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FLOER HOMOLOGY AS THE STABLE MORSE
HOMOLOGY

DARKO MILINKOVIC AND YONG-GREUN OH

ABSTRACT. We prove that there exists a canonica! level-preserving
isomorphism between the stable Morse homology (or the Morse ho-
mology of generating functions) and the Floer homology on the
cotangent bundle T* M for any closed submanifold N < M for any
compact manifold M.

1. Introduction

Morse theory studies topology of manifolds by studying the change of
topology of sub-level sets of functions. Change of topology could occur
when the level passes by the critical values of the given function. Critical
points of function f can be identified with intersections of the zero section
oy with Graph(df) in the cotangent bundle 7*A. Then Morse theory
can be considered as the intersection theory of the graphs of functions
f with the zero section. An invariant one gets out of this is so called
Morse homology of M (see [F2, Sc|). By now, most of the homological
characteristics of the manifold M can be recovered by this setting (see
F12, 1. Sc, Fu, FOJ). Noting that Graph(df) is a special example of exact
Lagrangian submanifolds of T* M, which is Hamiltonian isotopic to the
zero section, one might enlarge the space of functions on M to the space
of Hamiltonian deformations of the zero section on T*M, and seek for
some invariants that are defined in this enlarged setting. Large parts of
symplectic topology are closely tied to this attempt.

In hindsight, many results of the topology and geometry of these
Lagrangian submanifolds are based on the crucial fact that there is a
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naturally associated function to every Lagrangian submanifold Hamil-
tonian isotopic to the zero section, called generating function. When the
“history” t — ¢{(os) of the Lagrangian submanifold [ — & (oy) is
known, there exists a canonically defined generating function of L, the
classical Hamilton’s action functional

Ap(y) = / pdq — Hdt

on the space of paths with zero as “initial momentum”
Q:={y:[0,1] — T"M | %(0) € 0y}

This seemingly natural viewpoint that the classical action functional
Is a “generating function” of L = ¢#(0y), was first observed by We-
instein. He also recognized (see details in [W]) that Chaperon 2] and
Laudenbach-Sikorav construction [1.S] in the proof of Arnold’s conjec-
ture in 7" M could be put in the calculus of Lagrangian submanifolds
and their generating functions, which had been extensively used by
Hormander [HG) in his calculus of Fourier integral operators. Partly
due to the apparent analytical difficulties which had been well-known
for sometime in relation to the critical point theory of the action func-
tional on general cotangent bundle 7* M, finite dimensional approach
to generating functions has been developed extensively by Sikorav Sil],
Chekanov (3], Viterbo [V1', Eliashberg-Gromov [EG] and others. Viterbo
in his ICM talk in Ziirich (V2] first indicated that the direct approach,
using the Floer theory, is possible in the study of topology of the action
functional. On the other hand, motivated by Weinstein’s observation
above and by some non-degeneracy questions in Hofer’s geometry, the
second author [O1,2] independently developed a direct infinite dimen-
sional approach to the study of geometry of the action functional, using
the Floer theory. Subsequently, most of the constructions that were pre-
viously done by the finite dimensional approach have been recovered in
this setting (see [01,02,MO,M] and [FO] in somewhat different form).
Furthermore, this direct approach has enabled Kasturirangan and the
second author to define the Floer homology of open subsets of M, which
yields to the refined (localized) estimate in Arnold’s conjecture (see [KO]
and [O3]).

The main purpose of the present paper is to establish the level-
preserving isomorphism between the Morse homology of generating func-
tions (or GF-homology [Tr]) defined by the finite dirnensional approach
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and the Floer homology defined in [O1] for any closed submanifold
N < M. The proof of this fact was implicit in our previous paper
[MO] where we proved the symplectic invariants constructed in [V1] and
[O1] coincide. Since the existence of level-preserving isomorphism is of
independent interest in the point of view that Floer theory developed
in [O1] is the limit of stable Morse theory of generating functions, we
give a complete proof of the isomorphism theorem which justifies the
view-point at least in the homology level.

Existence of such isomorphism and an indication of the proof, for the
case N = M, was first given by Viterbo in [V2], and proven later in
[V3]. His idea [V2] is to interpolate the two theories using a functional
defined on Q x E which is, roughly, a fiber sum of the action functional
and the (finite dimensional) generating function, and to do a Floer-type
theory for the functional.

There are two non-trivial problems to solve to realize the above idea:
one is the problem of natural boundary condition for the relevant Floer
theory, and the other is is to find a family of functionals the set of whose
critical values is unchanged during the interpolation. The first problem
was solved by the second author in |[O1] using the conormal bundle
boundary condition which also enabled us to solve the second problem
for all submanifold N.

In [MO], partly motivated by the ideas in [V2] and [01,2], we solved
the second problem by giving a construction of such functionals which
are defined on a path space of T*FE with Graph(dS) as the initial condi-
tion and with the conormal bundle v*(N x R™) as the final condition of
the paths. This gives the interpolation of the two approaches in a realm
of the Floer theory developed in [O1,2]. In [V3], Viterbo gave a different
construction of such functionals for the case N = M in his interpola-
tion that uses a version of Floer’s “area functional” {F1] instead of the
action functional Ag. This way he also bypassed the problem of natu-
ral boundary condition mentioned above. We would like to emphasize
that this kind of boundary condition must be imposed in view of elliptic
boundary problem when the classical action functional Ay is involved
in the Floer theory.

The setting we found in [MO] has enabled us to prove the isomorphism
between the two homologies for any closed submanifold N C M (and for
any coefficient ring R).
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More precisely, we prove the following theorem. We refer readers
to Section 2 and 5 for more precise meaning of the statements in the
theorem.

MAIN THEOREM Let L C T*M be a Lagrangian submanifold with
L = ¢f{oy) and S its generating function quadratic at infinity. Then
for any A ¢ Spec(L : N) there exists an isomorphism

H)S,N:E)= HFMJ H,N : )
such that the following diagram commutes

HNS,N:E) — HF)J H N :M)

H(S,N:E) — HF.(JH,N M)

Although we state the theorem only in homology, it is obvious from
the proof that the same holds for cohomology. This theorem partially
verifies that the Floer theory on the cotangent bundle T*M in [O1] is
the stable Morse theory (of generating functions) on M at least in the
homological level.

The second author’s work is partially supported by NSF grant § DMS-
9504455.

2. Morse homology of generating functions

In this section, we briefly summarize the Morse homology of gener-
ating functions which has been a folklore among the symplectic topol-
ogists. Some parts can be found in [Mi, [Sc] and [M]. A treatement in
view of singular homology was given by Traynor Tr]. Recall that func-
tion S : ¥ — R on a vector bundle F is called the generating function
of the Lagrangian submanifold L if L can be represented as

L= Lg = {(:1:, 3—S~(;13,;1;)) cT M| (z,y) € ES}
x

where ¥ = {(z,y) € E | %5(1 y) = 0}. In that case, the criti-
cal points of S have one-to-one correspondence with the intersections
LMoy in T°M. Every Hamiltonian deformation of zero section has

essentially unique generating function quadratic at infinity (LS, V1,Th],
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which is commonly abbreviated as GFQI. Without loss of any gener-
ality, we may assume that F is trivial. In general, one might have to
increase the rank of the vector bundle F as structure of the caustics
of the given Lagrangian submanifold becomes more complicated. We
denote by Ly (M) the set of all Hamiltonian deformations of the zero
section in 7" M and by Spm(M) the set of GFQI’s generating them. For
each m € Z ., we define

hem(M) :={L € Lpym(M) | L = Lg for some GFQI, S
defined on E = M x R*with & < m}.

It is proven in [LS] that
Eham(M) = U Ehmam(M)
m=0

and in [V1,Th] that the assignment S + Lg from Spm(M) to Lpam(M)
defines a Serre fibration. When the “history” t +—~ ¢ (o)) is known,
there is the canonically defined classical action functional

Al = [ pta— Hxt0).0)

defined on the (infinite dimensional) path space
Q={y:[0,1] > T"M | ¥(0) € 0yr}.

The construction in [LS] of GFQI S for L = ¢ (o)) was given by dis-
cretizing this action functional over the piecewise Hamiltonian paths.
Weinstein [W] observed that Ap itself is a generating function of I =
#¥ (0pr) with respect to the fibrationp: @ — M;  p(y) = m(y(1)) where
7 :T*M — M is the canonical projection.

For a non-degenerate fiberwise quadratic form () : £ — R we denote
by S(o.r) the set of functions on E such that S = @ outside a compact
subset of £. We can do Morse theory on non-compact set E for functions

in class Syp.p). Let NV <% M be a closed submanifold and Eyx = 1TF a
pullback bundle over N. For a Morse function S € S(.x) on E we denote
by Crit, (S, N) the set of critical points of Sy := S|;;, : Ey — R of index
p and define

C,(S, N : E) := free abelian group generated by Crit,(S, N : E).
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For given metric g on E, we consider the (negative) gradient flow gen-
erated by the equation

dy
1 — = —grad_Sy,
where grangN is defined with respect to the Riemannian metric on Ey
induced from g. Denote by M, (S, N : E) the set of all v: R — Ex
— | dr < oo.

satisfying (1) such that
+00
/_oo dr

For a generic choice of a metric, the spaces

Mysn(z™,z7) ={y € Mysn(M) | 7)) — zFasT — +oo}

2

dy

are smooth manifolds of dimension m(z')— m(z~), where m(z) denotes
Morse index of a critical point z. The group R acts on M sn(z,y) by
v+ (. + 7); we denote

——~

Mg,S,N(-:Ca y) = Mg.S,N('Tv y)/R

and give the manifolds /(/1\9’ s~ an orientation as in [Mi,Sc|. Define 9 =
Zp 8177
Oy Co(S,N: E) — C,1(S,N : )

Gz = Y nlz,y)y,
yeCrit,(S)
where n(z,y) is the algebraic number of points in the zero dimensional
manifold M, s n(z,y). The proof of 908 = 0 is based on standard
gluing and cobordism arguments [F'3]. Now Morse homology groups are
defined by
1%t 7. o - P Al
H, (S, N : E) = Ker(d)/Im(0).
We will omit the superscript Morse in the above notation, wherever there
1s no possibility of confusion. For generic choice of Morse function S the
group H.(S, N : E) is defined and is isomorphic to singular homology of
N.
Note that S is decreasing along the trajectories solving the gradient
equation (1). Therefore, the boundary operator & preserves the down-
ward filtration given by level sets of S. In other words, if we denote

Critg(S, N E) = Crity(S,N : E)Nn S™}({~o00, A])
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and
C’?(S, N : E) := free abelian group generated by Crit;(S, N:E)

then the boundary operator 9, restricts to

02 CMS,N:E) — C) ((S,N:17).
Obviously, 8* 0 * = 0 and hence we can define the relative Morse

homology groups
H)S, N : E) == Ker(9,)/Im(8,. ).
An obvious inclusion j* : Critz(S, N : E) — Crit,S,N : E) generates
the homomorphism j3 : C)(S, N @ E) — C,(S, N : F) which commutes
with 9. Hence, we have an inclusion homomorphism
2 HMS,N : E) — H.(S,N : EY).
Definition of Morse homology (and cohomology) with coefficients in
arbitrary ring R is straightforward by the standard algebraic procedure.

3. Floer theory and the action functional

In this section, we summarize the second author’s construction [O1]
of the Floer homology on the cotangent bundle with respect to the co-
normal space v*N. A straightforward computation yields to the first
variation formula of the action functional

Ay = /pdq — Hdt,
g

dAy(7)E = / Wl — Xn(y),€)dt + (E(1), 0(x(1))) — (€(0), B(x(0))).

If we restrict Ay to §2, this becomes

QA (7)€ = / wl§ — Xul), )dt + (1), 0(3(1).

It follows from this that Aglq is a generating function of ¢f' (oyr) (see
W,01)).

For a submanifold N C M and its co-normal bundle v*N C T*M we
consider the path space

Q(N) = {7:[0,11 = T*M | 5(0) € o, 7(1) € " N}.
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If we further restrict Ay to QUN ), its first derivative becomes

t

dAu(V)E = [ w( — Xpu(y), &)dt.
0

For a family .J; of w-compatible almost complex structures we define an
L*-type inner product

(& my = /( AL, Jen(1))l.

The negative gradient flow v : R x 0,1 — T*A! of Adloivy in terms
of metric ({.,.)), satisfies the perturbed Cauchy-Riemann equation with
Lagrangian boundary condition,

=) (e Xp(w) =0
: u(7,0) € opr, u(r, 1y e v*N

DEFINITION 1. Denote by M(J, H, N : M) the set of the solutions
of (2) which satisfy the additional condition

(3) —00 < inﬂf; A (u(7)) < sup Ay (u(r)) < +oo.
TeR reR
The solutions of (2) and (3) have the property that there exist Z U
10,1] — 7" M such that
2(t) = lim u(r,1),

T 400
w(t) = Tli‘rwr}\h u(T, t),

and both z and w are the solutions of the Hamilton’s equations

= Xy(x)
(4) { x(0) Efi)ﬂ,', x(l) e v' N,

le z and w are the critical points of Ay|oy. In [01], it is shown that
there exists a canonically defined Maslov index for each solution of (4)
which induces a canonical grading below.

)

DEFINITION 2. 1. Denote by C'F,(H, N : M) the free abelian group
generated by the solutions of (4) with grading p.

2. For two solutions 2z, 2+ of (41 define
Mun(z" 27 ) = {u e M(J H,N - E) | Hm ou(rt) = 2%},

Tt
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For the generic choice of J and H the sets My (27,2") are finite
dimensional manifolds [F1,01]. It has been proved in [O1] that they can
be given a coherent orientation in the sense of [FH'. As a consequence,
one can define the homomorphism ¢ = Zp Oy,

0,: CF,(H,N : M) — CF,_\(H,N M)
by

where n(z*,27) is the algebraic number of points in the (zero dimen-
sional) manifold

/(/I\(J,H)(:I:*,J:*) = Myma,z"),/R

Again, by the standard cobordism argument one can prove that do0 = 0.

Since Ay is non-increasing along the trajectories of (2), homomor-
phism O preserves the real filtration of CF.(H,N : M ) given by the
level sets of Ay. More precisely, we can give the following

DEFINITION 3. 1. We will denote by CF*(H, NV : M) the subgroup
of
CF,(H, N : M) generated by the solutions z of (4) which satisfy

.A[](;Z") < A

2. We denote by 8 the restriction of § to CH} (A, N : M) and define
the relative Floer homology groups by

HFMJ,H,N : M) = Ker(9")/Im(d").
In particular, for A = oo we write
HF,(JJ,H,N : M):= HF>?(J,H,N : M).

When A = oo, Floer homology groups HF.(J, N, H : M) are isomor-
phic to singular homology groups H,(N) (see [Pz,01]).

Applying the standard algebraic procedure we define relative Floer
homology with coefficients in ring R and relative Floer cohomology (see

02]).
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4. Interpolation

We first find a functional on 7" E which interpolates the two functional
used in the previous sections. In this section, the letter H exclusively
denotes a Hamiltonian defined on T"E, not on T*M. The set of such
Hamiltonians will be denoted by H(E).

For generic S € Sy, we define the space of paths

P(S:E):={l':10,1] — T*E | T(0) € Graph (dS)}.

Straightforward computation vields:

dAy (DY = /0 (w® w)([, ) - dH (T )y|dt
(), Trin(1))) — (T(0), Ix(n(0)))

HI(), Trin(1))) — dS(m(I'(0))Tx(n(0)).
Therefore to get a good variational problem, we study
Ai,5)(T) = Ay (T) + S(m(1(0)))

as in [O1]. (In [MO], we denoted this functional by F/:5) borrowing the
notation used in [V2]. It is, however, a different functional from the one
that was suggested and denoted bv the same notasion in V2].)

The derivative of Ay on P(S 1 E) becomes

1
(5) dAus)(T)y = / (@ B wo)(T', ) — dH(D)ndt + (T (1), Tr(3(1))).
0
From this, it is easy to check that A(n.s) is a generating function of the
Lagrangian submanifold ¢5(Lg) with respect to the fibration
p:PS:E)— M;, p):=mpporp(l(1))

when H is the obvious lift from a Hamiltonian on "M, ie. when H=
H & 0 (see Section 5).

As in Section 3, for each closed submanifold N — M, we define the
space

P(S,N:E)={l:[0,1 - T"E | 1'(0) € Graph (dS), T(1) € v*(E|x)}

and, restricting Ag,s) to P(S,N : E), we have
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(6) WU = [ (@ wn)(Eym) — B (Oplas

Hence, the ¢ itical points of A5y on ©(S; N) are the solutions of

J I = Xy(I)
I'(0) € Graph (dS)
F(l) 6 I/*(EIN) = I/*(f\/v X R’n) - Z/‘JV X ()]Rm

For a giver Riemannian metric g on M, we denote by Jg the canonical
almost comp 'ex structure. Denote by j°(M) the set of w-compatible
almost comp ex structures which coincide with J, outside a compact set
in T"M, and by J5(M) the set of smooth paths .J; : [0,1] — j5(M).

For a pat1 {J;} € JS(M), the family of product almost complex
structures

(7)

J @’L = {']t D i}OStSI
is compatible with the product symplectic structure w @ wy on T°E =
T*M x C™. Denote by jS(E) and JC(E) the set of almost complex
structures on 7™ E which coincide with product structure Jy @i outside
a compact set and the space of paths there in respectively. These almost
complex stru tures induce the family of metrics on 7*F
(M, me) s, = w S wolm, Jop)

and hence a L’-type metric

1
(lmm)s = [ nle) mie)
on P(S,N : E). In terms of metric ((.,.)); the gradient flow U := (u, )
of Ay sy rest-icted to P(S, N : E) satisfies

() DpnlU = E + J(L - Xy(U) =0
U(7,0) € Graph (dS), U(r,1) € v'(N x R™)

Denote by Crit(H, S, N : E) the set of critical points of A.s)lps.v-E)
L.e., the set of solutions of (7). The set of critical values of Aigy in R

Spec(H, S,N : E) := Auy.5(Crit(H, <, N : E))

is called the action spectrum of (FI,S, N : E) anc¢ depends only on the
Lagrangian submanifold ¢ (Lg) but independent »f the choice of (H, S)
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(up to a universal normalization for all N C M (see [O1])). In the con-
struction of Floer homology we always assume Graph(d.S)(¢f)~}(v* N x
ogw). In that case, the sets Crit(H, S, N : F) and Spec(H, S, N : E) are
finite. In the general case, we have the following lemina, which describes
the size of the set Spec(H,S, N : E). Similar results were established in
[8i2,01].

LEMMA 4. The action spectrum Spec(H,S,N : F) is a compact
nowhere dense subset of R.

Proof. Since H is compactly supported, the set
Spec(H,S : E) := .A(H’S‘)({F [0,1] = T*E | T(0) € o5, [ = XH}) cR

is bounded. For it is nothing but the projection to R of the wave front
set in M x R of the compact Lagrangian submanifold ¢ (Lg) (see [O1}).
Hence, its closed subset Spec(H, S, N : E) is compact. Furthermore, for
the smooth function f defined by

Fiv(NxR™) =R f(z) = Ams)(é o (¢1)(z))
we have, by (5)
df (2) = —0u((¢7") (@) T(#1) " (z) -+ dS(m(e)) " (2)) 7T (¢1) (z)
and thus the set Spec(H,S, N : E} is contained in the set of critical

values of f. The latter is nowhere dense in R by the classical Sard’s
theorem. O

Denote by Mz (N : E) the set of solutions U/ of (8) with finite
energy, i.e. of those U which satisfy the condition:

o) /*OOA( * L |oU

] 815
More generally, consider the 7-dependent families
S°% = {8} C Sy, H™ = {HM} C H(E), J* = {JPP} C T(E),
such that for some R > 0and 7 < —R
Sed = g0 HF = g JoP = g,

2
- Xy(U) )dth < 0.

J,

or

for some fixed S¢, H®, J¢* and, similarly,
b b ) J?

S =50 HP == HY, J2 = J7,
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for 7 > R and S”, H? J? fixed. We denote the sets of all such homo-
topies by

H(E), Son), T
We define M s gos g (N : E) as the set of solutions of

a0) T U= B I - Xy (1)) = 0
U(7,0) € Graph (dSas), U(r,1) € v"N X opm

with finite energy E(U) < co.

It is a standard result in the elliptic regularity theory that the solu-
tions of (10) are smooth. Finally, for two solutions z, y of (7) we denote
by M,u,5)(2,y) the set of solutions U of (8) such that

lim U(r,t) = z(¢),

T =00

Lhm U(r,t) = y(t).

T——00

In an analogous way, we define M s, pos gosy(x®, 2%) to be the set of
solutions U of equation (10) such that

lim U(r,t) = z2%(¢)

T——00

lim U(r,t) = 2°(¢),

where
£ = Xpa(z®) 20 = X o (o)

(11) z*(0) € Graph (dS) 2?(0) € Graph (dS)
Ia S V*N X Opm zﬂ(l) & V*]\f X Ogm

In order to define Floer homology for arbitrary coefficients we need orien-
tations of manifolds M ;g sy and M us gras ses). Contrary to the case of
holomorphic spheres or cylinders (see [F3,FH]), manifolds of holomorphic
discs with Lagrangian boundary conditions need not to be orientable in
general. However, it has been proven in [O1] that for the co-normal
boundary conditions in the cotangent bundle the Floer cells can always
be oriented in a coherent way:

PROPOSITION 5. [O1] For each (J*7, H*? S*%) € (J¢ x H x 89),¢,
and each =, 7” the determinant hundle

Det — M(Jvui,llu,)“su.’f)(:Ea, .’L'ﬁ)
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is trivial. Hence, the manifold M s H(u'ivsm'i)(Ia,I‘H) is oriented. More-

over, there exists a coherent orientation in the sense of Definition 11 in
[FH] of all M;n,5y and M jus yos g4 In each isotopy class of (J, H, S).

As a consequence, for x,y € Crit (H,S, N : E), we define the alge-
braic number n(z,y) of points in the (zero dimensional) manifold

PN

Muns(N:E) = Muus(N:E/R

Here R acts on M ;5 (/N : E) in a standard way, by the translation
in 7-variable. As in Section 3 or [O1], we can provide a grading to
Crit (H,S,N : E). We denote by Crit,(H,S,N : E) the subset of
elements of degree p and by CF,(/,S,N : E) the free abelian group
generated by it.

The following proposition is a reformulation of the results proved in

[F1,3] and [O1].

THEOREM 6. (1): For (J,H,S) € (IS x H X 8(Q.E))reg the homo-
morphisms 0 =} 0,,

8,: CE,(H,S,N : E) —» CF,1(H,S, N : E)
Or =Y n(z,y)y

v
satisfy
dod=0.
We define
HE,(J,H,S,N : E):=Ker 0,/Im &,.;.
(2): For two given parameters
(J*, H®, 8*), (JP, H® S%) € (T5 x H x Sg.5))regs
there exist canonical isomorphisms
has : HF,(J*, H*, S*, N : E) — HF.(J? H',S% N : E)

which preserve the grading and satisfy

(i1): hop o hge = hog.
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Since the equation (8) is the negative gradient flow of Ans), the
boundary operator O preserves the sub-level sets of Ay As in Section
3, we define by CFZ;\(H, S, N : E) the free abelian group generated by

Crit;(H, S, N fj) e {L'L‘ S Critp(H, S, N: E) ’ A(H,S)(x) < /\}
Then, the boundary map 8, : CF,(H,S,N : E) - CF,.,(H,S,N : F)
induces the relative boundary map

dy: CF)MH,S,N: 1) — CE} (H,5,N : E)

which satisfy the obvious identity 01/)\ o();)\ .1 = 0. Therefore, we can define
the relative Floer homology groups

HENJ,H,S,N : E) := Ker((?;\)/lnl((();%l).
The natural inclusion j* : Crit "(H,S,N : E) — Crit (H,S,N : E)
induces the group homomorphismi

jg : CFNH,S,N: E) — CF.(H,S.N : E)
which commutes with 0, i.e. 0« jf\ = jnA o 9. Hence, jj* induces the
natural homomorphism

J)HF)NJ,H,S,N: E) — HF.(J,H,S,N : E).
THEOREM 7. For regular parameters the diagram

ot
A

HE (L HY 8% N E) "~ HE.(J,H%.S". N : E)
Thm’i Thuﬂ
HFJ,H%, S, N:E) 2 HF,(J,H* 5 N:E)

commutes, where
1
6?55) = -/0 min(H? — H*)dt + max(S% — §%)

Proof. We fix regular parameters (H%, 5%) and (H? S%) and choose
the C'™ function
p:R—-R
such that
pir) =1 forT>1

p(t) =0 forr <0.
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Denote by (H-, S,) a regular homotopy connecting (H®, 5%) and (H?, S%)
which is e-close in C'-topology to the (possibly non-regular) homotopy
(p(1)H? + (1= p(7))H®, (p(1)S” + (1 = p(7))5)

(See [O1] for similar arguments). We compute Ay 5)(27) = A o g0y(z)

for a pair 2%, x” connected by trajectory U satisfying (10). Since

d oU YOH. ; oS, . ‘
EA(E,B‘T)(U(T)) = dA(YJT,ET)(U)E ~ ) o Wimhdtr 5o (U(r,0))
and the last two terms are e-close to

1
- [ v - e s - 50,

0

we have

“d

'A(HJ,S")(Iﬁ) - A(Hrv,S")(za) :/~(_~ ?-A(EE)(U"T)MT

< [ (4w )5 - s - moywan)
R (TSP — S (U (r, 0))}(1T +e
<

T 9U |2
V/m EIay

1
— [ min(H® — H*)dt + max(S? - S) +e.
0
Here we used the first variation formula (2.16) [O1] and (10). Hence, we
have the well defined homomorphism

A *(mi

hs s HFMNJ, H 2 S% 2 N) — HES 097 (1 1P, 872 N)
such that the diagram

a3

Ae €

et e ; ) ) (1,5 )
HE (7 HA S8 N-E) " —  HFE.(J,H? S5 N :E)
T}ng ! h‘az’i
HFJ,H®,8* N : E) . HFE.(J H* SN :E)

commutes. The conclusion follows by letting ¢ — 0. O
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Now, let us examine two special cases, one for the case where H = 0
and the other for the case where S = Q. Without loss of any generality,
by deforming (J, we may assume that Q = @ is constant over g € M.
This is because we assume that F = M xR™ and the set of nondegenerate
quadratic forms with a fixed signature is contractible.

When S = @y, (8) becomes separated into

Fsa(u) =0

ov=20

u(T,1) € v*N,v(1, 1) € ogm

u(7,0) € oa,v(r,0) € Graph (dQo)

Le., into the equation (2)
5‘]‘1](11) =
u(1,1) € v"N,u(7,0) € oy

and the equation

(12) ov =0
v(7,1) € opn = R™ C C™,v(7,0) € Graph (dQ,).

From the fact that Graph (dQ) is a (linear) Lagrangian subspace in
€™ and Graph (dQy) R™, it follows that the only bounded solution of
(12) is the constant solution

v=0e C™

Therefore the moduli space Mung(N : E) becomes equivalent to
My (N : M) in Section 3. Furthermore this equivalence preserves
the values of corresponding critical levels of A,y and Ay

On the other hand when H = 0, for given J = {Ji}o<i<1, we choose

‘]S = {((b;‘S)*(Jf 5] i)}Ogtgl
with respect to which (8) becomes

5_]5,(,[ =0
(13) y .
U(7,0) € Graph (dS), U(r,1) € "N X ogu,
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where U(7,t) = (u(7,t),v(7,t)). We denote by I a tubular neighborhood
of N in M and denote by my : &Y — N the projection. Motivated by the
arguments in [F'2, Pz|, we deform S to another GFQI, S’ such that

g - S outside U and outside a compact subset of £
) Syomy on Ely,

where Sy = S|z, as before. By choosing U sufficiently small, we can
make this deformation as small as we want in the C%-norm (Note that
it is not possible in general for this deformation to be made small in
C'-norm). By Theorem 7, the canonical isomorphism

(14) HF.(J,0,8,N: E) — HF,(J,0,S'.N - E)

can be made the filtration level change as small as we want.

At this stage, if we know that the covariant C'-norm of dS’ is “small”
on the image of the solutions of (13), then Floer-type argument in [F2,
Pz} will imply that the moduli space of (13) with S replaced by S will
be diffeomorphic to the “bounded” Morse complex of S’ on E. Such
a smallness can be always obtained by changing the metric ¢ to (izg
(see Remark 3.4.10 [Pz]) and so this proves that AM(J,0,S8 N : E) is
diffeomorphic to

My (SN - B).

The analytic details of this will be given in [M]. Hence we have

(15) HF'(J,0,S ;N : M >~ H (SN :E).
Both of the above equivalence and the deformation of metrics preserve
the values of corresponding critical levels of A ¢ and S’ and so induce
the level preserving isomorphisms.

Since Sy = Sy by the way how we define S, we have
(16) HMS' N :E)=HMS,N : E).

Now composition of the isomorphisms (14), (15) and (16),

(17) FH*(J,0,S;N: M)~ H(S,N : E).
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can be made so that it changes the filtration level as small as we want. By
making this change sufficiently small, compared to dist(A, Spec(0, S, N :
E)), (17) in fact preserves the level. This is because we have

Spec(0, S, NV : E) = the set of critical vaiues of Sy.

5. Proof of main theorem

In this section, we finally prove the main theorem stated in the in-
troduction. Denote by S, : E — R a generating function of (¢7)~1(Lg),
such that Sy = S, §; = Q. Let H(t) denote a path of Hamiltonians such

that (p'fm) = ¢f'. Note that
o (Ls) = o6 (Ls)
= ¢/(¢)(Ls)
- Lg

and therefore, after a suitable normalization (see [01], [MO]), the action
spectrum

Spec(H(t) © 0,5, N : E)

is fixed as a set. Denote the common set by Spec (Lg, N : E) We define
the “gapﬂ

€= min{lA — u[ [ A # i, € Spec(Ls, N : E)}.
Since t +— (H(t),S;) is a smooth path, there exists some & > 0 such that
(18) IH (W) = H(s)leo + 15, = Sellew < 5
for all w, s € [0,1] with |u — s| < §. Choose a partition

O=th<ti <. <t =1
such that
[t, —t;.1| < & forall j.
By Theorem 7, the canonical chain map
hys : CF(H(u) 90,5, N : F) - CF.(H(s) 0,5, N : E)
restricts to

hus : CEMH(u) ® 0,8, N : E) —» CF"3(H(s1©0,8,, N : E)
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for any u, s € [0,1] with |u — s| < ¢. Similarly, we have

hew : CEMH, @0,8,, N : E) — CF) " 5(H(u) 30,8, N : E)

for any A € R. Combining these two, we have the composition

B © s : CENH(w) B0, 80, N 1 £) — CEX T (H(u) 0, Sy, N 1 E).

To simplify notation, we will write HF.(.J, H, S, N : E) instead of HF,(J®
i, H®0,S, N : E). By the condition (18) and the gap assumption, all of
these three maps in fact preserve same levels and induce homomorphisms

R - HEMJ, H(u), Sy, N : BY — HF>J, H(s),Ss, N : E)

W), HFMJ, H(s),Ss, N : E) — HF)NJ,H(4), Sy, N : E)
and )
hd, okl - HFNJ, H(u), Sy, N - E) — HF)J, H(u), 8, N : E),

provided A is chosen sufficiently close to Spec (Lg, N : E). However, if
we choose § sufficiently small, it follows (see [M] for details) that

ht o k) =ht (= id)on HFEMNJ H(u), S, N : E)

su un

which implies that h}, is an isomorphism for all v, s with |u — s| < 4.
By repeating the above to (u,s) == (¢,,t;11) for j = 0,... ,N — 1, we
conclude that the composition

(19)
ht‘,t_,,,l 0---0 hfﬂ() : CF*(H(O) & 0, Sy, N : E) — CF,(H(t]) @0, Stj'7 N E)

restricts to

hiy jo-ohl, t CFNH(0)®0,S: N: E) — CF)MH(t;)®0,5,,N : E)
for all 1 < 5 < N, and so induces the composition

hiy o ohy, HFMJ,H(0), Si; N,E) — HF) J,H(t;), S, N : E)
which becomes an isomorphism. In particular, we have the isomorphism
(20) h?‘vw 00 hflto CHEMJ,0,8;N,E) — HFNJ, H,Q,N : E)
Since both (20) and the global homomorphism

(21)  hyyen 0 -0 Ryt HE(J,0,8; N E) — HF(J,H,Q,N : E)
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are induced by the chain map (19), the commutativity

HFMJ,HQN:E) = HF)J,0,8 N :E)

2l | L
HF(J,HQ,N:E) ) HF.(J,0,5, N : E)

follows. However the global map (21) is the same as the canonical iso-

morphism
hoi : HF.(J,0,S,N : E) - HF,(J,H,Q,N : E).
Since we have proven in Section 4
HFMJ,H,Q,N: E)= HFNJ, H,N : M)
and that the isomorphism (17)
HF,(J,0,S,N: E)~ H/(S,N : i)

can be chosen so that its filtration level is preserved, this finally finishes
the proof of the main theorem.

REMARK 8. We would like to emphasize that the isomorphism in the
main theorem depends on the path t — (H(¢),S;). It is not clear to us
whether the canonical chain map

hor : CF,(0,S,N : E) = CF.(H®0,Q, N : E)

in terms of the isotopy t — (H(t),S;) induces level preserving isomor-
phism in homology, unless the path partitioned as above.
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