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ADMISSIBLE INERTIAL MANIFOLDS FOR INFINITE

DELAY EVOLUTION EQUATIONS

Le Anh Minh

Abstract. The aim of this paper is to prove the existence of an admissi-

ble inertial manifold for mild solutions to infinite delay evolution equation
of the form 

du

dt
+Au = F (t, ut), t ≥ s,

us(θ) = φ(θ), ∀θ ∈ (−∞, 0], s ∈ R,

where A is positive definite and self-adjoint with a discrete spectrum,

the Lipschitz coefficient of the nonlinear part F may depend on time
and belongs to some admissible function space defined on the whole line.

The proof is based on the Lyapunov-Perron equation in combination with

admissibility and duality estimates.

1. Introduction

The new concept of inertial manifold called admissible inertial manifolds for
evolution equations was first introduced by Huy in [5]. These manifolds are
constituted by trajectories of the solutions which belong to rescaledly admissi-
ble function spaces which contain wide classes of function spaces like weighted
Lp spaces, the Lorentz spaces Lp,q and many other rescaling function spaces
occurring in interpolation theory. The important property of these manifolds
is their exponential attracting all solutions of considered evolution equations
(see [1, 3, 4, 6]). This fact allows us to apply the reduction principle to study
the asymptotic behavior of the partial differential equation by determining the
structures of its induced solutions belonging to such an inertial manifold, which
turn out to be solutions of ordinary differential equations.

In [5], Huy proved the existence of admissible inertial manifold for a class of
semi-linear evolution equations without delay of the form

dx

dt
+Ax = f(t, x), t > s, x(s) = xs, s ∈ R,
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where A is positive definite and self-adjoint with a discrete spectrum on a
separable Hilbert space X and f : R×D(Aβ)→ X is ϕ-Lipschitz for 0 ≤ β < 1.
Later, for the differential operator A as in [5], Huy and the author [7] proved
the existence of admissible inertial manifolds for a class of finite delay evolution
equations which has the form

dx

dt
+Ax = f(t, xt), t > s, xs(·) = φ(·) ∈ Cβ , s ∈ R.

Here, f : R × Cβ → X is a nonlinear operator satisfying ϕ-Lipschitz with
Cβ := C([−r, 0],D(Aβ)) being the infinite-dimensional Banach space of all
continuous functions from [−r, 0] into D(Aβ) equipped with the norm

‖x‖Cβ := sup
−r≤θ≤0

‖Aβx‖, ∀x ∈ Cβ ,

xt is the history function which defined in finite interval [−r, 0] by the formula
xt(θ) = x(t+ θ) for all −r ≤ θ ≤ 0.

In this paper, motivated by the results in [5,7], we prove the existence of an
admissible inertial manifolds for mild solutions of the following infinite delay
evolution equation

(1.1)


du

dt
+Au = F (t, ut), t ≥ s,

us(θ) = φ(θ), ∀θ ∈ (−∞, 0],

where A : X ⊃ D(A) → X is positive definite and self-adjoint with a discrete
spectrum on a separable Hilbert space X; F : R × C β

g → X is a nonlinear
operator with

C β
g :=

{
φ ∈ C((−∞, 0], Xβ) : sup

θ≤0

‖Aβφ(θ)‖
g(θ)

< +∞
}

being the Banach space with respect to the norm

‖φ‖Cβ
g

= sup
θ≤0

‖Aβφ(θ)‖
g(θ)

, ∀φ ∈ C β
g ,

and Xβ := D(Aβ) is the domain of the fractional power Aβ for 0 ≤ β < 1,
g : (−∞, 0] → [1,+∞) is the given continuous function, and ut is the history
function defined by

ut(θ) := u(t+ θ) for all −∞ < θ ≤ 0.

This paper is organized as follows. In Section 2, for convenience of the
reader, we recall some background materials on the semigroup e−tA generated
by the operator A and admissible function spaces. In Section 3, we give the
notion of admissible inertial manifold and prove the existence of such manifold
for mild solutions to Equation (1.1). In the last section, we give an example
to illustrate the obtained result. Our main result is contained in Lemma 3
and Theorem 3.4 which extends the results in [5,7] to the case of infinite delay
evolution equations. This result can be applied to a wide class of infinite delay
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evolution equations such as: Lotka-Volterra models with diffusion, population
dynamics, biological models, . . ..

2. Preliminaries

2.1. Semigroups

Throughout this paper, let X be a separable Hilbert space and suppose that
A is a closed linear operator on X satisfying the following hypothesis.

Hypothesis 2.1. A is a positive definite, self-adjoint operator with a discrete
spectrum, say

0 < λ1 ≤ λ2 ≤ · · · , each with finite multiplicity and lim
k→∞

λk =∞,

and assume that {ek}∞k=1 is the orthonormal basis in X consisting of the cor-
responding eigenfunctions of the operator A, i.e., Aek = λkek.

Now, for a non-zero natural number N , let λN and λN+1 be two successive
and distinct eigenvalues such that

(2.1) λN < λN+1 and sup
θ≤0

e−λN+1θ

g(θ)
< +∞.

Furthermore, let P be the orthogonal projection onto the first N eigenvectors
of the operator A, and (e−tA)t≥0 be the semigroup generated by −A. Since
PX is of finite dimension, it follows that the restriction (e−tAP )t≥0 of the
semigroup (e−tA)t≥0 to PX can be extended to the whole line R.

For 0 ≤ β < 1 we then recall the following dichotomy estimates (see [2]):

(2.2)

‖e−tAP‖ ≤ eλN |t|,

‖Aβe−tAP‖ ≤ λβNe
λN |t|, t ∈ R,

‖e−tA(I − P )‖ ≤ e−λN+1t, t ≥ 0,

‖Aβe−tA(I − P )‖ ≤

[(
β

t

)β
+ λβN+1

]
e−λN+1t, t > 0, β > 0.

Now, we can define the Green function G : X → Xβ as follows.

(2.3) G (t, τ) :=

{
e−(t−τ)A[I − P ] for t > τ,

−e−(t−τ)AP for t ≤ τ.

Then, by the dichotomy estimates given in (2.2) we have

(2.4) ‖eγ(t−τ)AβG (t, τ)‖ ≤ K(t, τ)e−α|t−τ | for all t 6= τ,

where γ = λN+1+λN
2 , α = λN+1−λN

2 and

K(t, τ) =


(

β

t− τ

)β
+ λβN+1 if t > τ,

λβN if t ≤ τ.
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2.2. Admissible Banach spaces

Now, let I = R or I = (−∞, t0] for t0 ∈ R, we recall some concepts and
notions on admissibility for later use (see [5, 7] and the reference therein).

Denote by B the Borel algebra and by λ the Lebesgue measure on R. The
space L1,loc(R) of real-valued locally integrable functions on R (modulo λ-
nullfunctions) becomes a Frechet space for the seminorms pn(f) =

∫
Jn
|f(t)|dt,

where Jn = [n, n+ 1] for each n ∈ Z.
We then define Banach function spaces as follows.

Definition. A vector space EI of real-valued Borel-measurable functions on I
(modulo λ-null-functions) is a Banach function space (over (I,B, λ)) if

(1) EI is a Banach lattice with respect to a norm ‖·‖EI
, i.e., (EI, ‖·‖EI

) is
a Banach space, and if ϕ ∈ EI, ψ is a real-valued Borel-measurable
function such that |ψ(·)| 6 |ϕ(·)|, λ-a.e., then ψ ∈ EI and ‖ψ‖EI

6
‖ϕ‖EI

,

(2) the characteristic functions χA belong to EI for all A ∈ B of finite
measure, and

sup
t∈I

∥∥χ[t−1,t]
∥∥
EI
<∞ ; inf

t∈I

∥∥χ[t−1,t]
∥∥
EI
> 0,

(3) EI ↪→ L1,loc(I), i.e., for each compact interval J ⊂ I there exists a
number βJ > 0 such that

∫
J |f(t)| dt 6 βJ‖f‖EI for all f ∈ EI.

Definition (Admissibility). The Banach function space EI is called admissible
if the following hold:

(i) there is a constantM > 1 such that for every compact interval [a, b] ⊂ I,
and for all ϕ ∈ EI we have∫ b

a

|ϕ(t)| dt 6 M(b− a)∥∥χ[a,b]

∥∥
EI

‖ϕ‖EI
.

(ii) for all ϕ ∈ EI, the function Λ1 ∈ EI where (Λ1ϕ)(t) =
∫ t
t−1 ϕ(τ)dτ .

(iii) EI is T+
τ -invariant for all τ ∈ I, where

• if I = (−∞, t0] and for some t0 ∈ R, then

(T+
τ ϕ)(t) =

{
ϕ(t− τ) for t 6 τ + t0,

0 for t > τ + t0;

• if I = R, then

(T+
τ ϕ)(t) = ϕ(t− τ) for t ∈ R.

(iv) EI is T−τ -invariant for all τ ∈ I, where
• if I = (−∞, t0] and for some t0 ∈ R, then

(T−τ ϕ)(t) =

{
ϕ(t+ τ) for t 6 t0 − τ,
0 for t > t0 − τ ;
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• if I = R, then

(T−τ ϕ)(t) = ϕ(t+ τ) for t ∈ R.

Furthermore, there are constants N1, N2 such that ‖T+
τ ‖ 6 N1, ‖T−τ ‖ 6 N2 for

all τ ∈ I.

Example 2.2 ([5]). The spaces Lp(R), 1 6 p 6∞, the space

M(R) :=

{
f ∈ L1,loc(R) : sup

t∈R

∫ t

t−1
|f(τ)| dτ <∞

}
endowed with the norm

‖f‖M := sup
t∈R

∫ t

t−1
|f(τ)| dτ,

and many other function spaces occuring in interpolation theory, e.g. the
Lorentz spaces Lp,q, 1 < p <∞, 1 < q <∞, . . . are admissible Banach function
spaces.

Remark 2.3. If EI is the admissible Banach function space, then EI ↪→M(I).

Proposition 2.4. Let EI be an admissible Banach function space. Then the
following assertions hold.

(i) Let ϕ ∈ L1,loc (I) such that ϕ > 0 and Λ1ϕ ∈ EI. For σ > 0, we define
functions Λ′σϕ, Λ′′σϕ by

(Λ′σϕ)(t) =

∫ t

−∞
e−σ(t−s)ϕ(s)ds,

and

(Λ′′σϕ)(t) =

{∫∞
t
e−σ(s−t)ϕ(s)ds, if I = R,∫ t0

t
e−σ(s−t)ϕ(s)ds if I = (−∞, t0].

Then, Λ′σϕ and Λ′′σϕ belong to EI. Moreover, we have

‖Λ′σϕ‖EI
6

N1

1− e−σ
‖Λ1ϕ‖EI

and ‖Λ′′σϕ‖EI
6

N2

1− e−σ
‖Λ1ϕ‖EI

for constants N1, N2 are defined as in Definition 2.2.
(ii) EI contains exponentially decaying functions e−a|t| for all t ∈ I and

any fixed constant a > 0.
(iii) EI does not contain exponentially growing functions eb|t| for all t ∈ I

and any fixed constant b > 0.

We next recall the definition of associate spaces of admissible Banach spaces
on I as follows:
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Definition. Let EI be an admissible Banach space and denote by S(EI) the
unit sphere in EI. Consider, the set E′I of all measurable real-valued functions
ψ on I such that

ϕψ ∈ L1(I),
∫
I
|ϕ(t)ψ(t)| dt 6 k, ∀ϕ ∈ S(EI),

where k depends only on ψ and

L1(I) =

{
g : I→ I : g is measurable and

∫
I
|g(t)| dt <∞

}
.

Then, E′I is normed space with the norm given by

‖ψ‖E′I := sup

{∫
I
|ϕ(t)ψ(t)| dt : ϕ ∈ S(EI)

}
for ψ ∈ E′I,

and we call E′I associate space of EI.

Remark 2.5. Let EI be an admissible Banach function space and E′I be its
associate space. Then, we have following Hölder inequality∫

I
|ϕ(t)ψ(t)| dt 6 ‖ϕ‖EI

‖ψ‖E′I , ∀ϕ ∈ EI, ψ ∈ E′I.

Remark 2.6. In the case I = R we write E,E instead of ER and ER.

In order to get the existence of an admissible inertial manifold of E -class, it
is necessary to put some restrictions on Banach function space EI as follows.

Hypothesis 2.7. (1) The Banach function space EI and its associate
space E′I are admissible spaces.

(2) The function space

EβI := {u ∈ EI | |u|
1+β
1−β ∈ EI} for 0 ≤ β < 1

is also an admissible Banach function space with the norm

‖u‖β := max

{
‖u‖EI , ‖|u|

1+β
1−β ‖

1−β
1+β

EI

}
.

(3) For the function ϕ ≥ 0 and for a fixed ν > 0, the functions hν and Θν

defined by
hν(t) := ‖e−ν|t−·|ϕ(·)‖E′I , t ∈ R,

Θν(t) := ‖e−ν
1+β
1−β |t−·|ϕ

1+β
1−β (·)‖

1−β
1+β

E′I
, t ∈ R

belong to EI.

Definition. A function u ∈ C((−∞, T ], Xβ) is said to be a mild solution of
Equation (1.1) on the interval (−∞, T ] if us(θ) = φ(θ) for θ ∈ (−∞, 0] and

(2.5) u(t) = e−(t−s)Au(s) +

∫ t

s

e−(t−τ)AF (τ, uτ )dτ

for all t ∈ [s, T ].
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From now on, instead of Equation (1.1) we will consider the integral equation
(2.5). We also need the ϕ-Lipschitz property defined as follows.

Definition (ϕ-Lipschitz function). Let E be an admissible Banach function
space and ϕ be a positive function belonging to E. A function F : R×C β

g → X
is said to be ϕ-Lipschitz if F satisfies

(i) ‖F (t, φ)‖ ≤ ϕ(t)(1 + ‖φ‖Cβ
g

), ∀t ∈ R,

(ii) ‖F (t, φ1)− F (t, φ2)‖ ≤ ϕ(t)‖φ1 − φ2‖Cβ
g
, ∀t ∈ R, ∀φ1, φ2 ∈ C β

g .

3. Admissible inertial manifolds

Now, on C β
g , we define the projection P̂ by

(P̂ φ)(θ) =

N∑
k=1

e−λkθ 〈φ(0), ek〉 ek = e−θAPφ(0), ∀ −∞ < θ ≤ 0,

where φ = φ(θ) is an element of C β
g . Then, we give the notion of admissible

inertial manifolds in the following definition.

Definition. An admissible inertial manifold of E -class for Equation (2.5) is a
collection of surfaces M = (Mt)t∈R in C β

g of the form

Mt = {p̂+ Φt(p̂(0)) : p̂ ∈ P̂C β
g } ⊂ C β

g ,

where Φt : PX → (I − P̂ )C β
g is a Lipschitz mapping, and the following condi-

tions are satisfied:

(i) The Lipschitz constants of Φt are independent of t, i.e., there exists a
constant C independent of t such that

‖Φt(x1)− Φt(x2)‖Cβ
g
≤ C

∥∥Aβ(x1 − x2)
∥∥ , ∀ x1, x2 ∈ Xβ , ∀t ∈ R.

(ii) There exists γ > 0 such that to each φ ∈ Mt0 there corresponds one
and only one solution u(·) to Equation (2.5) on (−∞, t0] satisfying that
ut0 = φ and the function

t 7→ e−γ(t0−t)‖ut‖Cβ
g
, t ≤ t0

belongs to E(−∞,t0].
(iii) M is positively invariant under Equation (2.5), i.e., if u(·) is a solution

of Equation (2.5) satisfies us = φ ∈ Ms, then we have that ut ∈ Mt

for all t ≥ s.
(iv) M exponentially attracts all the solutions to Equation (2.5), i.e., for

any solution u(·) of (2.5) and any fixed s ∈ R, there exists a positive
constant H and a solution u∗t lying in M such that

(3.1) ‖ut − u∗t ‖Cβ
g
≤ He−γ(t−s) for t ≥ s.

We can now construct the form of solutions to Equation (2.5) which belongs
to rescaledly admissible spaces on the half-line (−∞, t0] in the following lemma.
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Lemma 3.1. Let A satisfy Hypothesis 2.1. Let E, E′ and ϕ ∈ E′ be as in
Hypothesis 2.7. Suppose that F : R×C β

g → X is ϕ-Lipschitz. For fixed t0 ∈ R
let u(·) be a solution to Equation (2.5) such that u(t) ∈ Xβ for all t ≤ t0 and
the function

z(t) = e−γ(t0−t)‖ut‖Cβ
g
, t ≤ t0,

belongs to E(−∞,t0]. Then,

(3.2) u(t) = e−(t−t0)Ap+

∫ t0

−∞
G (t, τ)F (τ, uτ )dτ, ∀ t ≤ t0,

where p ∈ PX and G (t, τ) is the Green function defined as in (2.3).

Proof. By the definition of G (·, ·) one can see that

v(t) :=

∫ t0

−∞
G (t, τ)F (τ, uτ )dτ ∈ Xβ , ∀t ≤ t0.

Furthermore, for −∞ < θ ≤ 0 we have

(3.3)

e−γ(t0−t)‖Aβv(t+ θ)‖

≤
∫ t0

−∞
‖eγ(t−τ)AβG (t+ θ, τ)‖ϕ(τ)e−γ(t0−τ)(1 + ‖uτ‖Cβ

g
)dτ

≤ e−γθ
∫ t0

−∞
‖eγ(t+θ−τ)AβG (t+ θ, τ)‖ϕ(τ)w(τ)dτ.

Here, w(·) := e−γ(t0−·) + ‖z(·)‖ ∈ E(−∞,t0].
Now, by using properties of Green function one has∫ t0

−∞
‖eγ(t+θ−τ)AβG (t+ θ, τ)‖ϕ(τ)w(τ)dτ

≤
∫ t+θ

−∞

((
β

t+ θ − τ

)β
+ λβN+1

)
e−α(t+θ−τ)ϕ(τ)w(τ)dτ

+

∫ t0

t+θ

λβNe
−α(τ−t−θ)ϕ(τ)w(τ)dτ

≤
∫ t+θ

−∞

(
β

t+ θ − τ

)β
e−α(t+θ−τ)ϕ(τ)w(τ)dτ+

+
(
e−αθλβN+1 + eαθλβN

)
‖e−α(t−·)ϕ(·)‖E′

(−∞,t0]
‖w‖E(−∞,t0]

and ∫ t+θ

−∞

(
β

t+ θ − τ

)β
e−α(t+θ−τ)ϕ(τ)w(τ)dτ

=

∫ t+θ−1

−∞

(
β

t+ θ − τ

)β
e−α(t+θ−τ)ϕ(τ)w(τ)dτ
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+

∫ t+θ

t+θ−1

(
β

t+ θ − τ

)β
e−α(t+θ−τ)ϕ(τ)w(τ)dτ

≤ ββe−αθ
∫ t+θ−1

−∞
e−α(t−τ)ϕ(τ)w(τ)dτ

+ ββe−αθ

(∫ t+θ

t+θ−1

1

(t+ θ − τ)
1+β
2

dτ

) 2β
1+β

×

(∫ t+θ

t+θ−1
e−α

1+β
1−β (t−τ)(ϕ(τ)w(τ))

1+β
1−β dτ

) 1−β
1+β

≤ ββe−αθ‖e−α(t−·)ϕ(·)‖E′
(−∞,t0]

‖w‖E(−∞,t0]

+ ββe−αθ
(

2

1− β

) 2β
1+β

‖e−α
1+β
1−β (t−·)ϕ

1+β
1−β (·)‖

1−β
1+β

E′
(−∞,t0]

‖w
1+β
1−β ‖

1−β
1+β

E(−∞,t0]
.

The inequalities just mentioned show that

(3.4)

∫ t0

−∞
‖eγ(t+θ−τ)AβG (t+ θ, τ)‖ϕ(τ)w(τ)dτ

≤ k(t, θ) max

{
‖w‖E(−∞,t0]

, ‖w
1+β
1−β ‖

1−β
1+β

E(−∞,t0]

}
≤ k(t, θ)‖w‖β , ∀ t ≤ t0

with

k(t, θ) = ββe−αθ

[
‖e−α|t−·|ϕ(·)‖E′ +

(
2

1− β

) 2β
1+β

‖e−α
1+β
1−β |t−·|ϕ

1+β
1−β (·)‖

1−β
1+β

E′

]
+
(
e−αθλβN+1 + eαθλβN

)
‖e−α(t−·)ϕ(·)‖E′ .

Plugging (3.4) into (3.3), we have

(3.5)

eγ(t0−t)‖vt‖Cβ
g

= eγ(t0−t) sup
θ≤0

‖Aβvt(θ)‖
g(θ)

= eγ(t0−t) sup
θ≤0

‖Aβv(t+ θ)‖
g(θ)

≤ `(t)‖w‖β ,

where

`(t) = sup
θ≤0

e−λN+1θ

g(θ)

[(
ββ + λβN+1 + λβN

)
· ‖e−α|t−·|ϕ(·)‖E′

+ ββ
(

2

1− β

) 2β
1+β

‖e−α
1+β
1−β |t−·|ϕ

1+β
1−β (·)‖

1−β
1+β

E′

]
.
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Since `(·) ∈ E(−∞,t0], and by the admissibility of E(−∞,t0] we arrive at

eγ(t0−t)‖vt‖Cβ
g
∈ E(−∞,t0].

It is clear that v(·) satisfies the following integral equation

v(t0) = e−(t0−t)Av(t) +

∫ t0

t

e−(t0−τ)AF (τ, uτ )dτ for t ≤ t0.

On the other hand,

u(t0) = e−(t0−t)Au(t) +

∫ t0

t

e−(t0−τ)AF (τ, uτ )dτ.

Hence,

(3.6) u(t0)− v(t0) = e−(t0−t)A[u(t)− v(t)].

Applying the operator Aβ(I − P ) to (3.6), we have

‖Aβ(I − P )[u(t0)− v(t0)]

= ‖e−(t0−t)AAβ(I − P )[u(t)− v(t)]‖

≤ Ne−(λN+1−γ)(t0−t)‖I − P‖‖e−γ(t0−t)Aβ(u(t)− v(t))‖.

Since esssupt≤t0‖e
−γ(t0−t)Aβ(u(t) − v(t))‖ < ∞, letting t → −∞ we obtain

that

‖Aβ(I − P )[u(t0)− y(t0)]‖ = 0, hence Aβ(I − P )[u(t0)− y(t0)] = 0.

Since Aβ is injective, it follows that (I − P )[u(t0)− y(t0)] = 0. Thus,

p := u(t0)− y(t0) ∈ PX.

Using the fact that the restriction of e−(t0−t)A to PX is invertible with the
inverse e−(t−t0)A we obtain that

u(t) = e−(t−t0)Ap+ v(t) = e−(t−t0)Ap+

∫ t0

−∞
G (t, τ)F (τ, uτ )dτ for t ≤ t0.

This finishes the proof. �

Remark 3.2. Equation (3.2) is called Lyapunov-Perron equation which will be
used to determine the admissible inertial manifold for Equation (2.5). By direct
computation, one can see that the converse of Lemma 3.1 is also true. It means,
all solutions of Equation (3.2) satisfies Equation (2.5) for t ≤ t0.

We now show the existence of rescaling solutions to Equation (2.5) on neg-
ative half-line which belong to an admissible Banach function space in the
following lemma.
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Lemma 3.3. Let A satisfy Hypothesis 2.1. Let E, E′ and ϕ ∈ E′ be as in
Hypothesis 2.7. For 0 ≤ β < 1, we define the function ` : R→ E by

`(t) = sup
θ≤0

e−λN+1θ

g(θ)

[(
ββ + λβN+1 + λβN

)
· ‖e−α|t−·|ϕ(·)‖E′

+ ββ
(

2

1− β

) 2β
1+β

‖e−α
1+β
1−β |t−·|ϕ

1+β
1−β (·)‖

1−β
1+β

E′

]
.

(3.7)

Let F : R×C β
g → X be ϕ-Lipschitz such that ‖`‖β < 1 where the norm ‖ · ‖β is

defined as in Hypothesis 2.7. Then, there corresponds to each p ∈ PX one and
only one solution u(·) of Equation (2.5) on (−∞, t0] satisfying the conditions
that Pu(t0) = p and the function

z(t) := e−γ(t0−t)‖ut‖Cβ
g
, t ≤ t0,

belongs to E(−∞,t0].

Proof. We set

E γ,t0,β
g := {h : (−∞, t0]→ Xβ | h is strongly measurable,

and e−γ(t0−·)‖h·‖Cβ
g
∈ Eβ(−∞,t0]

}
with the norm

‖h‖γ,β := ‖e−γ(t0−·)‖h·‖Cβ
g
‖β .

For each t0 ∈ R, u ∈ E γ,t0,β
g and p ∈ PX we define

T (p, u)(t) = e−(t−t0)Ap+

∫ t0

−∞
G (t, τ)F (τ, uτ )dτ for t ≤ t0.

Then, for p ∈ PX, u ∈ E γ,t0,β
g and t ≤ t0 we have

‖e−γ(t0−t)AβT (p, u)(t+ θ)‖

≤ λβNe
−λNθe−α(t0−t)‖Aβp‖+ e−γθ

∫ t0

−∞
‖eγ(t+θ−τ)AβG (t+ θ, τ)‖ϕ(τ)w(τ)dτ.

Noting that, w(·) := e−γ(t0−·) + ‖z(·)‖ ∈ E(−∞,t0].
By using (3.4) and (3.5) we obtain that

e−γ(t0−t)‖[T (p, u)]t‖Cβ
g
≤ λβN · sup

θ≤0

e−λNθ

g(θ)
· ‖e−α(t0−·)‖β · ‖Aβp‖+ `(t)‖w‖β

and therefore,

‖T (p, u)‖γ,β ≤ λβN sup
θ≤0

e−λNθ

g(θ)
· ‖e−α(t0−·)‖β · ‖Aβp‖+ ‖`‖β‖w‖β ,

i.e., the transformation T acts from PX × E γ,t0,β
g into E γ,t0,β

g .
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Next, for any u, v ∈ E γ,t0,β
g and p := Pu(t0), q := Pv(t0), we have

‖e−γ(t0−t)Aβ [T (p, u)− T (q, v)] (t+ θ)‖

≤ λβNe
−λNθ‖e−α(t0−·)‖β‖Aβ(p− q)‖

+

∫ t0

−∞
‖e−γ(t0−t)AβG (t+ θ, τ) [F (τ, uτ )− F (τ, vτ )] ‖dτ.

It follows that

‖T (p, u)−T (q, v)‖γ,β ≤ λβN ·sup
θ≤0

e−λNθ

g(θ)
‖e−α(t0−·)‖β‖Aβ(p−q)‖+‖`‖β‖u−v‖γ,β .

Therefore, the condition ‖m(·)‖β < 1 implies that T is a strict contraction in
E γ,t0,β
g , uniformly in PX (if p = q). Thus, there exists a unique u ∈ E γ,t0,β

g

such that T (u, p) = u, and by definition of T we have that u(·) is the unique
solution in E γ,t0,β

g of Equation (3.2) for t ≤ t0. Lemma 3.1 and Remark 3.2

show that u(·) is the unique solution in E γ,t0,β
g of Equation (2.5) for t ≤ t0. �

Theorem 3.4. Let A satisfy Hypothesis 2.1. Let E, E′ and ϕ ∈ E′ be as in
Hypothesis 2.7. Set

κ =
‖Λ1ϕ‖∞
1− e−α

[
N1N2λ

2β
N ‖eα‖‖n‖β

1− ‖n‖β
sup
θ≤0

e−λNθ

g(θ)

(
sup
θ≤0

e−γθ

g(θ)

)2

+ N1β
β +N1λ

β
N+1 +N2λ

β
N

]
+ β

(
2

1− β

) 2β
1+β

‖Λ1ϕ
1+β
1−β ‖

1−β
1+β
∞ ,

and

(3.8) 4 = sup
θ≤0

e−γθ

g(θ)
· κ.

Let F be ϕ-Lipschitz and suppose that

(3.9) max {‖`‖β ,4} < 1,

where the function ` is defined by (3.7). Then, Equation (2.5) has an admissible
inertial manifold of E -class.

Proof. We start by defining a collection of surfaces {Mt0}t0∈R by

Mt0 =
{
p̂+ Φt0(p̂(0)) | p̂ ∈ P̂C β

g

}
⊂ C β

g .

Here, for each t0 ∈ R the mapping Φt0 : PX → (I − P̂ )C β
g is defined by

Φt0(p)(θ) =

∫ t0

−∞
G (t0 + θ, τ)F (τ, uτ )dτ, ∀p ∈ PX, ∀θ ≤ 0,

where u(·) is the unique solution in E γ,t0,β
g of Equation (2.5) satisfying that

Pu(t0) = p.
Noting that, the existence and uniqueness of u(·) is proved in Lemma 3.3.
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Next, we prove that Φt0 is Lipschitz continuous with Lipschitz constant
independent of t0. For this purpose, taking any p and q in PX, letting u(·)
and v(·) be the solutions to Equation (3.2) with Pu(t0) = p and Pv(t0) = q
respectively, and using the formula (3.2) for u(·) and v(·) we then have

e−γ(t0−t)‖Aβ [u(t+ θ)− v(t+ θ)] ‖

≤ e−λNθλβNe
−α(t−t0)‖Aβ(p− q)‖+ `(t)‖u− v‖γ,β .

Therefore,

‖u− v‖γ,β ≤ N1λ
β
N sup
θ≤0

e−λNθ

g(θ)
‖eα‖‖Aβ(p− q)‖+ ‖`‖β‖u− v‖γ,β .

Since ‖`‖β < 1, we arrive at

(3.10) ‖u− v‖γ,β ≤
N1λ

β
N‖eα‖

1− ‖`‖β
· sup
θ≤0

e−λNθ

g(θ)
· ‖Aβ(p− q)‖.

Next, from the definition of Φt0 it follows that

‖Aβ(Φt0(p)(θ)− Φt0(q)(θ))‖

≤
∫ t0

−∞
‖AβG (t0 + θ, τ)‖ · ‖F (τ, uτ )− F (τ, vτ )‖dτ

≤ e−γθ
∫ t0

−∞
‖eγ(t0+θ−τ)AβG (t0 + θ, τ)‖ · ϕ(τ)e−γ(t0−τ)‖uτ − vτ‖Cβ

g
dτ

≤ e−γθ‖`‖β · ‖u− v‖γ,β

≤ e−γθ ·
N1λ

β
N‖eα‖‖`‖β

1− ‖`‖β
· sup
θ≤0

e−λNθ

g(θ)
· ‖Aβ(p− q)‖.

Here, we used the estimate (3.10).
Latter inequality shows that

‖Φt0(p)− Φt0(q)‖Cβ
g
≤
N1λ

β
N‖eα‖‖`‖β

1− ‖`‖β
· sup
θ≤0

e−λNθ

g(θ)
· sup
θ≤0

e−γθ

g(θ)
· ‖Aβ(p− q)‖,

i.e., Φt0 is Lipschitzian and its Lipschitz constant

C =
N1λ

β
N‖eα‖‖`‖β

1− ‖`‖β
· sup
θ≤0

e−λNθ

g(θ)
· sup
θ≤0

e−γθ

g(θ)

is independent of t0.
The property (ii) follows from Lemma 3.1, Lemma 3.3 and Remark 3.2.
To prove the property (iii), we fix any s ∈ R and let u(·) be the solution to

Equation (2.5) such that us ∈Ms, i.e.,

us(θ) = e−θAp1 +

∫ s

−∞
G (s+ θ, τ)F (τ, uτ )dτ, ∀θ ≤ 0,
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where p1 ∈ PX. Then, we have to prove that ut0 ∈Mt0 for all t0 > s. We fix
an arbitrary number t0 ∈ (s,∞) and define a function w(t) on (−∞, t0] by

w(t) =

{
u(t) if t ∈ (s, t0],

v(t) if t ∈ (−∞, s],

where v(·) is the unique solution in E γ,t0,β
g of Equation (2.5) with vs = us.

It is clear that w(t) is continuous, bounded on (−∞, t0] and ut0 = wt0 , so
we need to prove wt0 ∈Mt0 .

For t ∈ [s, t0], we have

w(t) = e−(t−s)Au(s) +

∫ t

s

e−(t−τ)AF (τ, wτ )dτ

= e−(t−s)Ap1 +

∫ t

−∞
e−(t−τ)A(I − P )F (τ, wτ )

+

∫ t

s

e−(t−τ)APF (τ, wτ )dτ

= e−(t−t0)Ap2 +

∫ t0

−∞
G (t, τ)F (τ, wτ )dτ,

(3.11)

where

p2 = e−(t0−s)Ap1 +

∫ t0

s

e−(t0−τ)A(I − P )F (τ, wτ )dτ ∈ PX.

Obviously, Equation (3.11) also remains true for t ∈ (−∞, s]. Therefore, for all
t0 ≥ s, there exists p2 ∈ PX such that

wt0(θ) = w(t0 + θ) = e−θAp2 +

∫ t0

−∞
G (t0 + θ)F (τ, wτ )dτ.

This means wt0 ∈Mt0 and thus ut0 ∈Mt0 for all t0 ≥ s.
Lastly, we prove the property (iv) of the admissible inertial manifold. To do

this, we will prove that for any solution u(·) to Equation (2.5) with us ∈ Ms

there is a solution u∗(·) of Equation (2.5) such that u∗t ∈Mt for t ≥ s and

‖ut − u∗t ‖Cβ
g
≤ He−γ(t−s).

In this case, u∗(·) is called an induced trajectory for u(·) on the manifold {Mt}.
We will find the induced trajectory in the form u∗(t) = u(t) + w(t) such that

‖w‖s,+ = sup
t≥s

eγ(t−s)‖Aβw(t)‖ < +∞.

Substituting u∗(·) to Equation (2.5) we obtain that u∗(·) is a solution to (2.5)
for t ≥ s if and only if w(·) is a solution to the equation

(3.12) w(t) = e−(t−s)Aw(s) +

∫ t

s

e−(t−τ)A [F (τ, uτ + wτ )− F (τ, uτ )] dτ.
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Put
F (t, wt) = F (t, ut + wt)− F (t, ut),

and set

L +
γ,s =

{
v ∈ C(R;Xβ) | sup

t≥s
eγ(t−s)‖Aβv(t)‖ < +∞

}
.

Then, one can see that a function w(·) ∈ L +
γ,s is a solution to (3.12) if and only

if it satisfies

(3.13) w(t) = e−(t−s)Aq̂(0) +

∫ ∞
s

G (t, τ)F (τ, wτ )dτ

for t ≥ s and some q̂ ∈ (I − P̂ )C β
g is chosen such that u∗s = us +ws ∈Ms, i.e.,

(I − P̂ )(us + ws)(θ) = Φs(P̂ (us + ws)(0))(θ).

By (3.13) we claim that

ws(θ) = q̂(θ)− e−θA
∫ ∞
s

e−(s−τ)APF (τ, wτ )dτ, ∀θ ≤ 0.

Hence

P̂ (us + ws)(θ) = P̂ us(θ)− e−θA
∫ ∞
s

e−(s−τ)APF (τ, wτ )dτ

and therefore

q̂(θ) = (I − P̂ )ws(θ)

= −(I − P̂ )us(θ) + Φs

(
Pu(s)−

∫ ∞
s

e−(s−τ)APF (τ, wτ )dτ

)
(θ).

Substituting this into (3.13) we have

w(t) = e−(t−s)A
[
−(I − P̂ )u(s)+Φs

(
Pu(s)−

∫ ∞
s

e−(s−τ)APF (τ, wτ )dτ

)
(0)

](3.14)

+

∫ ∞
s

G (t, τ)F (τ, wτ )dτ.

In order to prove the existence of u∗ satisfying (3.1) we have to show that (3.14)
has a solution w(·) belongs to L +

γ,s. To this purpose, we will prove that the
transformation T defined by

(T w)(t) = e−(t−s)Aq̂(0) +

∫ ∞
s

G (t, τ)F (τ, wτ )dτ for t ≥ s

acts from QX ×L +
γ,s into L +

γ,s and is a contraction in L +
γ,s.

Indeed, for w(·) ∈ L +
γ,s, and for each θ ∈ (−∞, 0] since

‖Aβw(t+ θ)‖ = e−γ(t+θ−s) · eγ(t+θ−s)‖Aβw(t+ θ)‖

≤ e−γ(t+θ−s) sup
t+θ≥s

eγ(t+θ−s)‖Aβw(t+ θ)‖,
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we have

‖Aβw(t+ θ)‖
g(θ)

≤ e−γθ

g(θ)
· e−γ(t−s)‖w‖s,+

and

(3.15) ‖F (t, wt)‖ ≤ ϕ(t)‖wt‖Cβ
g
≤ ϕ(t) · sup

θ≤0

e−γθ

g(θ)
· e−γ(t−s)‖w‖s,+.

Therefore,

(3.16)

eγ(t−s)‖Aβ(T w)(t)‖

≤ e−(λN+1−γ)(t−s)‖Aβ q̂(0)‖

+ sup
θ≤0

e−γθ

g(θ)
· ‖w‖s,+

∫ +∞

s

eγ(t−τ)‖AβG (t, τ)‖ϕ(τ)dτ

≤ ‖Aβ q̂(0)‖+ sup
θ≤0

e−γθ

g(θ)
· ‖w‖s,+

∫ +∞

s

eγ(t−τ)‖AβG (t, τ)‖ϕ(τ)dτ.

Set Q̂ = I − P̂ , we have

‖Aβ q̂(0)‖

= ‖Aβ
[
−Q̂us(0) + Φs

(
Pu(s)−

∫ ∞
s

e−(s−τ)APF (τ, wτ )dτ

)
(0)

]
‖

≤ ‖Aβ(Φs(Pu(s))(0)− Q̂us(0))‖

+ ‖Aβ
[
Φs(Pu(s))(0)− Φs

(
Pu(s)(0)−

∫ ∞
s

e−(s−τ)APF (τ, wτ )dτ

)
(0)

]
‖

≤ } +
N1λ

β
N‖eα‖‖`‖β

1− ‖`‖β
· sup
θ≤0

e−λNθ

g(θ)
· sup
θ≤0

e−γθ

g(θ)

∫ ∞
s

e−(s−τ)APF (τ, wτ )dτ,

where } = ‖Φs(Pu(s))− Q̂us‖Cβ
g

.

Now, by (2.2), (2.4) and (3.15) we obtain that

‖Aβ q̂(0)‖

(3.17)

≤ } +
N1λ

β
N‖eα‖‖`‖β

1− ‖`‖β
sup
θ≤0

e−λNθ

g(θ)

[
sup
θ≤0

e−γθ

g(θ)

]2
‖w‖s,+

∫ ∞
s

eγ(s−τ)‖AβG (s, τ)‖ϕ(τ)dτ

≤ } +
N1λ

2β
N ‖eα‖‖`‖β

1− ‖`‖β
sup
θ≤0

e−λNθ

g(θ)

[
sup
θ≤0

e−γθ

g(θ)

]2
‖w‖s,+

∫ ∞
s

e−α(τ−s)ϕ(τ)dτ

≤ } +
N1λ

2β
N ‖eα‖‖`‖β

1− ‖`‖β
sup
θ≤0

e−λNθ

g(θ)

[
sup
θ≤0

e−γθ

g(θ)

]2
N2

1− e−α
‖Λ1ϕ‖∞‖w‖s,+.
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For the integral in the second term of (3.16), by using (2.4) we have

(3.18)

∫ +∞

s

eγ(t−τ)‖AβG(t, τ)‖ϕ(τ)dτ

≤
∫ t

−∞
‖eγ(t−τ)AβG(t, τ)‖ϕ(τ)dτ +

∫ +∞

t

‖eγ(t−τ)AβG(t, τ)‖ϕ(τ)dτ

≤
∫ t

−∞

(
β

t− τ

)β
e−α(t−τ)ϕ(τ)dτ +

N1λ
β
N+1 +N2λ

β
N

1− e−α
‖Λ1ϕ‖∞

≤
∫ t−1

−∞

(
β

t− τ

)β
e−α(t−τ)ϕ(τ)dτ +

∫ t

t−1

(
β

t− τ

)β
e−α(t−τ)ϕ(τ)dτ

+
N1λ

β
N+1 +N2λ

β
N

1− e−α
‖Λ1ϕ‖∞

≤
N1β

β +N1λ
β
N+1 +N2λ

β
N

1− e−α
‖Λ1ϕ‖∞ + β

(
2

1− β

) 2β
1+β

‖Λ1ϕ
1+β
1−β ‖

1−β
1+β
∞ .

Substituting the estimates (3.17) and (3.18) to (3.16) we obtain that

(3.19) eγ(t−s)‖Aβ(T w)(t)‖ ≤ } +4‖w‖s,+, ∀t ≥ s

and that

‖T w‖s,+ := sup
t≥s

eγ(t−s)‖Aβ(T w)(t)‖ ≤ } +4‖w‖s,+,

where 4 is defined as in (3.8). Therefore, T : QX ×L +
γ,s → L +

γ,s.
Using now the inequality

‖F (t, w1
t )−F (t, w2

t )‖ ≤ ϕ(t)·sup
θ≤0

e−γθ

g(θ)
·e−γ(t−s)‖w1−w2‖s,+, ∀w1, w2 ∈ L +

γ,s,

we have

eγ(t−s)‖Aβ((T w1)(t)− (T w2)(t))‖

≤ ‖Aβ(q̂1(0)− q̂2(0))‖

+ sup
θ≤0

e−γθ

g(θ)
· ‖w1 − w2‖s,+

∫ +∞

s

eγ(t−s)‖AβG (t, τ)‖ϕ(τ)dτ

≤ ‖Aβ(q̂1(0)− q̂2(0))‖+4‖w1 − w2‖s,+.

Since 4 < 1, T is a contraction in L +
γ,s. Thus, there exists a unique w(·) ∈

L +
γ,s such that T w = w. By the definition of T we see that w(·) is the unique

solution in L +
γ,s to (3.14) for t ≥ s. Also using (3.19) we have the following

estimate for ‖w‖s,+

‖w‖s,+ ≤
}

1−4
.
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By determination of w, we obtain the existence of the solution u∗ = u − w to
Equation (2.5) such that u∗t ∈Mt for all t ≥ s, and u∗ satisfies

‖Aβ [u∗t (θ)− ut(θ)] ‖ = ‖Aβw(t+ θ)‖ ≤ e−γθ · e−γ(t−s)‖w‖s,+

≤ e−γθ · }
1−4

e−γ(t−s), ∀t ≥ s.

This implies that

‖ut − u∗t ‖Cβ
g
≤ He−γ(t−s), ∀t ≥ s,

where

H := sup
θ≤0

e−γθ

g(θ)
·
‖Φs(Pu(s))− Q̂us‖Cβ

g

1−4
.

Therefore, we conclude that {Mt}t∈R exponentially attracts every solution u
of (2.5). �

Remark 3.5. By the definition of the constant 4, the condition (3.9) is fulfilled
if the difference λN+1 − λN is sufficiently large, and/or the norm ‖Λ1ϕ‖∞ =

supt∈R
∫ t
t−1 ϕ(τ)dτ is sufficiently small.

4. An example

We now apply the obtained results to Mackey-Glass model with a distributed
delay of the form

(4.1)



∂w(t, x)

∂t
=
∂2w(t, x)

∂x2
− rw(t, x) + b(t)

∫ 0

−∞
e−θ

2+θ|w(t+ θ, x)|
1 + |w(t+ θ, x)|

dθ,

t > s, 0 < x < π,

w(t, 0) = w(t, π) = 0, t ∈ R,
w(t, x) = φ(t, x), 0 ≤ x ≤ π, t ≤ 0,

where r > 0 is a constant, b(t) is given by

b(t) =

{
n if t ∈

[
n− 1

2n+c , n+ 1
2n+c

]
for n = 1, 2, . . .

0 otherwise.

We choose the Hilbert space X = L2(0, π) and consider the operator A : X ⊃
D(A)→ X defined by

Au = −u′′ + ru, ∀u ∈ D(A) = H1
0 (0, π) ∩H2(0, π).

Then, A is a positive operator with discrete point spectrum

12 + r, 22 + r, . . . , n2 + r, . . . .

Now, we can choose g(θ) = eθ
2

and β = 0. Then X0 = X. In this case, we
define the Banach space

C 0
g =

{
φ ∈ C((−∞, 0];X) : sup

θ≤0

‖φ(θ)‖
eθ2

< +∞
}
,
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endowed with the norm

‖φ‖C 0
g

:= sup
θ≤0

‖φ(θ)‖
eθ2

,

and define F : R× C 0
g → X by

F (t, φ) := b(t)

∫ 0

−∞
η(s)

‖φ(s)‖
1 + ‖φ(s)‖

ds, ∀φ ∈ C 0
g .

For any φ1, φ2 ∈ C 0
g we have

‖F (t, φ1)− F (t, φ2)‖ ≤ b(t)‖
∫ 0

−∞
e−s

2+s [φ1(s)− φ2(s)] ds‖

≤ b(t)
∫ 0

−∞
es
‖φ1(s)− φ2(s)‖

es2
ds

≤ b(t)‖φ1 − φ2‖C 0
g

∫ 0

−∞
esds

≤ b(t)‖φ1 − φ2‖C 0
g
.

One can see that ‖F (t, φ)‖ ≤ b(t)(1 + ‖φ‖C 0
g
), ∀φ ∈ C 0

g . This means F is

ϕ-Lipschitz with ϕ(t) = b(t).
By simple computation, one can see that

sup
θ≤0

e−λN+1θ

g(θ)
= sup

θ≤0

e−λN+1θ

eθ2
= e

λ2N+1
4 <∞,

i.e., the condition (2.1) is fulfilled.
Furthermore, since ϕ can take any arbitrarily large value then ϕ /∈ L∞.

Now, if we take E = Lp(R) with 1 < p < ∞, then E′ = Lq(R) for 1
p + 1

q = 1

and we have∫
R
|ϕ(t)|q dt =

∑
n∈N

∫ n+ 1

2n+c

n− 1

2n+c

nqdt =
∑
n∈N

nq
1

2n+c−1
< +∞,

i.e., ϕ ∈ E′.
On the other hand

‖Λ1ϕ‖∞ = sup
t∈R

∫ t+1

t

ϕ(τ)dτ

= sup
t≥0

∫ t+1

t

a(τ)dτ

≤ 2 sup
n∈N

∫ n+
1

2n+c

n−
1

2n+c

ndτ

≤ 1

2c−2
.
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So, by Remark 3.5 Equation (4.1) has an admissible inertial manifold of E -class
if N and/or c are large enough. Here, E be the Banach space corresponding
to Lp(R).
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