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NOTES ON VANISHING THEOREMS ON
RIEMANNIAN MANIFOLDS WITH BOUNDARY

HArUO KiTABARA AND HONG KYUNG PAK*

Dedicated to Professor T. Takahashi on his 60th Birthday

ABSTRACT. We shall discuss on some vanishing theorems of har-
monic sections of a Riemannian vector bundle over a compact Rie-
mannian manifold with boundary. In relating the results of H.
Donnelly - P. Li ([4]), for special case of harmonic forms satisfy-
ing absolute or relative boundary problem, our results improve the
vanishing results of T. Takahashi ([9]).

Since about 1950s, P. E. Conner ([3]), G. D. Duff - D. C. Spencer
([5]), T. Nakae ([7]), T. Takahashi ([9]) and others have studied har-
monic forms on a compact Riemannian manifold with boundary. In this
paper, we shall discuss some vanishing theorems of harmonic sections of
a Riemannian vector bundle over a compact Riemannian manifold with
boundary by the methods by P. H. Berard ({1}), H. Donnelly - P. Li
([4]), H. Kitahara - H. K. Pak ([6]). For special case of harmonic forms
satisfying absolute or relative boundary problem, our results improve
the vanishing results of T. Takahashi ([9]). We shall be in C*-category.
Manifolds are supposed to be paracompact, Hausdorff spaces.

Let M be a compact connected (orientable) Riemannian manifold
with boundary OM of dimension m. We may consider M as a closure of
an open submanifold of a connected (orientable) Riemannian manifold
M of dimension m. At each point z in M, there is a coordinate
patch (U; (zs,Zm)) (1 <3 < m —1) of z in M such that U N M is
represented by x,, > 0. In particular, U N M is represented by z,,, = 0
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and (z;) is the induced coordinate system of M. We call such a patch
(U; (zs,zm)) a boundary coordinate patch.

Let (V; (vi,vm)) be an another boundary coordinate patch such that
UNYV # 0. Then we have

Ovm v,
—5$m >0 and 82,

=0, 1<i:<m-—-1.

Since the Jacobian of the coordinate transformation is positive, the
Jacobian of the induced coordinate transformation restricted to M is
positive.

There are two unit normal vector fields to OM. We always choose
the inward pointing unit normal vector field N along it, by which we
also denote its dual 1-form.

A vector bundle E — M may be also considered as the restriction
of a vector bundle £ — M.

1. Let (M, g = {, )) be an oriented compact connected Riemannian
manifold with boundary OM of dimension m. A Riemannian vector
bundle E — M is a smooth vector bundle with a metric ( , ) along
the fiber and a covariant differentiation V such that

X(s1,82) =(Vxs1,s2) + (51,Vxse) X eI(TM), s1,s2 € I'(E).

The Bochner Laplacian of F is an invariantly defined second order
differential operator D : I'(E) — I'(E), defined by D := tr(V o V).
Here ['(E) is denoted by the space of smooth sections of E. More
explicitly, D is given by the composition

I(E) L T(EQT*M) -LT(E®TMeT'M) — I'(E),

where the last map is contraction.

Suppose that R is a selfadjoint endomorphism of F and set A :=
—D+R. If M = (), then A defines a unique selfadjoint operator in
L?(E) (:= the space of L2-sections of F). Otherwise, we must impose
suitable boundary conditions. It is most typical to use either Dirichlet
boundary problem, i.e., s(z) = 0,z € OM, or Neumann boundary
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problem, i.e., (Vys)(z) = 0,z € OM. Here s € I'(E) and N is the
inward pointing unit normal vector field along OM. For s1, s2 € I'(E),

(—Ds1,52) = = Y (VuVyus1,52)

mn

(1.1) = — Z(éi—(vush .5'2) — (V#Sh V#SQ))
7

= div(r) + (Vs1,Vs2),

where r is the vector field defined by the condition that (r, X) :=
(Vxs1,s2) for all X € T'(TM). In fact,

div(r)|s = — Z(V,m -(;z—uﬂx

n
0 0 0
= —2#: {8—%(7‘7 g;) - (T,Vyga>} |

Let dvolys (resp. dvolsps) be the canonical volume form on M (resp.
OM) satisfying dvolpr = N A dvolgps. Then Stokes’ formula implies

/ div(r)dvolpy = {(r,—N)dvolgps.
M oM

Therefore we have, by definition, (r, N) = (Vys1,s2),

/M(Asl, 53)dvolas = /M((Vsl, V) + (Rst, 52))dvolas
(13)

- / (VNSl,Sz)d’UOlaM.
oM
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From

(1.4) < |IVnsillamllszlionm,

/ (VNSI, 82)dv0laM
oM

it follows that if we assume the Dirichlet or Neumann boundary prob-
lem, then we conclude

(1.5) /M(A31,82)delM = ‘/Iw((VShVSQ)‘l' (Rs1,82))dvol .

Let X be a smooth vector field on M. If |s| denote the (point-wise)
norm of s € I'(E), we can write 2(Vxs,s) = X - |s|> = 2(X - |s|)|s| and
|V xs| > |X - |s|| with equality if and only if s and |V xs| are linearly
dependent. Summing over a local orthonormal framing, we have the
Kato inequality.

(1.6) For any s € I'(E), |d|s|| < |Vs|, with equality if and only if for
any X € I'(T'M) there is a function ax such that Vxs = axs (at least
on the set {|s| # 0}).

Let Ag be the infimum of the spectrum of the scalar Laplacian A

acting on smooth functions on M. It is well-known that Mg = 0 in the

case of either 8M = @ or the Neumann boundary problem. Then we
have

THEOREM 1. Under the Dirichlet or Neumann boundary problem,
if p(z) > —Xg for all z € M and p(zg) > —Xo for some zo € M, then
H(E) :={s e T'(F) : As = 0} = {0}.

Proof. Let s € I'(E) satisfy As = 0. Weitzenbock formula (1.5) and
the Kato inequality (1.6) imply that

/ (—p)|s|*dvolas > —/ (Rs, s)dvoly = / |Vs|2dvol s
M M M
> / |d|s||2dvolM.
, M
It follows from the definition of A\¢ that

/ (Mo + p)|s|®dvolys < 0.
M
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Since (Mg + p)(z) > 0 for all z € M and (Ao + p)(zo) > 0 for some
zg € M, we conclude that s = 0 on a neighborhood of zy, hence s = 0
on M. a

2. Let M be an oriented compact connected Riemannian manifold
with boundary M of dimension m and VM be the Levi-Civita con-
nection on M. Let F — M be a Riemannian vector bundle of fiber
dimension n with a metric along the fiber and a covariant differentia-
tion V¥ such that

X(31,32) = (V§S1,82) + (81,V§‘(82), X e F(TM), 81,82 € I'(F).
We consider E := A*T*M ® F. In this case sections of E are F-
valued differential forms on M, which is denoted by A*(M,F). Let
{ei} (4, =1,--- ,m) be an orthonormal framing with its dual framing
{w*} and {fo} (@,8 = 1,--- ,n) a framing of the fiber of F. Locally
s € AP(M, F) can be written as

5= Zs;-"l.,.ipwil A AP @ fo.
We define a differential operator 8 : AP(M, F) — APY}(M, F) by
9s = ij A {Vﬁf(sg...ipwil A Aw'?)}® fa
+Y W ASE WA AW @V fa.
Let 8* : AP*Y(M, F) — AP(M, F) be its adjoint operator. The Lapla-
cian acting on AP(M, F') is defined by
O:= 80" + 80.

Let D¥ := tr(VF o V®) be the Bochner Laplacian, where V¥ is the
induced connection on E from the connections VM and V¥, If either

the boundary of M is empty or s € AP(M, F) satisfies Dirichlet or
Neumann boundary problem, it follows from (1.5) that

/ (Os, s)dvolyr =/ {—(DPFs,s) + (Rs, s)}dvol p
M M

- / ((VPs,VEs) + (Rs, s) }dvolas,
M

where R is defined by the curvature operators of VM and V7.
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PROPOSITION 2. If[0s =0, then R is a negative operator.
By a similar argument of Theorem 1, we have

PROPOSITION 3. Let M be compact and assume that either the
boundary of M is empty or s € AP(M, F) satisfies Dirichlet or Neu-
mann boundary problem. If p(z) > —Xg for allz € M and p(zo) > —Xo
for some zo € M, then HP(E) := {s € AP(M, F) : Qs = 0} = {0} for
all p.

3. In this section we shall discuss on the case that I'(E) = A*M, the
space of smooth differential forms on M. Let M be an oriented compact
connected Riemannian manifold of dimension m with boundary oM.
Let A = A := dé§ + dd be the Hodge Laplacian acting on smooth
differential p-forms APM, (1 < p < m — 1). Here d is the exterior
derivative, d : APM — APTIM, and § is its adjoint operator. The
Laplacian A is positive semi-definite on A*M.

The results of section 1 would apply to A if we imposed Dirichlet or
Neumann boundary problem. However, it is more interesting to con-
sider the Hodge Laplacian with absolute or relative boundary problem
([2], [4])- Let N be an inward pointing normal vector field along OM,
which is sometimes identified with its dual. If a € APM, then along
OM we may decompose ¢ into its tangential and normal components,
ie.,

a = aign + N A Gnor, Gtan € APOM, Gpor € AP~1oM.

The form a is said to satisfy the relative boundary problem if a;n, =
(6a)tan = 0, and a is said to satisfy the absolute boundary problem if
Anor = (da)nor = 0. Clearly, the Hodge star operator * maps forms sat-
isfying the absolute boundary problem to those satisfying the relative
boundary problem,
*: APM — A™TPM.

Recall that a is said to be harmonic if Aa = 0. The significance of the
absolute and the relative boundary problem stems from well-known;

Fact 4 (sEE ([8])).

(1) The singular cohomology group HPM is isomorphic to the
space of harmonic p-forms satisfying the absolute boundary
problem.
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(2) The singular cohomology group HP(M,0M) is isomorphic to
the space of harmonic p-forms satisfying the relative boundary
problem.

We take a decomposition of normal coordinates x = (y,t) € OM x
[0,t0] along OM with respect to the normal exponential map expy.
The volume form dvolpy; on M can be written as

dvolpyr = N A dvolpp,,

where dvolyyy, is the volume form of the submanifold expy (8M x {t}).
We begin with rewriting the formula (1.3) for A := A ;

/ (Aa, a)dvol =/ ((Va,Va) + (RPa,a))dvol
(3.1) M M

~/ (Vna,a)dvolopy.
oM

From now on we want to estimate |, an(Va, a)dvolsps in terms of the
eigenvalues of the second fundamental form of OM. For y € OM, we
choose an orthonormal coframing {w;,ws, - ,wm—1,wm} so that the
second fundamental form of OM is diagonalized at y. Let {y1,72, -,
Ym~1} be the eigenvalues of the second fundamental form of OM. We
define
Op = min min(y, + - +,), Gp:= max max(y, +- 4 %,),

where I := (i1, ,7p) is a multi-index.

In coordinates with respect to this framing, let a;,...;, be the compo-
nents of aian and aj;,...;,_,m the components of anor, where the indices

i, j run from 1 to m—1. The relative boundary problem reads a;,...;, = 0
for a¢gn = 0 and

E QG F Qg ymum = 0
k

for (0a)ian = 0, where the index k runs from 1 to m — 1. An index
following a comma means covariant differentiation. Thus we have

1
(3.2) §VN\0|2 = —ZZ’Yk(ajl---jp_lm)z,

J kgJ
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where J := (j1,- -+ ,Jp—1) is summed over all increasing multi-indices."
Then we have along OM

1
(3:3) '2‘VNla’2 S —Om—p Z(ajl"'jp—lm)2 = ~Om-plal®.
J
Next, for a supported in expy(OM x [0,tp]),

/ |la)2dvolsy = / d(ja®dvolaa,)
oM M

(3.4)
= /M N(la|?>)dvolps + |a|>N A V n(dvolap,).

But we note (dvolam,, VN (dvolan,)) < Gm—1]|dvolan, |?. Moreover,

/ N(laf2)dvoln = 2 / (Va,a)dvolas < [[Vall? + [[all2,
M M

where ||a|| := {[,,(a, a)dvolp}1/2.
Therefore we find an upper bound

(3.5) / |a|2dvolaM < ||Val|2 + (14 5m_1)||a}|2.
oM

On the other hand, since (dvolas,, V n(dvolapr,)) > Om_1|dvolans, |?,
a similar way gives rise to a lower bound

(3.6) / |a|2dvolans > (Om—-1 — 1)||al|* — ||Val|*.
oM
Considering (3.3), (3.5) and (3.6), the estimate of [, (Vya,a)dvolay

may be divided into two cases, either ¢,,_, < 0 or opm_p > 0.

(Case I) In case opm—p < 0, we find from (3.3) and (3.5) that

| (Vwa,a)dvolons < = IVl + (14 G-1) ol
oM
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Hence (3.1) becomes

minllall?

V|2 /M(Aa a)dvolps < —RP

~ Om-p{lIVal[? + (1 + Gm-1)llal*},

where RP(z) := inf{(RPa,a); : a € APM, |a|, = 1}, and R? . :=
inf{RP(x) : z € M}. If we assume that Aa = 0, then

(3.7) (1+0m-p) HVQHQ < —A{om—p(l +6m-1) + Rmm}llallz-

By an elementary computatmn, we see that if RF . > 1+ 6,1 and

Om-p > —1(or R . >1+Gm-1 and om—p > —1), then there are no

min —
harmonic p-forms (0 < p < m) satisfying relative boundary problem
other than zero.

(Case II) In case opm—p > 0, we find from (3.3) and (3.6) that
... (Ivaa)dvolons < ~omp{(oms = Dllall = [Vall*).
M

If we assume that Aa = 0, then (3.1) becomes
(1 ~ Om— P)Hva||2 < ~{0"”'7» p(am—l - 1) + ’R‘fnzn}”aH2'

From this formula we see that if R? ;. > 0m—p(0m-1—1) and opm—p <
1 (or RY. > 0m—p(0m-1 — 1) and om_p < 1), then there are no
harmonic p-forms (0 < p < m) satisfying relative boundary problem
other than zero.

Let b?(M) := dim H?M and b*(M,8M) := dim HP(M,0M). Sum-
ming up, we get the following vanishing results.

THEOREM 5. Let M be an oriented compact connected Riemannian
manifold of dimension m with boundary 8M.

(I) If we assume one of two cases

(1) 'Rf;”n >146m_1and 02> om_p > —1,

(2) R ;n21+Gm1 and 0> opm_p > —1,
then bP(M,0M) =bm™"P(M) =0 for all 0 < p < m.

(IT) If we assume one of two cases

(1) RE .. >0m—plom-1—1) and 0 < 0ppp—p < 1,

(2) RE.. > 0mp(om_1—1)and 0 < op_p <1,
then bP(M,0M) =b™"P(M) =0 for all 0 <p < m.
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REMARKS. (1) For the case of the absolute boundary problem, we
find the following inequality

1
5vN|a|2 < -—o—pzlj(ail...if = —oplal%.

In this case, we deduce the corresponding vanishing results replacing
Om—p by 0p in Theorem 5.

(2) Given a weaker condition imposed on &, or op, H. Donnelly-P.
Li ([4]) obtained the following upper bounds for b*(M, M) or b*(M).

Fact 6 ({4], COROLLARY 6.5). If 6, < 0, in particular if o, < 0,
then

bP(M, M) < <’;‘> e~ Rimin (14 Cvol M),

where C is a constant depending on certain Sobolev constant.

It should be noted that Theorem 5 shows the vanishing result of
bP(M,8M) in terms of lower bounds for R

min®
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