• Title/Summary/Keyword: T-manifold

Search Result 107, Processing Time 0.024 seconds

A NOTE ON HOFER'S NORM

  • Cho, Yong-Seung;Kwak, Jin-Ho;Yoon, Jin-Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.277-282
    • /
    • 2002
  • We Show that When ($M,\;\omega$) is a closed, simply connected, symplectic manifold for all $\gamma\;\in\;\pi_1(Ham(M),\;id)$ the following inequality holds: $\parallel\gamma\parallel\;{\geq}\;sup_{\={x}}\;|A(\={x})|,\;where\;\parallel\gamma\parallel$ is the coarse Hofer's norm, $\={x}$ run over all extensions to $D^2$ of an orbit $x(t)\;=\;{\varphi}_t(z)$ of a fixed point $z\;\in\;M,\;A(\={x})$ the symplectic action of $\={x}$, and the Hamiltonian diffeomorphisms {${\varphi}_t$} of M represent $\gamma$.

HARMONIC MORPHISMS AND STABLE MINIMAL SUBMANIFOLDS

  • Choi, Gundon;Yun, Gabjin
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-33
    • /
    • 2006
  • In this article, we study the relations of horizontally conformal maps and harmonic morphisms with the stability of minimal fibers. Let ${\varphi}:(M^n,g){\rightarrow}(N^m,h)$ be a horizontally conformal submersion. There is a tensor T measuring minimality or totally geodesics of fibers of ${\varphi}$. We prove that if T is parallel and the horizontal distribution is integrable, then any minimal fiber of ${\varphi}$ is volume-stable. As a corollary, we obtain that any fiber of a submersive harmonic morphism whose fibers are totally geodesics and the horizontal distribution is integrable is volume-stable. As a consequence, we obtain if ${\varphi}:(M^n,g){\rightarrow}(N^2,h)$ is a submersive harmonic morphism of minimal fibers from a compact Riemannian manifold M into a surface N, T is parallel and the horizontal distribution is integrable, then ${\varphi}$ is energy-stable.

  • PDF

ADMISSIBLE INERTIAL MANIFOLDS FOR INFINITE DELAY EVOLUTION EQUATIONS

  • Minh, Le Anh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.669-688
    • /
    • 2021
  • The aim of this paper is to prove the existence of an admissible inertial manifold for mild solutions to infinite delay evolution equation of the form $$\{{\frac{du}{dt}}+Au=F(t,\;u_t),\;t{\geq}s,\\\;u_s({\theta})={\phi}({\theta}),\;{\forall}{\theta}{\in}(-{{\infty}},\;0],\;s{\in}{\mathbb{R}},$$ where A is positive definite and self-adjoint with a discrete spectrum, the Lipschitz coefficient of the nonlinear part F may depend on time and belongs to some admissible function space defined on the whole line. The proof is based on the Lyapunov-Perron equation in combination with admissibility and duality estimates.

ON TORIC HAMILTONIAN T-SPACES WITH ANTI-SYMPLECTIC INVOLUTIONS

  • Kim, Jin Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.671-683
    • /
    • 2022
  • The aim of this paper is to deal with the realization problem of a given Lagrangian submanifold of a symplectic manifold as the fixed point set of an anti-symplectic involution. To be more precise, let (X, ω, µ) be a toric Hamiltonian T-space, and let ∆ = µ(X) denote the moment polytope. Let τ be an anti-symplectic involution of X such that τ maps the fibers of µ to (possibly different) fibers of µ, and let p0 be a point in the interior of ∆. If the toric fiber µ-1(p0) is real Lagrangian with respect to τ, then we show that p0 should be the origin and, furthermore, ∆ should be centrally symmetric.

SYMPLECTICITY OF 4-DIMENSIONAL NIL-MANIFOLDS AND SCALAR CURVATURE

  • Kim, Jong-Su;Yun , Gab-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.563-570
    • /
    • 1998
  • We makes an explicit description of compact 4-dimensional nilmanifolds as principal torus bundles and show that they are sysmplectic. We discuss some consequences of this and give in particular a Seibebrg-Witten-invariant proof of a Grovmov-Lawson theorem that if a compact 4-dimensional nilmanifold admits a metric of zero scalar curvature, then it is diffeomorphic to 4-tours, $T^4$.

  • PDF

FLOER HOMOLOGY AS THE STABLE MORSE HOMOLOGY

  • Darko Milinkovic;Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1065-1087
    • /
    • 1997
  • We prove that there exists a canonical level-preserving isomorphism between the stable Morse homology (or the Morse homology of generating functions) and the Floer homology on the cotangent bundle $T^*M$ for any closed submanifold $N \subset M$ for any compact manifold M.

  • PDF

NOTES ON VANISHING THEOREMS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY

  • Kitahara, Haruo;Pak, Hong-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.831-841
    • /
    • 1998
  • We shall discuss on some vanishing theorems of harmonic sections of a Riemannian vector bundle over a compact Riemannian manifold with boundary. In relating the results of H. Donnelly - P. Li ([4]), for special case of harmonic forms satisfying absolute or relative boundary problem, our results improve the vanishing results of T. Takahashi ([9]).

  • PDF

PROLONGATIONS OF G-STRUCTURES IMMERSED IN GENERALIZED ALMOST r-CONTACT STRUCTURE TO TANGENT BUNDLE OF ORDER 2

  • Khan, Mohammad Nazrul Islam;Jun, Jae-Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.421-427
    • /
    • 2018
  • The aim of this study is to investigate the prolongations of G-structures immersed in the generalized almost r-contact structure on a manifold M to its tangent bundle T(M) of order 2. Moreover, theorems on Hsu structure, integrability and (${F\limits^{\circ}},\;{{\xi}\limits^{\circ}}{{\omega}\limits^{\circ}}_p,\;a,\;{\epsilon}$)-structure have been established.

ON THE S1-EULER CHARACTERISTIC OF THE SPACE WITH A CIRCLE ACTION ii

  • HAN, SNAG-EON
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • The $S^1$-Eule characteristics of X is defined by $\bar{\chi}_{S^1}(X)\;{\in}\;HH_1(ZG)$, where G is the fundamental group of connected finite $S^1$-compact manifold or connected finite $S^1$-finite complex X and $HH_1$ is the first Hochsch ild homology group functor. The purpose of this paper is to find several cases which the $S^1$-Euler characteristic has a homotopic invariant.

  • PDF