NOTES ON VANISHING THEOREMS ON RIEMANNIAN MANIFOLDS WITH BOUNDARY

HARUO KITAHARA AND HONG KYUNG PAK*

Dedicated to Professor T. Takahashi on his 60th Birthday

ABSTRACT. We shall discuss on some vanishing theorems of harmonic sections of a Riemannian vector bundle over a compact Riemannian manifold with boundary. In relating the results of H. Donnelly - P. Li ([4]), for special case of harmonic forms satisfying absolute or relative boundary problem, our results improve the vanishing results of T. Takahashi ([9]).

Since about 1950s, P. E. Conner ([3]), G. D. Duff - D. C. Spencer ([5]), T. Nakae ([7]), T. Takahashi ([9]) and others have studied harmonic forms on a compact Riemannian manifold with boundary. In this paper, we shall discuss some vanishing theorems of harmonic sections of a Riemannian vector bundle over a compact Riemannian manifold with boundary by the methods by P. H. Berard ([1]), H. Donnelly - P. Li ([4]), H. Kitahara - H. K. Pak ([6]). For special case of harmonic forms satisfying absolute or relative boundary problem, our results improve the vanishing results of T. Takahashi ([9]). We shall be in C^{∞} -category. Manifolds are supposed to be paracompact, Hausdorff spaces.

Let M be a compact connected (orientable) Riemannian manifold with boundary ∂M of dimension m. We may consider M as a closure of an open submanifold of a connected (orientable) Riemannian manifold \mathcal{M} of dimension m. At each point x in ∂M , there is a coordinate patch $(U;(x_i,x_m))$ $(1 \leq i \leq m-1)$ of x in \mathcal{M} such that $U \cap M$ is represented by $x_m \geq 0$. In particular, $U \cap M$ is represented by $x_m = 0$

Received April 13, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 53C20.

Key words and phrases: harmonic section, absolute or relative boundary problem, Kato inequality, vanishing.

^{*} Partially supported by the research fund of Kyungsan University, 1995

and (x_i) is the induced coordinate system of ∂M . We call such a patch $(U;(x_i,x_m))$ a boundary coordinate patch.

Let $(V; (v_i, v_m))$ be an another boundary coordinate patch such that $U \cap V \neq \emptyset$. Then we have

$$\frac{\partial v_m}{\partial x_m} > 0$$
 and $\frac{\partial v_m}{\partial x_i} = 0$, $1 \le i \le m-1$.

Since the Jacobian of the coordinate transformation is positive, the Jacobian of the induced coordinate transformation restricted to ∂M is positive.

There are two unit normal vector fields to ∂M . We always choose the inward pointing unit normal vector field N along it, by which we also denote its dual 1-form.

A vector bundle $E \longrightarrow M$ may be also considered as the restriction of a vector bundle $\mathcal{E} \longrightarrow \mathcal{M}$.

1. Let $(M,g=\langle\;,\;\rangle)$ be an oriented compact connected Riemannian manifold with boundary ∂M of dimension m. A Riemannian vector bundle $E\longrightarrow M$ is a smooth vector bundle with a metric (,) along the fiber and a covariant differentiation ∇ such that

$$X(s_1, s_2) = (\nabla_X s_1, s_2) + (s_1, \nabla_X s_2) \quad X \in \Gamma(TM), \ s_1, s_2 \in \Gamma(E).$$

The Bochner Laplacian of E is an invariantly defined second order differential operator $D: \Gamma(E) \longrightarrow \Gamma(E)$, defined by $D:=tr(\nabla \circ \nabla)$. Here $\Gamma(E)$ is denoted by the space of smooth sections of E. More explicitly, D is given by the composition

$$\Gamma(E) \xrightarrow{\nabla} \Gamma(E \otimes T^*M) \xrightarrow{\nabla} \Gamma(E \otimes T^*M \otimes T^*M) \longrightarrow \Gamma(E),$$

where the last map is contraction.

Suppose that \mathcal{R} is a selfadjoint endomorphism of E and set $A := -D + \mathcal{R}$. If $\partial M = \emptyset$, then A defines a unique selfadjoint operator in $L^2(E)$ (:= the space of L^2 -sections of E). Otherwise, we must impose suitable boundary conditions. It is most typical to use either Dirichlet boundary problem, i.e., $s(x) = 0, x \in \partial M$, or Neumann boundary

problem, i.e., $(\nabla_N s)(x) = 0, x \in \partial M$. Here $s \in \Gamma(E)$ and N is the inward pointing unit normal vector field along ∂M . For $s_1, s_2 \in \Gamma(E)$,

$$(-Ds_1, s_2) = -\sum_{\mu} (\nabla_{\mu} \nabla_{\mu} s_1, s_2)$$

$$= -\sum_{\mu} (\frac{\partial}{\partial x_{\mu}} (\nabla_{\mu} s_1, s_2) - (\nabla_{\mu} s_1, \nabla_{\mu} s_2))$$

$$= \operatorname{div}(r) + (\nabla s_1, \nabla s_2),$$

where r is the vector field defined by the condition that $\langle r, X \rangle := (\nabla_X s_1, s_2)$ for all $X \in \Gamma(TM)$. In fact,

(1.2)
$$\operatorname{div}(r)|_{x} = -\sum_{\mu} \langle \nabla_{\mu} r, \frac{\partial}{\partial x_{\mu}} \rangle|_{x}$$

$$= -\sum_{\mu} \left\{ \frac{\partial}{\partial x_{\mu}} \langle r, \frac{\partial}{\partial x_{\mu}} \rangle - \langle r, \nabla_{\mu} \frac{\partial}{\partial x_{\mu}} \rangle \right\}|_{x}$$

$$= -\sum_{\mu} \frac{\partial}{\partial x_{\mu}} \langle r, \frac{\partial}{\partial x_{\mu}} \rangle|_{x}$$

$$= -\sum_{\mu} \frac{\partial}{\partial x_{\mu}} (\nabla_{\mu} s_{1}, s_{2}).$$

Let $dvol_M$ (resp. $dvol_{\partial M}$) be the canonical volume form on M (resp. ∂M) satisfying $dvol_M = N \wedge dvol_{\partial M}$. Then Stokes' formula implies

$$\int_M \operatorname{div}(r) dvol_M = \int_{\partial M} \langle r, -N \rangle dvol_{\partial M}.$$

Therefore we have, by definition, $\langle r, N \rangle = (\nabla_N s_1, s_2)$,

(1.3)
$$\int_{M} (As_1, s_2) dvol_{M} = \int_{M} ((\nabla s_1, \nabla s_2) + (\mathcal{R}s_1, s_2)) dvol_{M} - \int_{\partial M} (\nabla_N s_1, s_2) dvol_{\partial M}.$$

From

$$(1.4) \qquad \left| \int_{\partial M} (\nabla_N s_1, s_2) dvol_{\partial M} \right| \leq ||\nabla_N s_1||_{\partial M} ||s_2||_{\partial M},$$

it follows that if we assume the Dirichlet or Neumann boundary problem, then we conclude

$$(1.5) \qquad \int_{M} (As_1,s_2) dvol_{M} = \int_{M} ((\nabla s_1,\nabla s_2) + (\mathcal{R}s_1,s_2)) dvol_{M}.$$

Let X be a smooth vector field on M. If |s| denote the (point-wise) norm of $s \in \Gamma(E)$, we can write $2(\nabla_X s, s) = X \cdot |s|^2 = 2(X \cdot |s|)|s|$ and $|\nabla_X s| \geq |X \cdot |s||$ with equality if and only if s and $|\nabla_X s|$ are linearly dependent. Summing over a local orthonormal framing, we have the Kato inequality.

(1.6) For any $s \in \Gamma(E)$, $|d|s|| \leq |\nabla s|$, with equality if and only if for any $X \in \Gamma(TM)$ there is a function α_X such that $\nabla_X s = \alpha_X s$ (at least on the set $\{|s| \neq 0\}$).

Let λ_0 be the infimum of the spectrum of the scalar Laplacian Δ acting on smooth functions on M. It is well-known that $\lambda_0=0$ in the case of either $\partial M=\emptyset$ or the Neumann boundary problem. Then we have

THEOREM 1. Under the Dirichlet or Neumann boundary problem, if $\rho(x) \geq -\lambda_0$ for all $x \in M$ and $\rho(x_0) \geq -\lambda_0$ for some $x_0 \in M$, then $\mathcal{H}(E) := \{s \in \Gamma(E) : As = 0\} = \{0\}.$

Proof. Let $s \in \Gamma(E)$ satisfy As = 0. Weitzenböck formula (1.5) and the Kato inequality (1.6) imply that

$$egin{aligned} \int_{M}(-
ho)|s|^{2}dvol_{M} &\geq -\int_{M}(\mathcal{R}s,s)dvol_{M} = \int_{M}|
abla s|^{2}dvol_{M} \ &\geq \int_{M}|d|s||^{2}dvol_{M}. \end{aligned}$$

It follows from the definition of λ_0 that

$$\int_{M} (\lambda_0 + \rho)|s|^2 dvol_M \le 0.$$

Since $(\lambda_0 + \rho)(x) \ge 0$ for all $x \in M$ and $(\lambda_0 + \rho)(x_0) > 0$ for some $x_0 \in M$, we conclude that s = 0 on a neighborhood of x_0 , hence s = 0 on M.

2. Let M be an oriented compact connected Riemannian manifold with boundary ∂M of dimension m and ∇^M be the Levi-Civita connection on M. Let $F \longrightarrow M$ be a Riemannian vector bundle of fiber dimension n with a metric along the fiber and a covariant differentiation ∇^F such that

$$X(s_1, s_2) = (\nabla_X^F s_1, s_2) + (s_1, \nabla_X^F s_2), \quad X \in \Gamma(TM), \ s_1, s_2 \in \Gamma(F).$$

We consider $E:=\Lambda^*T^*M\otimes F$. In this case sections of E are F-valued differential forms on M, which is denoted by $\Lambda^*(M,F)$. Let $\{e_i\}$ $(i,j=1,\cdots,m)$ be an orthonormal framing with its dual framing $\{\omega^i\}$ and $\{f_\alpha\}$ $(\alpha,\beta=1,\cdots,n)$ a framing of the fiber of F. Locally $s\in\Lambda^p(M,F)$ can be written as

$$s = \sum s^{lpha}_{i_1 \cdots i_p} \omega^{i_1} \wedge \cdots \wedge \omega^{i_p} \otimes f_{lpha}.$$

We define a differential operator $\partial: \Lambda^p(M,F) \longrightarrow \Lambda^{p+1}(M,F)$ by

$$egin{aligned} \partial s &:= \sum \omega^j \wedge \{
abla_{e_j}^M (s_{i_1 \cdots i_p}^{lpha} \omega^{i_1} \wedge \cdots \wedge \omega^{i_p}) \} \otimes f_{lpha} \ &+ \sum \omega^j \wedge s_{i_1 \cdots i_p}^{lpha} \omega^{i_1} \wedge \cdots \wedge \omega^{i_p} \otimes
abla_{e_j}^F f_{lpha}. \end{aligned}$$

Let $\partial^*: \Lambda^{p+1}(M,F) \longrightarrow \Lambda^p(M,F)$ be its adjoint operator. The Laplacian acting on $\Lambda^p(M,F)$ is defined by

$$\Box := \partial \partial^* + \partial^* \partial$$
.

Let $D^E := tr(\nabla^E \circ \nabla^E)$ be the Bochner Laplacian, where ∇^E is the induced connection on E from the connections ∇^M and ∇^F . If either the boundary of M is empty or $s \in \Lambda^p(M, F)$ satisfies Dirichlet or Neumann boundary problem, it follows from (1.5) that

$$egin{aligned} \int_{M}(\Box s,s)dvol_{M} &= \int_{M}\{-(D^{E}s,s)+(\mathcal{R}s,s)\}dvol_{M} \ &= \int_{M}\{(\nabla^{E}s,\nabla^{E}s)+(\mathcal{R}s,s)\}dvol_{M}, \end{aligned}$$

where \mathcal{R} is defined by the curvature operators of ∇^M and ∇^F .

PROPOSITION 2. If $\Box s = 0$, then \mathcal{R} is a negative operator.

By a similar argument of Theorem 1, we have

PROPOSITION 3. Let M be compact and assume that either the boundary of M is empty or $s \in \Lambda^p(M,F)$ satisfies Dirichlet or Neumann boundary problem. If $\rho(x) \geq -\lambda_0$ for all $x \in M$ and $\rho(x_0) \geq -\lambda_0$ for some $x_0 \in M$, then $\mathcal{H}^p(E) := \{s \in \Lambda^p(M,F) : \Box s = 0\} = \{0\}$ for all p.

3. In this section we shall discuss on the case that $\Gamma(E) = \Lambda^* M$, the space of smooth differential forms on M. Let M be an oriented compact connected Riemannian manifold of dimension m with boundary ∂M . Let $A = \Delta := d\delta + \delta d$ be the Hodge Laplacian acting on smooth differential p-forms $\Lambda^p M$, $(1 \le p \le m-1)$. Here d is the exterior derivative, $d: \Lambda^p M \longrightarrow \Lambda^{p+1} M$, and δ is its adjoint operator. The Laplacian Δ is positive semi-definite on $\Lambda^* M$.

The results of section 1 would apply to Δ if we imposed Dirichlet or Neumann boundary problem. However, it is more interesting to consider the Hodge Laplacian with absolute or relative boundary problem ([2], [4]). Let N be an inward pointing normal vector field along ∂M , which is sometimes identified with its dual. If $a \in \Lambda^p M$, then along ∂M we may decompose a into its tangential and normal components, i.e.,

$$a = a_{tan} + N \wedge a_{nor}, \quad a_{tan} \in \Lambda^p \partial M, \ a_{nor} \in \Lambda^{p-1} \partial M.$$

The form a is said to satisfy the relative boundary problem if $a_{tan} = (\delta a)_{tan} = 0$, and a is said to satisfy the absolute boundary problem if $a_{nor} = (da)_{nor} = 0$. Clearly, the Hodge star operator * maps forms satisfying the absolute boundary problem to those satisfying the relative boundary problem,

$$*: \Lambda^p M \longrightarrow \Lambda^{m-p} M.$$

Recall that a is said to be harmonic if $\Delta a = 0$. The significance of the absolute and the relative boundary problem stems from well-known;

FACT 4 (SEE ([8])).

(1) The singular cohomology group H^pM is isomorphic to the space of harmonic p-forms satisfying the absolute boundary problem.

(2) The singular cohomology group $H^p(M, \partial M)$ is isomorphic to the space of harmonic p-forms satisfying the relative boundary problem.

We take a decomposition of normal coordinates $x = (y,t) \in \partial M \times [0,t_0[$ along ∂M with respect to the normal exponential map \exp_N . The volume form $dvol_M$ on M can be written as

$$dvol_M = N \wedge dvol_{\partial M_*}$$

where $dvol_{\partial M_t}$ is the volume form of the submanifold $\exp_N(\partial M \times \{t\})$. We begin with rewriting the formula (1.3) for $A := \Delta$;

(3.1)
$$\int_{M} (\Delta a, a) dvol_{M} = \int_{M} ((\nabla a, \nabla a) + (\mathcal{R}^{p} a, a)) dvol_{M} - \int_{\partial M} (\nabla_{N} a, a) dvol_{\partial M}.$$

From now on we want to estimate $\int_{\partial M} (\nabla_N a, a) dvol_{\partial M}$ in terms of the eigenvalues of the second fundamental form of ∂M . For $y \in \partial M$, we choose an orthonormal coframing $\{\omega_1, \omega_2, \cdots, \omega_{m-1}, \omega_m\}$ so that the second fundamental form of ∂M is diagonalized at y. Let $\{\gamma_1, \gamma_2, \cdots, \gamma_{m-1}\}$ be the eigenvalues of the second fundamental form of ∂M . We define

$$\sigma_p := \min_{y \in \partial M} \min_{I} (\gamma_{i_1} + \dots + \gamma_{i_p}), \quad \tilde{\sigma}_p := \max_{y \in \partial M} \max_{I} (\gamma_{i_1} + \dots + \gamma_{i_p}),$$

where $I := (i_1, \dots, i_p)$ is a multi-index.

In coordinates with respect to this framing, let $a_{i_1\cdots i_p}$ be the components of a_{tan} and $a_{j_1\cdots j_{p-1}m}$ the components of a_{nor} , where the indices i, j run from 1 to m-1. The relative boundary problem reads $a_{i_1\cdots i_p}=0$ for $a_{tan}=0$ and

$$\sum_{k} a_{j_1 \dots j_{p-1} k, k} + a_{j_1 \dots j_{p-1} m, m} = 0$$

for $(\delta a)_{tan} = 0$, where the index k runs from 1 to m-1. An index following a comma means covariant differentiation. Thus we have

(3.2)
$$\frac{1}{2}\nabla_N|a|^2 = -\sum_J \sum_{k \notin J} \gamma_k (a_{j_1 \dots j_{p-1} m})^2,$$

where $J := (j_1, \dots, j_{p-1})$ is summed over all increasing multi-indices. Then we have along ∂M

(3.3)
$$\frac{1}{2}\nabla_N|a|^2 \le -\sigma_{m-p}\sum_J (a_{j_1\cdots j_{p-1}m})^2 = -\sigma_{m-p}|a|^2.$$

Next, for a supported in $\exp_N(\partial M \times [0, t_0[),$

(3.4)
$$\int_{\partial M} |a|^2 dvol_{\partial M} = \int_M d(|a|^2 dvol_{\partial M_t})$$

$$= \int_M N(|a|^2) dvol_M + |a|^2 N \wedge \nabla_N (dvol_{\partial M_t}).$$

But we note $(dvol_{\partial M_t}, \nabla_N(dvol_{\partial M_t})) \leq \tilde{\sigma}_{m-1} |dvol_{\partial M_t}|^2$. Moreover,

$$\int_{M} N(|a|^2) dvol_{M} = 2 \int_{M} (\nabla_{N} a, a) dvol_{M} \leq ||\nabla a||^2 + ||a||^2,$$

where $||a|| := \{ \int_M (a, a) dvol_M \}^{1/2}$.

Therefore we find an upper bound

(3.5)
$$\int_{\partial M} |a|^2 dvol_{\partial M} \le ||\nabla a||^2 + (1 + \tilde{\sigma}_{m-1})||a||^2.$$

On the other hand, since $(dvol_{\partial M_t}, \nabla_N(dvol_{\partial M_t})) \geq \sigma_{m-1}|dvol_{\partial M_t}|^2$, a similar way gives rise to a lower bound

(3.6)
$$\int_{\partial M} |a|^2 dvol_{\partial M} \ge (\sigma_{m-1} - 1)||a||^2 - ||\nabla a||^2.$$

Considering (3.3), (3.5) and (3.6), the estimate of $\int_{\partial M} (\nabla_N a, a) dvol_{\partial M}$ may be divided into two cases, either $\sigma_{m-p} \leq 0$ or $\sigma_{m-p} > 0$.

(Case I) In case $\sigma_{m-p} \leq 0$, we find from (3.3) and (3.5) that

$$\int_{\partial M} (\nabla_N a, a) dvol_{\partial M} \le -\sigma_{m-p} \{ ||\nabla a||^2 + (1 + \tilde{\sigma}_{m-1})||a||^2 \}.$$

Hence (3.1) becomes

$$||\nabla a||^2 - \int_M (\Delta a, a) dvol_M \le -\mathcal{R}_{min}^p ||a||^2 - \sigma_{m-p} \{ ||\nabla a||^2 + (1 + \tilde{\sigma}_{m-1}) ||a||^2 \},$$

where $\mathcal{R}^p(x) := \inf\{(\mathcal{R}^p a, a)_x : a \in \Lambda^p_x M, |a|_x = 1\}, \text{ and } \mathcal{R}^p_{min} :=$ $\inf\{\mathcal{R}^p(x):x\in M\}$. If we assume that $\Delta a=0$, then

$$(3.7) \qquad (1+\sigma_{m-p})||\nabla a||^2 \le -\{\sigma_{m-p}(1+\tilde{\sigma}_{m-1})+\mathcal{R}_{min}^p\}||a||^2.$$

By an elementary computation, we see that if $\mathcal{R}_{min}^p > 1 + \tilde{\sigma}_{m-1}$ and $\sigma_{m-p} \geq -1$ (or $\mathcal{R}_{min}^p \geq 1 + \tilde{\sigma}_{m-1}$ and $\sigma_{m-p} > -1$), then there are no harmonic p-forms (0 satisfying relative boundary problemother than zero.

(Case II) In case $\sigma_{m-n} > 0$, we find from (3.3) and (3.6) that

$$\int_{\partial M} (\nabla_N a, a) dvol_{\partial M} \le -\sigma_{m-p} \{ (\sigma_{m-1} - 1) ||a||^2 - ||\nabla a||^2 \}.$$

If we assume that $\Delta a = 0$, then (3.1) becomes

$$(1 - \sigma_{m-p})||\nabla a||^2 \le -\{\sigma_{m-p}(\sigma_{m-1} - 1) + \mathcal{R}_{min}^p\}||a||^2.$$

From this formula we see that if $\mathcal{R}_{min}^p > \sigma_{m-p}(\sigma_{m-1}-1)$ and $\sigma_{m-p} \leq$ 1 (or $\mathcal{R}_{min}^p \geq \sigma_{m-p}(\sigma_{m-1}-1)$ and $\sigma_{m-p} < 1$), then there are no harmonic p-forms (0 satisfying relative boundary problemother than zero.

Let $b^p(M) := \dim H^p M$ and $b^p(M, \partial M) := \dim H^p(M, \partial M)$. Summing up, we get the following vanishing results.

THEOREM 5. Let M be an oriented compact connected Riemannian manifold of dimension m with boundary ∂M .

- (I) If we assume one of two cases
- (1) $\mathcal{R}_{min}^p > 1 + \tilde{\sigma}_{m-1}$ and $0 \ge \sigma_{m-p} \ge -1$, (2) $\mathcal{R}_{min}^p \ge 1 + \tilde{\sigma}_{m-1}$ and $0 \ge \sigma_{m-p} > -1$,

then $b^p(M, \partial M) = b^{m-p}(M) = 0$ for all 0 .

- (II) If we assume one of two cases
- (1) $\mathcal{R}_{min}^p > \sigma_{m-p}(\sigma_{m-1} 1)$ and $0 < \sigma_{m-p} \le 1$, (2) $\mathcal{R}_{min}^p \ge \sigma_{m-p}(\sigma_{m-1} 1)$ and $0 < \sigma_{m-p} < 1$,

then $b^p(M, \partial M) = b^{m-p}(M) = 0$ for all 0 .

REMARKS. (1) For the case of the absolute boundary problem, we find the following inequality

$$\frac{1}{2}\nabla_N|a|^2 \le -\sigma_p \sum_I (a_{i_1\cdots i_p})^2 = -\sigma_p|a|^2.$$

In this case, we deduce the corresponding vanishing results replacing σ_{m-p} by σ_p in Theorem 5.

(2) Given a weaker condition imposed on $\tilde{\sigma}_p$ or σ_p , H. Donnelly-P. Li ([4]) obtained the following upper bounds for $b^p(M, \partial M)$ or $b^p(M)$.

FACT 6 ([4], COROLLARY 6.5). If $\tilde{\sigma}_p \leq 0$, in particular if $\sigma_p \leq 0$, then

$$b^p(M, \partial M) \le {m \choose p} e^{-\mathcal{R}^p_{min}} (1 + Cvol\ M),$$

where C is a constant depending on certain Sobolev constant.

It should be noted that Theorem 5 shows the vanishing result of $b^p(M, \partial M)$ in terms of lower bounds for \mathcal{R}^p_{min} .

References

- [1] P. Bérard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), 261-266.
- [2] J. Brüning M. Lesch, Hilbert complexes, J. of Funct. Anal. 15 (1992), 88-132.
- [3] E. Conner, The Neumann's problem for differential forms on Riemannian manifolds, Memoiers of A. M. S. 20 (1956).
- [4] H. Donnelly P. Li, Lower bounds for the eigenvalues of Riemannian manifolds, Michigan Math. J. 29 (1980), 149-161.
- [5] G. D. Duff D. C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. 56 (1952), 128-156.
- [6] H. Kitahara H. K. Pak, Notes on harmonic sections of vector bundles over a complete Riemannian manifold with boundary, (in preparation).
- [7] T. Nakae, Curvature and relative Betti numbers, J. Math. Soc. Japan 2 (1950), 93-104.
- [8] D. B. Ray I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145-210.
- [9] T. Takahashi, On harmonic and Killing tensor fields in a Riemannian manifold with boundary, J. Math. Soc. Japan 14 (1962), 37-65.

Department of Mathematics Kanazawa University Kanazawa, Japan *E-mail*: kitahara@kenroku.ipc.kanazawa-u.ac.jp

Department of Mathematics Kyungsan University Kyungsan 712-240, Korea *E-mail*: hkpak@kirin.ksucc.ac.kr