• Title/Summary/Keyword: Symmetric tensor

Search Result 105, Processing Time 0.025 seconds

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.

The 𝒲-curvature Tensor on Relativistic Space-times

  • Abu-Donia, Hassan;Shenawy, Sameh;Syied, Abdallah Abdelhameed
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.185-195
    • /
    • 2020
  • This paper aims to study the 𝒲-curvature tensor on relativistic space-times. The energy-momentum tensor T of a space-time having a semi-symmetric 𝒲-curvature tensor is semi-symmetric, whereas the whereas the energy-momentum tensor T of a space-time having a divergence free 𝒲-curvature tensor is of Codazzi type. A space-time having a traceless 𝒲-curvature tensor is Einstein. A 𝒲-curvature flat space-time is Einstein. Perfect fluid space-times which admits 𝒲-curvature tensor are considered.

ON PSEUDO SEMI-PROJECTIVE SYMMETRIC MANIFOLDS

  • De, Uday Chand;Majhi, Pradip
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.391-413
    • /
    • 2018
  • In this paper we introduce a new tensor named semi-projective curvature tensor which generalizes the projective curvature tensor. First we deduce some basic geometric properties of semi-projective curvature tensor. Then we study pseudo semi-projective symmetric manifolds $(PSPS)_n$ which recover some known results of Chaki [5]. We provide several interesting results. Among others we prove that in a $(PSPS)_n$ if the associated vector field ${\rho}$ is a unit parallel vector field, then either the manifold reduces to a pseudosymmetric manifold or pseudo projective symmetric manifold. Moreover we deal with semi-projectively flat perfect fluid and dust fluid spacetimes respectively. As a consequence we obtain some important theorems. Next we consider the decomposability of $(PSPS)_n$. Finally, we construct a non-trivial Lorentzian metric of $(PSPS)_4$.

RESULTS CONCERNING SEMI-SYMMETRIC METRIC F-CONNECTIONS ON THE HSU-B MANIFOLDS

  • Uday Chand De;Aydin Gezer;Cagri Karaman
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.837-846
    • /
    • 2023
  • In this paper, we firstly construct a Hsu-B manifold and give some basic results related to it. Then, we address a semi-symmetric metric F-connection on the Hsu-B manifold and obtain the curvature tensor fields of such connection, and study properties of its curvature tensor and torsion tensor fields.

On Quasi-Conformally Recurrent Manifolds with Harmonic Quasi-Conformal Curvature Tensor

  • Shaikh, Absos Ali;Roy, Indranil
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.109-124
    • /
    • 2011
  • The main objective of the paper is to provide a full classification of quasi-conformally recurrent Riemannian manifolds with harmonic quasi-conformal curvature tensor. Among others it is shown that a quasi-conformally recurrent manifold with harmonic quasi-conformal curvature tensor is any one of the following: (i) quasi-conformally symmetric, (ii) conformally flat, (iii) manifold of constant curvature, (iv) vanishing scalar curvature, (v) Ricci recurrent.

SEMI-RIEMANNIAN SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Yucesan, Ahmet;Yasar, Erol
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.781-793
    • /
    • 2012
  • We study some properties of a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Then, we prove that the Ricci tensor of a semi-Riemannian submanifold of a semi-Riemannian space form admitting a semi-symmetric non-metric connection is symmetric but is not parallel. Last, we give the conditions under which a totally umbilical semi-Riemannian submanifold with a semi-symmetric non-metric connection is projectively flat.