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A NOTE ON PRIMITIVE SUBGROUPS OF FINITE

SOLVABLE GROUPS
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Abstract. In [5], Johnson introduced the primitivity of subgroups and
proved that a finite group G is supersolvable if every primitive subgroup
of G has a prime power index in G. In that paper, he also posed an inter-
esting problem: what a group looks like if all of its primitive subgroups
are maximal. In this note, we give the detail structure of such groups
in solvable case. Finally, we use the primitivity of some subgroups to
characterize T -group and the solvable PST0-groups.

1. Introduction

All groups considered in this note are finite. We use the conventional notions
and notation, as in [2]. G always denotes a finite group, |G| is the order of G,
π(G) stands for all prime divisors of |G|. We use M < · G to denote M is
maximal in G. We say a group G is elementary abelian if G is abelian of
square-free exponent.

In [5], Johnson introduced the primitivity of subgroups. A subgroup H of
a group G is called primitive if it is a proper subgroup of the intersection of
all subgroups properly containing H . Johnson proved that a finite group G is
supersolvable if every primitive subgroup of G has a prime power index in G.
Clearly, any maximal subgroup M of a group G is primitive because G is the
only subgroup which properly containing M . However, a primitive subgroup
may be not a maximal subgroup. A4, the alternating group of degree 4, is a
counterexample. Let H be a subgroup of order 2. H is primitive in A4 because
the unique Sylow 2-subgroup B4 and G are the subgroups which containing H .
But H is not maximal in A4. So primitivity can be regarded as a generalization
of maximality. Therefore it is worthy of characterizing the groups all of whose
primitive subgroups are maximal.

For convenience, we use Z to denote the class of finite groups with property
that all primitive subgroups are maximal.
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A natural question is to determine the structure of group G in Z and it was
posed as an open question in [5].

In this paper we try to answer the question and we also try to discuss the
condition that the direct product in Z is still in Z and some other properties.

In [3], Guo gave the detailed structure of a group G satisfying that every
primitive subgroups of G has a prime power index which is very helpful in our
proofs. He proved:

Theorem 1.1 ([3]). Let G be a finite group. Then the following statements

are equivalent:
(1) Every primitive subgroup of G has a prime power index in G.

(2) G = [D]M is a supersolvable group, where D and M are nilpotent Hall

subgroups of G, D is the nilpotent residual of G and G = DNG(D ∩ X) for

every primitive subgroup X of G. In particular, every maximal subgroup of D
is normal in G.

In this paper, we try to characterize the groups with property that primi-
tivity always means maximality. We get the the detailed structure in solvable
case. The following theorem is obtained.

Theorem 1.2. Let G be a finite group. Then the following statements are

equivalent.

(1) G is solvable and X < · G for any primitive subgroup X of G.

(2) Every primitive subgroup of G has a prime index in G.

(3) G = [D]M is supersolvable with Φ(G) = 1. Where M is an elementary

abelian Hall subgroup of G, D is an abelian Hall subgroup of G of odd order,

D is a direct product of some elementary abelian Sylow subgroups, D is the

nilpotent residual of G, every subgroup of D is normal in G and every element

of G induces a power automorphism in D, and D∩X < · D for every primitive

subgroup X of G not containing D.

(4) G = [D]M is supersolvable. Where D and M are nilpotent Hall subgroups

of G, D is the nilpotent residual of G, D is a direct product of some elementary

abelian Sylow subgroups. D ∩ X < · D for every primitive subgroup X of G
not containing D. Every maximal subgroup of D is normal in G.

A group G is said to be a T -group (or PST -group) if normality (S-quasinor-
mality, respectively) is a transitive relation in G, that is, for the groups H ≤
K ≤ G, H is normal (S-permutable, respectively) in K and K is normal (S-
permutable, respectively) in G always imply that H is normal (S-permutable,
respectively) in G.

A group G is called a T0-group (or PST0-group) if G/Φ(G) is a T -group
(PST -group, respectively). For more information about the transitivity of
subgroup, please see ([1], [6]). In this paper, we show that G ∈ T0 if G ∈ Z.
We also obtain a theorem concerning the solvable PST0-groups.

Theorem 1.3. Let G be a finite group. Then the following statements are

equivalent.
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(1) every primitive subgroup of G containing Φ(G) has a prime power index

in G.

(2) G/Φ(G) = [D/Φ(G)]M/Φ(G), D/Φ(G) and M/Φ(G) are Hall sub-

groups with co-prime orders, D/Φ(G) is abelian and is the nilpotent residual of

G/Φ(G), the elements of G/Φ(G) induces a power automorphism in D/Φ(G).
(3) G is a solvable PST0-group.

2. Preliminaries

Lemma 2.1 ([3]). Let G be a non-identity group. Then the following state-

ments hold:
(1) For every proper subgroup H of G, there is a set of primitive subgroups

{Xi| i ∈ I} in G such that H =
⋂

i∈I Xi;
(2) If H ≤ G and T is a primitive subgroup of H, then T = H ∩X for some

primitive subgroup of G;
(3) If K EG and K ≤ H ≤ G, then H is a primitive subgroup of G if and

only if H/K is a primitive subgroup of G/K;
(4) Let P and Q be subgroups of G with (|P |, |Q|) = 1. Suppose that H is

a subgroup of G such that HP ≤ G and HQ ≤ G, then HP ∩ HQ = H. In

addition, if we suppose that H is a primitive subgroup of G, then P ≤ H or

Q ≤ H.

Lemma 2.2. Suppose that G is nilpotent. Then the following statements are

equivalent:
(1) Every primitive subgroup of G is maximal in G.

(2) G is elementary abelian, that is, Φ(G) = 1.

Proof. To prove (1) ⇒ (2), we just need to prove Φ(G) = 1. Suppose that
Φ(G) 6= 1, then we take a minimal subgroup L of Φ(G). By Lemma 2.1, there
is a primitive subgroup X of G such that 1 = X∩L, since the identity subgroup
is a primitive subgroup of L. By the hypothesis of (1), X is maximal in G, it
follows that L ≤ X , a contradiction. Thus Φ(G) = 1.

(2) ⇒ (1). For any primitive subgroup X of G, by Lemma 2.1(4), |G : X | is
a power of a prime, say pn, p is a prime and n is a positive integer. So we may
suppose G is a p-group. Then G is an elementary abelian p-group. It follows
that G/X is an elementary abelian p-group, Φ(G/X) = 1. Consequently

X =
⋂

X≤K and K<· G

K.

Since X is a primitive subgroup of G, X = K for some K < · G. Thus X is
maximal in G. This completes the proof. �

Lemma 2.3. Let G be an abelian p-group, p is a prime. Suppose that the

action of a group H on G is co-prime and that H acts trivially on Ω1(G) =
〈x ∈ G | xp = 1〉. Then H acts trivially on G.
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3. Main results

Theorem 3.1. Let G be a finite group. Then the following statements are

equivalent.

(1) G is solvable and every primitive subgroup X of G is a maximal subgroup

of G.

(2) Every primitive subgroup of G has a prime index in G.

(3) G = [D]M is supersolvable with Φ(G) = 1. Where M is an elementary

abelian Hall subgroup of G, D is an abelian Hall subgroup of G of odd order,

D is a direct product of some elementary abelian Sylow subgroups, D is the

nilpotent residual of G, every subgroup of D is normal in G and every element

of G induces a power automorphism in D, and D∩X < · D for every primitive

subgroup X of G not containing D.

(4) G = [D]M is supersolvable. Where D and M are nilpotent Hall subgroups

of G, D is the nilpotent residual of G, D is a direct product of some elementary

abelian Sylow subgroups. D ∩ X < · D for every primitive subgroup X of G
not containing D. Every maximal subgroup of D is normal in G.

Proof. (1) ⇒ (2). Suppose (1) is true. Since G is solvable, and so every
maximal subgroup of G has a prime power index in G. By (1) every primitive
subgroup X of G is a maximal subgroup of G, so X is of prime power index in
G. By Theorem 1.1, G is supersolvable. Consequently every primitive subgroup
of G has a prime index in G.

(2) ⇒ (1) is obvious. This completes (1) ⇔ (2).
Next, we prove (2) ⇒ (3). By Theorem 1.1, if (2) is true, then G = [D]M is

a supersolvable group, where D and M are nilpotent Hall subgroups of G, D
is the nilpotent residual of G.

We will try to prove (2) ⇒ (3) through the following 5 steps and give a more
detailed structure of G.

Step 1. M is elementary abelian.
Note that G/D is nilpotent and G/D satisfies the hypothesis of (2) by

Lemma 2.1(3). By Lemma 2.2(2), M ∼= G/D is an elementary abelian group.

Step 2. Φ(G) = 1.
Suppose that Φ(G) 6= 1, then can choose a minimal subgroup L of prime

order in Φ(G). Since the identity subgroup is a primitive of L, by Lemma 2.1
(2), there is a primitive subgroup X of G such that 1 = X ∩ L. Since (2)
implies (1), X is maximal in G, it follows that L ≤ X and so 1 = X ∩ L = L,
a contradiction. Thus Φ(G) = 1.

Step 3. D is abelian. Every subgroup of D is normal in G and every element
of G induces a power automorphism in D.

By Theorem 1.1, every maximal subgroup of D is normal in G. By Step 2,
Φ(D) ≤ Φ(G) = 1 and so D is a direct product of some elementary abelian
Sylow subgroups. So every subgroup H of D is the intersection of the maximal
subgroup of D which containing H . Thus every subgroup of D is normal in G.
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In particular, every element of G induces a power automorphism in D. This
proves Step 3.

Step 4. D is of odd order.
Let D2 = 〈d2 | d ∈ D〉. D2 is characteristic in D and so D E G. Since

every element of it is of order no more than 2, D/D2 is an elementary abelian
2-group (it maybe the identity group). By Step 3, every subgroup of D/D2 is
normal in G/D2. Since every normal subgroup of order 2 is contained in the
center. Thus D/D2 ≤ Z(G/D2). Therefore the nilpotent residual D has the
property D ≤ [D,G] ≤ D2. Hence D = D2. By (3), D = D2×Dp1

× · · ·×Dpk

is a direct product of the elementary abelian Sylow subgroups of D, where pi
are odd primes. D2 = D implies that D2 = 1 and so D is of odd order. Step 4
holds.

Step 5. D∩X < · D for every primitive subgroup X of G not containing D.
For any primitive subgroup X of G, by the hypothesis, |G : X | is a prime.

If D is not contained in X , then G = DX since D is a Hall subgroup. This
yields that |D : D ∩X | = |DX : X | is a prime. This implies that D ∩X < ·D
for every primitive subgroup X of G not containing D. Step 5 holds.

(3) ⇒ (4) is trivial.
Finally we prove (4) ⇒ (2). Suppose that (4) is true. Firstly, we will show

the hypotheses are inherited by quotient groups of G.
For any normal subgroup N of G, G/N = [DN/N ]MN/N is supersolvable.

DN/N is an abelian group of odd order and is the nilpotent residual of G/N .
DN/N and MN/N are Hall subgroups. DN/N is a direct product of some
elementary abelian Sylow subgroups. And it is easy to see that every maximal
subgroup of DN/N is normal in G/N . MN/N is an elementary abelian Hall
subgroup of G/N . For any primitive subgroup X/N of G/N not containing
DN/N , then X is a primitive subgroup of G and D is not contained in X . By
the hypotheses, |D : D ∩X | is a prime. Then

|DN/N : DN/N ∩X/N | =
|D|

|D ∩N |
:

|X ∩D|

|X ∩D ∩N |
=

|D|

|X ∩D|
= |D : X ∩D|,

and so |DN/N : DN/N ∩X/N | is a prime, that is, DN/N ∩X/N < · DN/N .
Thus the hypotheses are inherited by quotient groups of G.

Secondly, if G satisfies (4), then the hypotheses of Theorem 1.1(2) satisfied.
For any primitive subgroup X of G, |G : X | = pn with p a prime, we will
prove that n = 1. Suppose it is false and let G be a counterexample with
minimal order. Then |G : X | = pn and n > 1 is an integer. Suppose that
XG 6= 1. Since G/XG satisfies the hypotheses of (3) and X/XG is a primitive
subgroup of G/XG, by the minimal choice of G, |G : X | = |G/XG : X/XG|
is a prime, a contradiction. So we may suppose XG = 1. By Lemma 2.1(4),
F (G) = Oq(G), where q is the maximal prime divisor of |G|. If D = 1, then
G = M is an elementary abelian group. According to Lemma 2.2, X has a
prime index in G, a contradiction. So D is a non-identity Hall subgroup of G.
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Since XG = 1, D is not contained in X . Consequently, |G : X | = pn implies
that G = DX , and thus |G : X | = |DX : X | = |D : D∩X |. Since D∩X < · D,
|G : X | = |D : D ∩ X | is a prime, a final contradiction. This completes the
proof of the theorem. �

It is also interesting to determine the structure of a group G that every
proper subgroup of G is a primitive subgroup. The following observation is
that Φ(G) plays the essential role.

Theorem 3.2. Let G be a finite group. Then the following statements are

equivalent.

(1) Every proper subgroup X of G is a primitive subgroup.

(2) Φ(G) is a primitive subgroup of G.

(3) G is a cyclic p-group for some prime p.

Proof. (1) ⇒ (2) and (3) ⇒ (1) is trivial. We only need to prove (2) ⇒ (3).
Suppose that Φ(G) is a primitive subgroup of G. Since Φ(G) is the intersection
of the maximal subgroups of G, Φ(G) is the only maximal subgroup of G. Thus
G is a cyclic p-group for some prime p, and (2) ⇒ (3) is proved. �

For many class of groups X , such as abelian groups, nilpotent groups, solv-
able groups, the direct product of the groups in X is in X . We also have
interest to know if the groups with that every primitive subgroup is a maximal
subgroup have such a property or not.

The following example show that Z is not closed under direct products.

Example 3.3. Clearly, the symmetric group of degree 3, S3 ∈ Z. Put G =
S3 × S3 = ([〈a1〉]〈b1〉) × ([〈a2〉]〈b2〉). D = 〈a1〉 × 〈a2〉 is the nilpotent residual
of G. If G ∈ Z, then every subgroup of D is normal in G by Theorem 3.1.
Consequently, 〈(a1, a2)〉EG. By the defining relation of S3, a1

b1 = a1
2. This

implies that (a1, a2)
(b1, 1) = (a1, a2)

i, where i is an integer with 1 ≤ i ≤ 3.
Consequently, (a1

2, a2) = (a1
i, a1

i), and thus 2 = i = 1, a contradiction. So
Z is not closed under direct products.

Inspired by the above example, we see that direct product of the groups in
Z may be not in Z. We try to find the condition such that the property is true
for the direct product. we have the following theorem.

Theorem 3.4. Suppose that the groups A and B are in Z. Then G := A×B ∈
Z if and only if (|D(A)|, |D(B)|) = 1 and X ∩ D < · D for any primitive

subgroup X of G not containing D. Here, D(A) and D(B) denote the nilpotent

residuals of A and B, respectively; D denotes the direct product of D(A) and

D(B).

Proof. We first prove the “if” part. Assume that G = A×B with the properties
that (|D(A)|, |D(B)|) = 1 and X ∩D < · D for any primitive subgroup X of
G not containing D. Since A and B lies in Z, we have that A = [D(A)]M(A)
and B = [D(B)]M(B) have the properties in Theorem 3.1(4). We have that
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G = [D]M where D = D(A) × D(B) and M = M(A) × M(B). We can
directly check that G satisfies the properties in Theorem 3.1(4). Therefore
G = A×B ∈ Z.

Now we prove the “only if ” part. Since the nilpotent residual of A × B is
D(A)×D(B), if G := A×B ∈ Z, then X∩D < · D for any primitive subgroup
X of G not containing D.

Now we only need to prove that (|D(A)|, |D(B)|) = 1. Suppose that
(|D(A)|, |D(B)|) 6= 1 and pick a prime p dividing (|D(A)|, |D(B)|). Put P =
P1 × P2, P1 and P2 are Sylow p-subgroups of D(A) and D(B), respectively.
Then P is an abelian Sylow p-subgroup of G. Since G ∈ Z, by Theorem 3.1
(3), every subgroup of P is normal in G. Take any two elements a ∈ P1 and
b ∈ P2 such that |a| = |b| = p. By the hypothesis, 〈(a, b)〉 E G. Take any
p′-element t ∈ A, then

(a, b)(t, 1) = (at, b) = (a, b)i, 1 ≤ i < p.

Since a ∈ D(A) and the elements of G induces a power automorphism in
D(A), then at = al, 1 ≤ l < p. Consequently, we have (al, b) = (ai, bi), and
so l = i = 1. Then at = a, this implies that every p′-element of A centralizes
every minimal subgroup of P1. Since P1 is an abelian p-subgroup, by Lemma
2.3, Op(A) ≤ CA(P1). From the fact that P1 is an abelian Sylow p-subgroup
of A, A = P1O

p(A) ≤ CA(P1), and so P1 ≤ Z(A). This is contrary to the fact
that D(A) is the nilpotent residual of A. Thus (|D(A)|, |D(B)|) = 1.

This proves the theorem. �

Immediately, we have the following corollary.

Corollary 3.5. A group A ∈ Z, then A×A ∈ Z if and only if D(A) = 1, that
is, A is elementary abelian.

Proof. Suppose that A× A ∈ Z. By Theorem 3.4, (|D(A)|, |D(A)|) = 1. This
implies that D(A) = 1. By Theorem 3.1, A is elementary abelian. Conversely,
if A is elementary abelian, then so is G. By Lemma 2.2, G ∈ Z. This completes
the proof of the corollary. �

As applications of Theorem 3.1, we give some interesting characterizations
of T -group PST0-group by using the primitivity of subgroups.

According to Statement (3) in Theorem 3.1, the following is obvious.

Corollary 3.6. Let G be a finite group. Then G is a T -group(or T0-group) if

every primitive subgroup of G has a prime index in G.

Proof. See [7, Theorem 13.4.4]. �

Theorem 3.7. Let G be a finite group. Then the following statements are

equivalent.

(1) Every primitive subgroup of G containing Φ(G) has a prime power index

in G.
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(2) G/Φ(G) = [D/Φ(G)]M/Φ(G), D/Φ(G) and M/Φ(G) are Hall sub-

groups with co-prime orders, D/Φ(G) is abelian and is the nilpotent residual of

G/Φ(G), the elements of G/Φ(G) induce the power automorphisms in D/Φ(G).
(3) G is a solvable PST0-group.

Proof. Without loss of generality we may suppose Φ(G) = 1.
(1) ⇒ (2). By Theorem 1.1, it suffices to prove D is abelian and every

subgroup of D is normal in G .
By Theorem 1.1, every maximal subgroup ofD is normal in G. Since Φ(G) =

1, D is elementary abelian. Then every subgroup of D is the intersection of
some maximal subgroups of D. Thus every subgroup of D is normal in G.

Put D2 = 〈d2 | d ∈ D〉, D2 is characteristic in D. Then D/D2 is an
elementary abelian 2-group. By the previous paragraph, every subgroup of
D/D2 is normal in G/D2. Since every normal subgroup of order 2 is contained
in the center. Thus D/D2 ≤ Z(G/D2), D = [D,G] ≤ D2. It follows that
D = D2, and so D is of odd order. By Step 3, G is a Dedekind group of odd
order, thus D is abelian. This proves (1) ⇒ (2).

By Theorem 1.1, (2) ⇒ (1) is obvious.
The equivalence between (2) and (3) is the Main Theorem in [1]. �
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