ
(α)(x) =∫

Rd e
i〈x,y〉p(α)(y)dy.

Example 5. Let X = (S(α), S(ρ)), where S(α) and S(ρ) are two independent
symmetric stable processes in R with indexes α and ρ respectively and such
that 0 < α < ρ < 2. The Lévy measure ν of X is supported on axes OX
and OY . Condition (13) forces that the same holds for the limit measure η.
Moreover, since in this case V (t) = ν(Bc1/t) belongs to Rρ, we conclude that

η(OX) = 0 and thus η is the symmetric ρ-stable measure supported on OY .
Let β = 1, 1 < ρ < 2 and set g = 1Ω, dµ = 1Ωdx for a radial set Ω. We shall

apply Theorem 3. With this choice we have that r(x) = g ∗ µ̌(x) = |Ω∩(Ω+x)|
is the so-called covariance function of the set Ω for which limt→0+ t−1(r(0) −
r(tθ)) = Vθ(Ω)/2, where Vθ(Ω) is the directional derivative of 1Ω in the direc-
tion θ ∈ S1. For sets of finite perimeter the following relation holds

Per(Ω) =
Γ
(
d+1

2

)
π(d−1)/2

∫
Sd−1

Vθ(Ω)σ(dθ), Ω ⊂ Rd.(16)

For all of this we refer the reader to [8, Subsection 2.1]. In particular, see eg.
[8, Eq. (4)] for the precise definition of the perimeter Per(Ω) of the set Ω, cf.
also [4] and [10].

By our choice of the function g and the measure µ, we have Hµ
g (0)−Hµ

g (t) =
|Ω| − HΩ(t), where HΩ(t) is the heat content defined at (1). Moreover, since
for radial sets Vθ(Ω) is constant, setting e2 = (0, 1) we obtain that

lim
t→0+

V −(1/t) (|Ω| −HΩ(t))=
Ve2(Ω)

2

∫ ∞
0

xp(ρ)
η (x)dx=π−2Γ

(
1− 1

ρ

)
Per(Ω),

where for the last equality we used (16) together with the formula for the
expectation of the stable random variable, cf. [17, Eq. (25.6)]. We mention
that for non-radial sets the last equality in the above formula is not valid.
Indeed, if we take Ω to be the rectangle centered at (0, 0) and with sides of
length 0 < a < b, then one easily computes that Ve2(Ω) = V−e2(Ω) = 4a and
whence

lim
t→0+

V −(1/t) (|Ω| −HΩ(t)) =
Ve2(Ω) + V−e2(Ω)

4

∫ ∞
0

xp(ρ)
η (x)dx

= 2π−1Γ

(
1− 1

ρ

)
a.

3. Proofs

We start with an auxiliary lemma which is closely related to the small-time
moment behaviour of Lévy processes studied in [9, 12, 14]. In particular, we
extend an admissible class of functions from [12, Section 5.2] in the case β = 1,
and the result [14, Theorem 3.5] for Lévy processes.
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After [15] we consider the following function related to the Lévy process X,
for any r > 0,

h(r) = ‖A‖r−2 + r−1
∥∥∥γ +

∫
Rd

(
1‖y‖<r − 1‖y‖<1

)
y ν(dy)

∥∥∥
+

∫
Rd

(
1 ∧ ‖y‖2r−2

)
ν(dy),

(17)

where (A, γ, ν) is the triplet from (3) and ‖A‖ = max‖x‖=1 ‖Ax‖. We shall
repeatedly use the estimate [15, Formula (3.2)]; there is some positive constant
C = C(d) such that for any r > 0,

P (‖Xt‖ ≥ r) ≤ P
(

sup
0≤s≤t

‖Xs‖ ≥ r
)
≤ Cth(r).(18)

We also recall that for symmetric Lévy processes, see [11, Corollary 1],

(19)
1

2
ψ∗(r−1) ≤ h(r) ≤ 8(1 + 2d)ψ∗(r−1).

Lemma 1. Let X be a Lévy process in Rd with the triplet (0, γ, ν) and such
that ∫

‖x‖<1

‖x‖βν(dx) <∞, 0 ≤ β ≤ 2.

For β ∈ [0, 1] we additionally assume that γ0 = 0. Let F ∈ Cb(Rd) satisfy

|F (x)− F (0)| ≤ C‖x‖β for ‖x‖ < 1. Then

lim
t→0+

t−1

∫
Rd

(F (x)− F (0)) pt(dx) =

∫
Rd

(F (x)− F (0)) ν(dx).

Proof. We choose 0 < ε < 1 and a function χε ∈ C∞c (Rd) such that 0 ≤ χε ≤ 1,
χε(x) = 1 for ‖x‖ < ε/2, and χε(x) = 0 for ‖x‖ > ε. We write∫

Rd
(F (x)− F (0)) pt(dx) =

∫
Rd

(F (x)− F (0))χε(x)pt(dx)

+

∫
Rd

(F (x)− F (0)) (1− χε(x)) pt(dx)

= Iε(t) + IIε(t).

By [17, Corollary 8.9],

lim
t→0+

t−1IIε(t) =

∫
Rd

(F (x)− F (0)) (1− χε(x)) ν(dx).

Using our assumption we estimate the first integral as follows

|Iε(t)| ≤ C
∫
Rd
φβ(x)pt(dx), where φβ = χε(x)‖x‖β .
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We observe that for β > 1 the gradient ∇φβ(0) = 0 and thus applying [14,
Theorem 4.1] we obtain that

t−1|Iε(t)| ≤ C t−1

∫
Rd
φβ(x)pt(dx)

t→0+

−−−−→ C

∫
Rd
φβ(x)ν(dx) ≤ C1ε.

The proof is finished. �

Proof of Theorem 1. We start with the case 0 ≤ β ≤ 1. Applying formula (6)
and Lemma 1 we obtain that

lim
t→0+

t−1
(
Hµ
g (t)−Hµ

g (0)
)

=

∫
Rd

(r(x)− r(0))ν(dx).

Suppose that 1 ≤ β < 2 and X is symmetric. We set F (x) = r(x) + r(−x)

and then |F (x) − F (0)| ≤ C‖x‖β for all ‖x‖ < 1. We also observe that by
symmetry γ0 = 0 when β = 1. Thus, by Lemma 1 we conclude that

lim
t→0+

t−1

∫
Rd

(F (x)− F (0))pt(dx) =

∫
Rd

(F (x)− F (0))ν(dx),

and symmetry implies t−1
∫
Rd(F (x)−F (0))pt(dx) = 2 t−1(Hµ

g (t)−r(0)), which
gives the result.

Next, we consider the case when X is a general Lévy process. We set

F (x) = r(x)− 〈x,∇r(0)〉χ(x),

where χ is a compactly supported smooth function such that 0 ≤ χ ≤ 1 and
it is one for ‖x‖ ≤ 1 and zero for ‖x‖ > 2. Then our assumption implies that

|F (x) − F (0)| ≤ C‖x‖β for ‖x‖ < 1. Thus for 1 < β < 2, by Lemma 1, we
conclude that

lim
t→0+

t−1

∫
Rd

(F (x)− F (0))pt(dx) =

∫
Rd

(F (x)− F (0))ν(dx)

=

∫
Rd

(r(x)− r(0)− 〈x,∇r(0)〉χ(x)) ν(dx).(20)

To get the same limit in the case when β = 1 we proceed as in Lemma 1. For
0 < ε < 1 we pick a function χε ∈ C∞c (Rd) such that 0 ≤ χε ≤ 1, χε(x) = 1
for ‖x‖ < ε/2, and χε(x) = 0 for ‖x‖ > ε. Then we have

lim
t→0+

t−1

∫
Rd

(F (x)− F (0)) (1− χε(x))pt(dx)

=

∫
Rd

(F (x)− F (0)) (1− χε(x))ν(dx).

We observe that ∇F (0) = 0 and whence F (x) − F (0) = o(‖x‖), which allows
us to estimate the remaining integral as follows

1

t

∣∣∣∣∫
Rd

(F (x)− F (0))χε(x)pt(dx)

∣∣∣∣ ≤ ε

t

∫
Rd
‖x‖χε(x)pt(dx)

=
ε

t

∫
Rd
‖x− tγ0‖χε(x− tγ0)p0

t (dx)
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≤ ε

t

∫
Rd
‖x‖χ2ε(x)p0

t (dx) + ε‖γ0‖,

where p0
t (dx) is the transition probability of the process X0 which is shifted by

γ0, i.e., X0
t = Xt+tγ0. Since the function x 7→ ‖x‖χ2ε(x) is Lipschitz, we apply

[14, Theorem 4.1] and deduce that the last integral tends to
∫
Rd ‖x‖χ2ε(x)ν(dx),

which implies (20). Finally, we write

t−1

∫
Rd

(F (x)− F (0))pt(dx)

= t−1(Hµ
g (t)− r(0))−

〈
t−1

∫
Rd
xχ(x)pt(dx), ∇r(0)

〉
.

The function xχ(x) ∈ C∞0 (Rd) and thus (5) yields

lim
t→0+

〈
t−1

∫
Rd
xχ(x)pt(dx), ∇r(0)

〉
=
〈
γ +

∫
Rd
x
(
χ(x)− 1{‖x‖≤1}

)
ν(dx), ∇r(0)

〉
.

Hence

lim
t→0+

t−1(Hµ
g (t)−Hµ

g (0))

= 〈γ,∇r(0)〉+

∫
Rd

(
r(x)− r(0)− 〈x,∇r(0)〉1{‖x‖≤1}

)
ν(dx)

and the proof is finished. �

Before we prove Theorem 2 we state an auxiliary lemma.

Lemma 2. Let X be a symmetric Lévy process in Rd with the transition prob-
ability pt(dx). Assume that its Lévy-Khintchine exponent ψ satisfies (10) with
functions V ∈ Rα, α ∈ (0, 2] and continuous Λ: Sd−1 → (0,∞), and that
condition (9) holds. Then pt(dx) = pt(x)dx and

lim
t→0+

pt

(
x

V −(1/t)

)
(V −(1/t))d

= pΛ(x),(21)

where pΛ is the density defined at (12).

Proof. Conditions (9) and (10) imply that

lim
x→∞

ψ(x)

log(1 + ‖x‖)
=∞,

and whence pt(dx) = pt(x)dx with the density pt ∈ L1(Rd) ∩ C0(Rd), see e.g.
[13, Theorem 1]. By the Fourier inversion formula, see [5, Section 3.3],

pt

(
x

V −(1/t)

)
(V −(1/t))d

=
1

(2π)d

∫
Rd

cos〈x, ξ〉e−tψ(V −(1/t)ξ)dξ.(22)
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By [6, Theorem 1.5.12], tV (V −(1/t))→ 1. Set θ = ξ/‖ξ‖ and then we get that

ψ (V −(1/t)ξ)

1/t
=
ψ (V −(1/t)ξ)

V (V −(1/t))
· V (V −(1/t))

1/t

∼ ψ (V −(1/t)‖ξ‖θ)
V (V −(1/t)‖ξ‖)

· V (V −(1/t)‖ξ‖)
V (V −(1/t))

→ Λ(θ)‖ξ‖α, t→ 0+,

and this leads to

lim
t→0+

e−tψ(V −(1/t)ξ) = e−Λ(θ)‖ξ‖α .

Therefore, to finish the proof we apply the Dominated Convergence Theorem.
First observe that equation (9) followed by (10) implies that

ψ∗(r) � V (r), r ≥ 1.(23)

Now we split the integral in (22) into two parts. According to Potter bounds
(8) applied for the function V , there is r0 > 0 such that, for t small enough
and ‖ξ‖ ≥ r0,

tψ
(
V −(1/t)ξ

)
≥ 1

2

ψ (V −(1/t)‖ξ‖θ)
V (V −(1/t)‖ξ‖)

· V (V −(1/t)‖ξ‖)
V (V −(1/t))

≥ C‖ξ‖α/2

for some C > 0 which does not depend on ξ. Here we used the fact that Λ is

bounded from below and (9) followed by (23). This implies that e−tψ(V −(1/t)ξ)

≤ e−C‖ξ‖
α/2

for ‖ξ‖ ≥ r0 and t small enough. For ‖ξ‖ < r0 we bound

e−tψ(V −(1/t)ξ) by one. The Dominated Convergence Theorem followed by the
Fourier inversion formula proves (21). �

Proof of Theorem 2. The proof is based on that of [8, Theorem 2] but it requires
numerous adjustments and improvements. We split the integral in (6) into two
parts

Hµ
g (t)−Hµ

g (0) =

∫
‖x‖≤ M

V−(1/t)

pt(x) (r(x)− r(0)) dx

+

∫
‖x‖> M

V−(1/t)

pt(x) (r(x)− r(0)) dx

= I1(t) + I2(t)

for some fixed M > 1. We estimate I2(t) as follows:∣∣∣ ∫
‖x‖> M

V−(1/t)

pt(x) (r(x)− r(0)) dx
∣∣∣(24)

≤ C

∫
‖x‖> M

V−(1/t)

(
1 ∧ ‖x‖β

)
pt(dx)

= C

∫
‖x‖> M

V−(1/t)

∫ 1∧‖x‖β

0

du pt(dx)
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= C

∫ 1

0

P
(
‖Xt‖ >

M

V −(1/t)
∨ u1/β

)
du.

This yields that(
V −(1/t)

)β |I2|
≤ CMβP

(
‖Xt‖ >

M

V −(1/t)

)
+C

(
V −(1/t)

)β∫ 1

(M/V −(1/t))β
P
(
‖Xt‖ > u1/β

)
du.

Thus using (18) followed by (19), (23) and Potter bounds (8) for V , we get
that for t small enough and for 0 < ε < α− β,

MβP
(
‖Xt‖ > M/V −(1/t)

)
≤Mβtψ∗

(
V −(1/t)/M

)
≤ C1M

β V (V −(1/t)/M)

V (V −(1/t))
≤ C2M

β−α+ε.

We proceed similarly with the second term. Applying Karamata’s theorem
[6, Proposition 1.5.8] and Potter bounds we obtain that for t small enough(

V −(1/t)
)β ∫ 1

(M/V −(1/t))β
P
(
‖Xt‖ > u1/β

)
du

≤ Ct
(
V −(1/t)

)β ∫ 1

M/V −(1/t)

V (u−1)uβ−1 du

≤ C1
Mβ

α− β
t V
(
V −(1/t)/M

)
≤ C2

Mβ

α− β
V (V −(1/t)/M)

V (V −(1/t))
≤ C3

Mβ−α+ε

α− β
.

We are left to study the integral I1(t): by a change of variable we get

[V −(1/t)]βI1(t) =
1

2

∫
‖x‖<M

pt

(
x

V −(1/t)

)
(V −(1/t))d

Kβ(x, t)‖x‖βdx,

where

Kβ(x, t) =

(
r
(

x
V −(1/t)

)
+ r

(
− x
V −(1/t)

)
− 2r(0)

)
‖x‖β/(V −(1/t))β

.

We claim that for any fixed M > 0,

(25)
lim
t→0+

∫
‖x‖<M

pt

(
x

V −(1/t)

)
(V −(1/t))d

Kβ(x, t)‖x‖βdx

=

∫
‖x‖<M

Rβ

(
x

‖x‖

)
‖x‖βpΛ(x)dx,
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where pΛ(x) is given by (12). To show the claim we use the Dominated Con-
vergence Theorem. By (11),

|Kβ(x, t)| ≤ L and lim
t→0+

Kβ(x, t) = Rβ

(
x

‖x‖

)
for any x.

Next, by [7, Formula (23)], for t small enough,

pt

(
x

V −(1/t)

)
(V −(1/t))d

≤ pt(0)

(V −(1/t))d
≤ C

and by Lemma 2,

lim
t→0+

pt

(
x

V −(1/t)

)
(V −(1/t))d

= pΛ(x).

The Dominated Convergence Theorem implies (25).
If we let M tend to infinity we finally conclude that

lim
t→0+

[V −(1/t)]βI1(t) =
1

2

∫
Rd
Rβ

(
x

‖x‖

)
‖x‖βpΛ(x)dx

and the result follows. �

Proof of Theorem 3. Take a smooth function χε such that 0 ≤ χε ≤ 1 and it
is one for ε < ‖x‖ < 1/ε, and zero for 2/ε > ‖x‖ or ‖x‖ < ε/2. By (6) we can
write

2
(
Hµ
g (t)−Hµ

g (0)
)

=

∫
Rd

(r(x) + r(−x)− 2r(0))
(
1− χε

(
V −(1/t)x

))
pt(dx)

+

∫
Rd

(r(x) + r(−x)− 2r(0))χε
(
V −(1/t)x

)
pt(dx).

We have ∣∣∣∣∫
Rd

(r(x) + r(−x)− 2r(0))
(
1− χε

(
V −(1/t)x

))
pt(dx)

∣∣∣∣
≤ C1

(
ε

V −(1/t)

)β
+ C2

∫
‖x‖>1/(εV −(1/t))

(1 ∧ ‖x‖)β pt(dx).

We show that the last integral is small similarly as in the proof of Theorem 2,
cf. (24). This and a change of variable yield that

2[V −(1/t)]β
(
Hµ
g (t)− r(0)

)
= o(1) +

∫
Rd
Kβ(x, t)‖x‖βχε(x)p̃t(dx),

where p̃t(G) = pt (G/V −(1/t)) for any Borel set G ⊂ Rd and

Kβ(x, t) =
r
(

x
V −(1/t)

)
+ r

(
− x
V −(1/t)

)
− 2r(0)

‖x‖β/(V −(1/t))β
.
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Further we write∫
Rd
Kβ(x, t)‖x‖βχε(x)p̃t(dx) =

∫
Rd

(
Kβ(x, t)−Rβ

(
x

‖x‖

))
‖x‖βχε(x)p̃t(dx)

+

∫
Rd
Rβ

(
x

‖x‖

)
‖x‖βχε(x)p̃t(dx)

and the first integral we estimate as follows∣∣∣ ∫
Rd

(
Kβ(x, t)−Rβ

(
x

‖x‖

))
‖x‖βχε(x)p̃t(dx)

∣∣∣ ≤ Cε∫
Rd
‖x‖βχε(x)p̃t(dx).

To finish the proof we need the following observation: the measures p̃t(dx), as
t goes to zero, converge weakly to the measure p̃η which is uniquely determined
by the formula

e−
∫
Rd (1−cos〈ξ,y〉)η(dy) =

∫
Rd
ei〈ξ,y〉p̃η(dy).

We work with characteristic functions and, since p̃t(dx) is the distribution of
the random variable V −(1/t)Xt, it suffices to show that

lim
t→0+

tψ
(
V −(1/t)ξ

)
=

∫
Rd

(1− cos〈ξ, y〉) η(dy).

We set s = 1/V −(1/t). Since V ∈ Rα with α > 0, we can investigate the above
limit at zero along the new variable s for which we have t ∼ 1/V (1/s) as t
tends to 0. Then in terms of the new variable we obtain

1

V (1/s)
ψ
(
s−1ξ

)
=

∫
Rd

(1− cos〈ξ, y〉) νs(dy)

V (1/s)

=

∫
Rd

(1− χε(y)) (1− cos〈ξ, y〉) νs(dy)

V (1/s)

+

∫
Rd
χε(y) (1− cos〈ξ, y〉) νs(dy)

V (1/s)
,

where νs(G) = ν(sG) for any Borel set G ⊂ Rd. Condition (13) forces that the
last integral converges, as s goes to zero, to

∫
χε(x) (1− cos〈ξ, y〉) η(dy). Thus

we are left to prove that the first integral approaches zero. We have∫
Rd

(1−χε(y)) (1−cos〈ξ, y〉) νs(dy)

V (1/s)
≤ C

(∫
Bε

+

∫
Bc

1/ε

)
(1−cos〈ξ, y〉) νs(dy)

V (1/s)
.

For the second integral we apply Potter bounds: for s small enough we have∣∣∣∣∣
∫
Bc

1/ε

(1− cos〈ξ, y〉) νs(dy)

V (1/s)

∣∣∣∣∣ ≤ 2

V (1/s)
νs(B

c
1/ε) =

2

V (1/s)
V (ε/s) ≤ Cεα/2.

The first integral is bounded by∫
Bε

‖ξ‖2‖y‖2 νs(dy)

V (1/s)
=
‖ξ‖2ε2

V (1/s)

∫
Bsε

‖y‖2

(sε)2
ν(dy) ≤ ‖ξ‖2ε2 h(sε)

V (1/s)
≤ ‖ξ‖2ε2−α,
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where in the last inequality we used the fact that for s < 1, h(s) � V (1/s). To
obtain these two inequalities we write

h(s) = ν(Bcs) +
1

s2

∫
Bs

‖y‖2ν(dy) = V (1/s) +
2

s2

∫
Bs

∫ ‖y‖
0

udu ν(dy)

≤ V (1/s) +
2

s2

∫ s

0

u ν(Bcu)du = V (1/s) +
2

s2

∫ s

0

uV (1/u)du.

The function V (s) = ν(Bc1/s) is regularly varying at infinity of index α ∈ (β, 2)

and thus the Karamata’s theorem [6, Section 1.6] implies that the last integral
behaves like s2V (1/s), as s goes to zero, and we conclude the result. �
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[5] D. Applebaum, Lévy Processes and Stochastic Calculus, second edition, Cambridge

Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.

[6] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia of
Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987.

[7] K. Bogdan, T. Grzywny, and M. Ryznar, Density and tails of unimodal convolution

semigroups, J. Funct. Anal. 266 (2014), no. 6, 3543–3571.
[8] W. Cygan and T. Grzywny, Heat content for convolution semigroups, J. Math. Anal.

Appl. 446 (2017), no. 2, 1393–1414.
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