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Abstract The §'- Euler characteristic of X is defined by x5 (X) €
HH1(ZG), where (G is the fundamental group of connected finite S L.compact
manifold or connected finite $!-finite complex X and H Hj is the first Hochsch
ild homology group functor. The purpose of this paper is to find several cases
which the S*- Euler characteristic has a homotopic invariant.

1. Introduction and statement of results

In the recent paper [3], Goehegan and Nicas defined the §'- Eu-
ler characteristic of X. And it is denoted by xs1(X) € HH(ZG).
Here G is the fundamental group of X and HH,; is the first
Hochschild homology group functor. And further the S'- Euler
characteristic does not have a homotopic invariant property [3].
Thus we have the following question: Under what conditions does
the S'- Euler characteristic have a homotopic property? This pa-
per is primarily concerned with several cases where the S*- Euler
characteristic has a homotopic invariant. These results were moti-
vated by the observation that the certain fundamental groups play
a major role in making the homotopy invariant of the S'-Euler
characteristic under certain conditions [Theorem A, Theorem B].

We work in the category of finite connected S — CW complexes
or finite connected S!~ manifolds.
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We shall give the following theorems:

THEOREM A. If f © X — Y Is a quasi-nilpotent homology
equivalence with m1(X )(# 0) residually solvable and the White-
head torsion of f is trivial, then xs:1(X) = xg1(Y).

THEOREM B. If f : X — Y is a quasi-nilpotent homology
equivalence and X is one of the following cases with n1(X) # 0:

(1) X is the space satisfying condition (T**) with m(X) fi-
nite,

(2) X (€ TLn) is the space that m)(X) is torsion-free with all
proper subgroups of n1(X) nilpotent,

(3) X(€ Trn) is the space that mi{X) is infinite with the
maximal condition on normal subgroups of m1(X).

(4) For X,Y(€ Tyn) and if my(X) is a finitely generated
group which satisfies my(X) satisfies either max-oco for
non-nilpotent subgroups.

Further the Whitehead torsion of f is trivial, then the S'-
Euler characteristic also has a homotopic invariant, i.e., x5 (X) =
xs:(Y).

2. Some technical facts.

Let R be a commutative ground ring and S be an associative
R-algebra with unit. If M is an S ~ § bimodule, i.e., a left and
right S-module satisfying (sym)sy = s1{ms;) for all m € M ,
and 81,8z € S, then the Hochschild chain complex (C, (S, M), d)
consists of C, (S, M) = S®™ @ M where S®" is the tensor product
of n copies of S. Thus we have the differential map [3]:

dn-1(81® - @8, @M) =3, Q- R 8, @My + L1 (—1)i5; ®
o ®8i8i41Q B8 ®mA+ (~1)"81 @ ® 8,1 ® s

The tensor products are taken over R. The n-th homology of
this complex is the n-th Hochschild homology of S with coefficient
bimodule M and is denoted by HH, (S, M). If M = S with the
~ standard S — S bimodule structure then we usually write H H,,(S)

for HH, (S, M). We will be concerned with HH,; and HH, which
are computed from

—>‘~-S®S®M75®1W:O~+M,
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where dy : 81 @ 2 @M — So R M8 ~ 8182 DM + 81 & Som

do:8$®m — s — sm. :

For the purpose of defining the S!-Euler characteristic of X
we recall the following [3]. Let A be a closed S!- subset of X
and n a non-negative integer. We say X is obtained from A by
attaching S! — n -cells if there is a collection { 'ty € J} of closed
n-dimensional 51— subsets of X such that:

(1) X =AU{U;esc}}. X has the topology coherent with A
and {c}|j € J}.

(2) Fori#j, (cf —A)N{(c} - A) = 2.

(3) For each j € J, there is a closed subgroup H; of S*
(in fact, H; is finite or H; = §') and an S'~map f; :
(SY/H; x D" S'/H; x §"1) = (¢}, ¢} N A) such that
fi + (SY/H; x D™) = ¢} and f; maps S'/H; x D" —
S'/Hj x §"~' homeomorphically onto ¢} — A,

Each ¢} is called an §' —n— cell and f; is called the S'—attaching
map.

By use of the Hochschild homology group, the $!-Euler char-
acteristic of X is defined by the Hochschild 1- cycle [3]:

%51(X) = Spo(~ 1" 186, S0 lg,m ® 0717 € HH\(Z6),
where the element g;,, € G = m{X).

We introduce the solvable space and recall residually solvable
group for the Theorem A. In fact, the free groups of rank greater
than one and fundamental groups of closed 2- manifolds of clas-
sical Euler characteristic less than zero are not solvable. The
fundamental group of the Klein bottle is solvable. But the Klein
bottle is not a nilpotent space because it has a centerless free
group Zs * Zy as a factor group.

Let us say that a group action G on H is solvable if there exists
a finite chain: H =H, D Hy; DHyD---DH; D--- D H, = {e}

such that for each j

(1) Hj is closed under the action of G,
(2) Hj41 is normal in H; and H;/H;4, is abelian.

DEFINITION 1. A space X is solvable if
(1) m(X) is solvable. and
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(2) there is the solvable action my(X) x m,(X) — 7, (X) for
all n > 2.

We say that a group G has the property x residually if to every
element g(# 1) € G, there is a normal subgroup N of GG such that
g ¢ N and G/N has the property x [9].

Let F' — E — B be a fibration, the elements of m1(B) operate
on Hy(F). Thus we get the following [5].

DEFINITION 2. A fibration F' — E — B is said to be quasi-
nilpotent if the action of m1(B) on H,(F) is nilpotent, n > 0

[6].

Let us recall the Whitehead torsion. Let h: (X, 20) — (Y, y0)
be a homotopy equivalence of pairs. Put K = my(Y,y5) and G =
m(X,zo) and yo = h(xo) then h induces an isomorphism hy :
G — K. Let us recall the Whitehead group in case R = Z(G. Let
+G C GL(1, ZG) be the subgroup consisting of 1 x 1 matrices of
the form [+g], g € G. The cokernel of the natural homomorphism
+G — K,(ZG) is called the Whitehead group of G and it is
denoted by Wh;(G). Recall the torsion of h : y(h) € Why(K) [9].

We say that a homotopy equivalence of pairs h : (X, z) —
(Y, yo) is simple if v(h) = 0.

3. Proofs of the Theorems.

Proof of Theorem A. By the classical homotopy exact sequence

of fibration: Fy — X j+ Y, mi(f) is an epimorphism. And
from the quasi-nilpotent homology equivalence of f we get the
reduced homology group fil(Ff} trivial, i.e., 7 (Fy) is perfect.
Furthermore the homomorphic image of a perfect group is also
perfect. Thus m(Y) = 1—;’%{% where P#x(X) means a perfect
normal subgroup of = (X).

From the residual solvability of m;(X), for any nontrivial ele-
ment g(€ m1(X)) there is a normal subgroup (g ¢)N such that we
have (m1(X)/N)™ = [(m(X)/N)YP=D (7, (X)/N)YP=V] be triv-
ial for some n where [,] means the commutator subgroup. Thus
we get
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P(my(X)/N) = (P(r(X)/N)™ < (my (X)/N)™)

trivial. Finally P(7(X)/N) is trivial, where P(G') means the
maximal perfect normal subgroup of group G.

Now let H be a subgroup of 7;{X) and let H; = G, N H for all
i where G; = (m1(X)/N)" above. Then H;/H;, is also abelian
for all 4. If H is perfect, then H = Hy = Hy = Hy = ---
But the intersection of all H; is 1 and so H = 1. Thus we get
the maximal perfect normal subgroup Pri(X) trivial. Therefore
we get m1(f) as an isomorphism. Since f is a quasi-nilpotent
homology equivalence with 7 (f) isomorphic. we get f a homotopy
equivalence.

In fact, xg1(X) decomposes into two pieces [3], the first part is
computed from a homotopic invariant of the underlying space X
and the second one is computed from a simple homotopy invariant
of the underlying space X. Furthermore f is also simple homotopy
equivalent from the Whitehead torsion of f trivial[6]. Thus we get
our assertion.

We introduce the locally nilpotent space with relation to The-
orem B.

Let us denote T the category of nilpotent spaces [1] and con-
tinuous maps. We make the locally nilpotent space as an extensive
concept of a nilpotent space as follows: a space X is said to be
locally nilpotent if 7;(X) is a locally nilpotent group [8] and, in
addition, there is a nilpotent w1 (X)) - action on m,, (X)) for all n > 2
(1]. :

We adopt the notation Ty for the category of locally nilpotent
spaces and continuous maps. Obviously, the category T is a full
subcategory of Ty .

Whether the given space X is a nilpotent space or not is checked
by the following condition (7™*) under the nilpotent m(X) - ac-
tion.

DEFINITION 3. We say that X satisfies the condition (7™*) if
for all g(# 1) € m(X), then g ¢ [¢g. 71 (X}] where [,] is a commu-
tator [4].

Even though BSj is a solvable space; it does not satisfy the
condition (T**), where B is Milnor's classifying space and Sy is
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symmetric group with 3 elements.

We recall that a group G satisfies the maximal condition if it
has no infinite strictly increasing chain of subgroups [9]. Given a
property x pertaining to subgroups. a group G is said to satisfy
the max-oc property for x-subgroups if G has no infinite ascending
chain Hy C Hy C -+ of «-subgroups in which all indices |H;;; :
H,| are infinite[6].

Let G be the torsion free locally nilpotent group and H a sub-
group of GG. For each set 7 of primes, the w-isolator of H in G,
which is the set {g € 7 : ¢” € H for some n € n}, is a subgroup of
G. In the case where 7 is the set of all primes we refer simply to
the isolator of H in GG, denoted I (H), and H is said to be isolated
in G if Ic(H) = H. If H is countable then so is Ig(H); this is an
easy consequene of the fact that, for z,y € G and n € N, z" = y»
implies © = y. If H is nilpotent of class ¢ then so is I(H). Fi-
nally, if G is finitely genterated and {N; :7=1,2,---} is the set
of all normal subgroups of finite index in G then H = N2, HN;

[6].

Proof of Theorem B. For case (1) : we recall that if 7,(X) is
a nilpotent group then there exists a finite upper central series
of m (X) by virtue of center of m1(X). 8o assume that =, (X) is
not nilpotent, then we do not have a finite upper central series of
m1(X). If Z,(71(X)) denotes the n — th center of 7;(X), we can
find an integer n such that Z, (7 (X)) = Z,(m (X)) € m(X).
It follows that if z ¢ Z,(m1(X)), then {z,m(X)] € Z.(m(X)).
Choose any x; ¢ Zn(m1(X)), and we know that [z;,7(X)] ¢
Zn(m1(X)). If 2y € [y, m1(X)] then we have shown that the condi-
tion (T**) does not hold, as required, so assume z; ¢ [z,, 71 (X)].
Then choose 3 € 71, 71(X)], 23 ¢ Zn(m1(X)). Since [z, 7, (X)]
18 a normal subgroup of 71(X), [x3, 71 (X)] C [z1, m(X)]. If 25 €
[z2, m1(X)], we are done.

Otherwise, we have [z2,m(X)} ¢ [z1, 71(X)]. We noted [z5,
(X)) € Zn(m(X)). So pick x3 € (29, m(X)], 23 ¢ Zn(m1(X))
and continue. Since 7;(.X) is finite, this process must stop. After
all we have a for which z4(# 1) € [z4:m(X)]. This is a con-
tradiction to the fact that X satisfies the condition (7**). Thus
we get m1(X) as a nilpotent group and maximal perfect normal
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subgroup Pri(X) is trivial.

For case (2) : for X(€ Trn) such that 71(X) is torsion-free
with all proper subgroups of 7 (X) nilpotent then X € Ty [10].
Thus Pry(X) is trivial.

For case (3) : when m,(X) is infinite and 7{ (X ) has the maximal
condition on normal subgroups then 7, (X) is a finitely generated
nilpotent group. Thus 71{X) has the center subgroup as the in-
finite normal abelian subgroup which acts nilpotently on H,(X)
for the universal covering space X [2] then X is a nilpotent space.
Thus Pmi(X) is trivial.

For case (4) : when 71 (X) satisfies the max-oc property for non-
nilpotent subgroups, assune that 7y(X) is not nilpotent. Then
71(X) has a countable non-nilpotent subgroups and hence such an
isolated subgroup, which we denote by K. Write K = U{K;}% .
where 1 = Ko C K; C K3 C -+ is a chain of finitely generated
subgroups of increasing nilpotency classes. Let {p;.py.ps, -}
be an infinite set of primes satisfying the following: Choose a
normal subgroup H; of K such that the index |K, : H,| is finite
and divisible by p;. Now let N, be a normal subgroup of finite
index in K3 such that |Ky : N2 K] is divisible by py and NoH; N
Ky, = Hy. Write H, = NyH,. Inductively, having defined N;
and H; for some 1 > 2, let N;;; be a normal subgroup of finite
index in K such that |K; . : Ny, K;| is divisible by p;,, and
Nip1H; N K; = H; and write H;yy = N;.1H;. We obtain an
infinite chain Hy C Hy C -+ such that. in particular, |K; : H;| is
finite for each i. Thus, setting H = U2, H;. We have Ix(H) = K
and hence H non-nilpotent. Now we define Ly = H and for each
12 1,L; =< H, K; > . We shall establish the following facts:

(1) For each i > 1, HN K; = H,

(2) ILl : L(]l = lKl : H1l and, for i > 1 ILH—I : L,[ = iKH'l :
Nip1 K.

From the choice of the subgroups N;, we see that |L;,, : L;]|
is divisible by p;;; for all ¢ > 1. In particular, the chain L, C
L, C --- is not finite. We now obtain a similar chain where the
indices are all infinite. Let 7 denote the set of all primes p which
divide at least one of the indices |L;; : L;|. Then m is infinite
and we may write it as a disjoint union of infinitely many infinite
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subsets {m;}:<,. Let I; denote the m -isolator of H in K and. for
n > 1, let I,,4; denote the m,, 1 -isolator of I, in K. Then each
of the indices |J,41 : I,,| is infinite. Thus m1(X) does not satisfy
the max-oc property for non-nilpotent subgroups. We thus have
a contradiction.

Anyway, m1(X) acts nilpotently on H;{X). Hence the center
Z(m (X)) of m(X) is infinite and finitely generated. Then we
can take an infinite cyclic subgroup Z(m (X)) for a torsion free
nontrivial normal abelian subgroup. '

From the fact that f : X — Y is an acyclic map and the
classical homotopy exact sequence of fibration: Fy —X-— Y,
we know that m1(f) is an epimorphism. Furthermore Hy(Fy) &

R—({%‘%ﬁm = 0 where [, ] means the commutator subgroup and
Fy is the homotopy fiber of f. Thus Pm(X) is perfect normal
subgroup of 71(X). Since X is nilpotent, Pmy(X) is trivial. Thus
mi(f): m(X) — 7 (Y) is an isomorphism. By use of the Hurewicz
Theorem [4] inductively, m;(F¢) = 0. Thus f is a weak homotopy
equivalence. By the Whitehead Theorem [4], f is a homotopy
equivalence. Since the Euler characteristic number is invariant
under the homotopy equivalence, thus by Theorem 3.1, our proof
is completed.

At any cases above we get m,(f) isomorphic. From the quasi-
nilpotent homology equivalence of f, f is a homotopy equivalence.
By the same method of the last part of Theorem A, our assertion
is proved.
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