QUASI-CONCIRCULAR CURVATURE TENSOR ON A LORENTZIAN β -KENMOTSU MANIFOLD

Mobin Ahmad*, Abdul Haseeb**, and Jae Bok Jun***

ABSTRACT. In the present paper, we study quasi-concircular curvature tensor satisfying certain curvature conditions on a Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection.

1. Introduction

Let (M^n,g) be an odd dimensional (n=2m+1>1) smooth manifold. It is well known that an almost contact metric structure (ϕ,ξ,η,g) can be defined on M by a tensor field ϕ of type (1,1), a vector field ξ , a 1-form η and a Riemannian metric g. If M has a Sasakian (resp. Kenmotsu) structure, then M is called a Sasakian (resp. Kenmotsu) manifold. Sasakian manifolds and Kenmotsu manifolds have been studied by various authors.

In the Gray-Hervella classification of almost Hermitian manifolds [10], there appears a class W_4 of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds. An almost contact metric structure (ϕ, ξ, η, g) on a manifold M is called a trans-Sasakian structure [16], if the product manifold $(M \times R, J, G)$ belongs to the class W_4 , where J is the almost complex structure on $M \times R$ defined by

$$J(X, ad/dt) = (\phi X - a\xi, \eta(X)ad/dt)$$

for all vector fields X on M and smooth function a on $M \times R$ and G is the product metric on $M \times R$. This may be expressed by the condition

Received February 27, 2019; Accepted June 13, 2019.

²⁰¹⁰ Mathematics Subject Classification: 53C50, 53C25, 53C40, 52B25.

Key words and phrases: Lorentzian β -Kenmotsu manifold, quasi-concircular curvature tensor, symmetric and Ricci pseudo-symmetric Lorentzian β -Kenmotsu manifold, semi-symmetric semi-metric connection.

^{***}The corresponding author.

[2]

$$(1.1) \qquad (\nabla_X \phi) Y = \alpha [g(X, Y)\xi - \eta(Y)X] + \beta [g(\phi X, Y)\xi - \eta(Y)\phi X]$$

for some smooth functions α and β on M and we say that the trans-Sasakian structure is of type (α, β) .

From the condition (1.1) it follows that

(1.2)
$$\nabla_X \xi = -\alpha \phi X + \beta [X - \eta(X)\xi],$$

(1.3)
$$(\nabla_X \eta) Y = -\alpha g(\phi X, Y) \xi + \beta g(\phi X, \phi Y).$$

In 1981, Janssens and Vanhecke introduced the notion of α -Sasakian and β -Kenmotsu manifolds where α and β are non zero real numbers. It is known that [12] trans-Sasakian structures of type (0,0), $(0,\beta)$ and $(\alpha,0)$ are cosymplectic ([1], [2]), β -Kenmotsu [12] and α -Sasakian [12] respectively. The local structure of trans-Sasakian manifolds of dimension $n \geq 5$ has been completely characterized by Marrero [13]. He proved that a trans-Sasakian manifold of dimension $n \geq 5$ is either cosymplectic or α -Sasakian or β -Kenmotsu manifold. Trans-Sasakian manifolds have been studied by many authors in several ways to a different extent such as ([3], [5], [6], [18]).

Let M be a differentiable manifold with a Lorentzian metric g, that is, a symmetric non-degenerate (0,2)-tensor field of index 1, then M is called a Lorentzian manifold. A Lorentzian manifold M has not only spacelike vector fields but also timelike and lightlike vector fields due to the Lorentzian metric of index 1. Hence odd dimensional manifold is able to have a Lorentzian metric.

In the present paper, we study quasi-concircular curvature tensor satisfying certain curvature conditions on a Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection.

The paper is organized as follows: In Section 2, we give a brief introduction of a Lorentzian β -Kenmotsu manifold and define semi-symmetric semi-metric connection. In Section 3, we deduce the relation between the curvature tensor of Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection and the Levi-Civita connection. Section 4 deals with the study of quasi-concircularly flat and ξ -quasi-concircularly flat Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection. In Section 5, we study ϕ -quasi-concircularly semi-symmetric Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection. Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection satisfying the condition $\bar{C} \cdot \bar{S} = 0$

have discussed in Section 6. Sections 7 and 8 are devoted to investigate symmetric and Ricci-pseudo-symmetric Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection and it is shown that in both cases the manifolds are an η -Einstein manifold.

2. Preliminaries

A differentiable manifold M of dimension n(=2m+1>1) is called Lorentzian β -Kenmotsu manifold if it admits a (1,1)-tensor field ϕ , a contravariant vector field ξ , a covariant vector field η and a Lorentzian metric g which satisfy

$$\phi^2 X = X + \eta(X)\xi$$
, $\eta(\xi) = -1$, $g(X,\xi) = \eta(X)$, $\phi \xi = 0$, $\eta(\phi X) = 0$,

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \quad g(\phi X, Y) = -g(X, \phi Y)$$

for all $X,Y \in \chi(M)$. Then such a structure (ϕ,η,ξ,g) is termed as Lorentzian para-contact structure and the manifold M with a Lorentzian para-contact structure is called a *Lorentzian para-contact manifold* [14]. On a Lorentzian para-contact manifold, we also have

$$(2.3) \qquad (\nabla_X \phi)(Y) = \beta [g(\phi X, Y)\xi - \eta(Y)\phi X]$$

for any $X, Y \in \chi(M)$, where ∇ is the Levi-Civita connection with respect to the Lorentzian metric g. Thus a Lorentzian para-contact manifold satisfying (2.3) is called a Lorentzian β -Kenmotsu manifold [20]. From (2.3), it is easy to obtain that

(2.4)
$$\nabla_X \xi = -\beta \phi^2 X = -\beta [X + \eta(X)\xi],$$

(2.5)
$$(\nabla_X \eta) Y = -\beta g(\phi X, \phi Y) = -\beta [g(X, Y) + \eta(X) \eta(Y)].$$

Further, on a Lorentzian β -Kenmotsu manifold the following relations hold [20]:

(2.6)
$$R(X,Y)\xi = \beta^{2}[\eta(Y)X - \eta(X)Y],$$

(2.7)
$$R(\xi, X)Y = \beta^{2} [q(X, Y)\xi - \eta(Y)X],$$

(2.8)
$$R(\xi, X)\xi = \beta^2 [\eta(X)\xi + X],$$

(2.9)
$$S(X,\xi) = (n-1)\beta^2 \eta(X), \ S(\xi,\xi) = -(n-1)\beta^2,$$

$$(2.10) Q\xi = (n-1)\beta^2 \xi,$$

where $X, Y \in \chi(M)$ and S(X, Y) = g(QX, Y).

DEFINITION 2.1. The quasi-concircular curvature tensor C on an n-dimensional Lorentzian β -Kenmotsu manifold M with respect to the connection ∇ is given by ([15], [17])

$$(2.11) \ C(X,Y)Z = aR(X,Y)Z - \frac{r}{n}(\frac{a}{n-1} + 2b)[g(Y,Z)X - g(X,Z)Y],$$

where a and b are constants such that $a, b \neq 0$ and R is the curvature tensor, r is the scalar curvature with respect to the connection ∇ on M. If a = 1 and $b = -\frac{1}{n-1}$, then (2.11) takes the form

$$C(X,Y)Z=R(X,Y)Z-\frac{r}{n(n-1)}[g(Y,Z)X-g(X,Z)Y]=C^*(X,Y)Z,$$

where C^* is the concircular curvature tensor.

DEFINITION 2.2. A Lorentzian β -Kenmotsu manifold is said to be an η -Einstein manifold if its Ricci tensor S of type (0,2) satisfies

$$(2.12) S(X,Y) = \lambda_1 g(X,Y) + \lambda_2 \eta(X) \eta(Y),$$

where λ_1 and λ_2 are smooth functions on M. In particular, if $\lambda_2 = 0$, then an η -Einstein manifold is an Einstein manifold.

A linear connection $\bar{\nabla}$ on M is said to be a semi-symmetric connection [9, 19] if its torsion tensor T of the connection $\bar{\nabla}$

$$(2.13) T(X,Y) = \overline{\nabla}_X Y - \overline{\nabla}_Y X - [X,Y]$$

satisfies

(2.14)
$$T(X,Y) = \eta(Y)X - \eta(X)Y,$$

where η is a 1-form. If moreover, a semi-symmetric connection $\bar{\nabla}$ satisfies the condition

$$(2.15) \quad (\bar{\nabla}_X g)(Y, Z) = 2\eta(X)g(Y, Z) - \eta(Y)g(X, Z) - \eta(Z)g(X, Y)$$

for all $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields of the manifold M, then $\overline{\nabla}$ is said to be a *semi-symmetric semi-metric connection*.

A relation between the semi-symmetric semi-metric connection $\overline{\nabla}$ and the Levi-Civita connection ∇ on M is given by

(2.16)
$$\bar{\nabla}_X Y = \nabla_X Y - \eta(X) Y + g(X, Y) \xi.$$

3. Curvature tensor of Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection

Let \bar{R} , \bar{S} , \bar{Q} and \bar{r} be the Riemannian curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature of the connection $\bar{\nabla}$ respectively on M. Then we have the following relations [11] (3.1)

$$\bar{R}(X,Y)Z = R(X,Y)Z - (\beta - 1)\eta(X)g(Y,Z)\xi + (\beta - 1)\eta(Y)g(X,Z)\xi$$

$$-\beta g(Y,Z)X + \beta g(X,Z)Y,$$

$$\bar{R}(X,Y)\xi = \beta(\beta - 1)[\eta(Y)X - \eta(X)Y],$$

(3.3)
$$\bar{R}(\xi, X)Y = (\beta^2 - 1)g(X, Y)\xi - \beta(\beta - 1)\eta(Y)X + (\beta - 1)\eta(X)\eta(Y)\xi,$$

$$\bar{R}(\xi, X)\xi = \beta(\beta - 1)[\eta(X)\xi + X],$$

$$(3.5) \quad \bar{S}(Y,Z) = S(Y,Z) + (2\beta - n\beta - 1)g(Y,Z) + (\beta - 1)\eta(Y)\eta(Z),$$

$$(3.6) \quad \bar{S}(Y,\xi) = \beta(\beta - 1)(n - 1)\eta(Y), \quad \bar{S}(\xi,\xi) = -\beta(\beta - 1)(n - 1),$$

$$\bar{Q}Y = QY + (2\beta - n\beta - 1)Y + (\beta - 1)\eta(Y)\xi,$$

$$\bar{r} = r - (n-1)[(n-1)\beta + 1]$$

for all $X, Y, Z \in \chi(M)$.

Lemma 3.1. Let M be an n-dimensional Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection ∇ . Then we have

(3.9)
$$\bar{\nabla}_X \xi = -\beta [X + \eta(X)\xi],$$

$$(3.10) (\bar{\nabla}_X \eta) Y = (1 - \beta) [g(X, Y) + \eta(X) \eta(Y)]$$

for all $X, Y \in \chi(M)$.

4. Quasi-concircularly flat and ξ -quasi-concircularly flat Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection

Analogous to the Definition 2.1, the quasi-concircular curvature tensor \bar{C} on an *n*-dimensional Lorentzian β -Kenmotsu manifold M with respect to the semi-symmetric semi-metric connection $\bar{\nabla}$ is given by

$$(4.1) \ \bar{C}(X,Y)Z = a\bar{R}(X,Y)Z - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[g(Y,Z)X - g(X,Z)Y],$$

where a and b are constants such that $a, b \neq 0$ and \bar{R} , \bar{S} and \bar{r} are the curvature tensor, the Ricci tensor and the scalar curvature with respect to the semi-symmetric semi-metric connection $\bar{\nabla}$ respectively on M.

First we assume that the manifold M with respect to the semi-symmetric semi-metric connection is quasi-concircularly flat, that is, $\bar{C}(X,Y)Z=0$. Then from (4.1), we have

(4.2)
$$a\bar{R}(X,Y)Z - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[g(Y,Z)X - g(X,Z)Y] = 0.$$

Taking inner product of (4.2) with ξ and using (2.1) and (3.1), we have

$$(4.3) \quad [a(\beta^2 - 1) - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)][g(Y, Z)\eta(X) - g(X, Z)\eta(Y)] = 0.$$

Thus we have either

(4.4)
$$\bar{r} = \frac{an(n-1)(\beta^2 - 1)}{a + 2b(n-1)}, \quad a + 2b(n-1) \neq 0$$

or

(4.5)
$$g(Y,Z)\eta(X) - g(X,Z)\eta(Y) = 0.$$

Putting $Y = \xi$ in (4.5) and using (2.1), we find

(4.6)
$$g(X,Z) + \eta(X)\eta(Z) = 0.$$

Replacing X by $\bar{Q}X$ in (4.6) and using (2.1) and (3.7), we obtain

(4.7)
$$\bar{S}(X,Z) = -\beta(\beta - 1)(n - 1)\eta(X)\eta(Z).$$

Thus we can state the following theorem:

Theorem 4.1. If a Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection is quasi-concircularly flat, then either the scalar curvature \bar{r} is $\frac{an(n-1)(\beta^2-1)}{a+2b(n-1)}$, $a+2b(n-1)\neq 0$ or the manifold is a special type of η -Einstein manifold.

Next we assume that the manifold M with respect to the semi-symmetric semi-metric connection is ξ -quasi-concircularly flat, that is, $\bar{C}(X,Y)\xi=0$. Then from (4.1), we have

(4.8)
$$a\bar{R}(X,Y)\xi - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[g(Y,\xi)X - g(X,\xi)Y] = 0,$$

which by using (2.1) and (3.2) yields

$$(4.9) [a\beta(\beta-1) - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)][\eta(Y)X - \eta(X)Y] = 0.$$

Since $\eta(Y)X - \eta(X)Y \neq 0$, therefore we get

(4.10)
$$\bar{r} = \frac{an\beta(\beta - 1)(n - 1)}{a + 2b(n - 1)}, \quad a + 2b(n - 1) \neq 0.$$

Thus we can state the following theorem:

THEOREM 4.2. If a Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection is ξ -quasi-concircularly flat, then the scalar curvature \bar{r} is given by (4.10).

5. ϕ -quasi-concircularly semi-symmetric Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection

DEFINITION 5.1. ([4]) A Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection (M^n, g) , n > 1, is said to be ϕ -quasi-concircularly semi-symmetric if $\bar{C}(X,Y) \cdot \phi = 0$ on M for all $X, Y \in \chi(M)$.

Let M be an n-dimensional (n > 1) ϕ -quasi-concircularly semi-symmetric Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection. Therefore $\bar{C}(X,Y)\cdot \phi=0$ turns into

$$(5.1) \qquad (\bar{C}(X,Y) \cdot \phi)Z = \bar{C}(X,Y)\phi Z - \phi \bar{C}(X,Y)Z = 0$$

for any vector fields X, Y and $Z \in \chi(M)$. In view of (4.1), we have (5.2)

$$\bar{C}(X,Y)\phi Z = a\bar{R}(X,Y)\phi Z - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[g(Y,\phi Z)X - g(X,\phi Z)Y]$$

and

(5.3)

$$\phi \bar{C}(X,Y)Z = a\phi \bar{R}(X,Y)Z - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[g(Y,Z)\phi X - g(X,Z)\phi Y].$$

From the equations (5.1), (5.2) and (5.3), we have (5.4)

$$a\bar{R}(X,Y)\phi Z - a\phi\bar{R}(X,Y)Z + \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[g(Y,Z)\phi X - g(X,Z)\phi Y - g(Y,\phi Z)X + g(X,\phi Z)Y] = 0.$$

By taking $Y = \xi$ in (5.4) and using (2.1), we get

$$a\bar{R}(X,\xi)\phi Z - a\phi\bar{R}(X,\xi)Z + \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[\eta(Z)\phi X + g(X,\phi Z)\xi] = 0$$

which in view of (3.3) takes the form

(5.5)
$$-a(\beta^{2} - 1)g(X, \phi Z)\xi - a\beta(\beta - 1)\eta(Z)\phi X + \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)[\eta(Z)\phi X + g(X, \phi Z)\xi] = 0.$$

Now considering Z to be orthogonal to ξ , then $\eta(Z)=0$ and $g(X,\phi Z)\xi\neq 0$. Then we have

$$(5.6) \quad -a(\beta^2 - 1) + \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b) = 0 \implies \bar{r} = \frac{an(n-1)(\beta^2 - 1)}{a + 2(n-1)b},$$

where $a + 2(n-1)b \neq 0$. Thus we can state the following theorem:

Theorem 5.2. For an n-dimensional ϕ -quasi-concircularly semisymmetric Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection, the scalar curvature \bar{r} is

$$\bar{r} = \frac{an(n-1)(\beta^2 - 1)}{a + 2(n-1)b}, \qquad a + 2(n-1)b \neq 0.$$

6. Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection satisfying the condition $\bar{C} \cdot \bar{S} = 0$

Let us consider that the manifold M with respect to the semi-symmetric semi-metric connection $\bar{\nabla}$ satisfying the condition

$$(\bar{C}(X,Y)\cdot\bar{S})(Z,U)=0.$$

Then we have

(6.1)
$$\bar{S}(\bar{C}(X,Y)Z,U) + \bar{S}(Z,\bar{C}(X,Y)U) = 0$$

for all $X, Y, Z, U \in \chi(M)$.

Taking $X = U = \xi$ in (6.1), we have

(6.2)
$$\bar{S}(\bar{C}(\xi, Y)Z, \xi) + \bar{S}(Z, \bar{C}(\xi, Y)\xi) = 0.$$

In view of (4.1), we find

(6.3)

$$\bar{C}(\xi, Y)Z = a(\beta^2 - 1)g(Y, Z)\xi - a\beta(\beta - 1)\eta(Z)Y + a(\beta - 1)\eta(Y)\eta(Z)\xi - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)(g(Y, Z)\xi - \eta(Z)Y),$$

(6.4)
$$\bar{C}(\xi, Y)\xi = a\beta(\beta - 1)(\eta(Y)\xi + Y) - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)(\eta(Y)\xi + Y).$$

From the equations (6.2), (6.3) and (6.4), we have

$$[a\beta(\beta - 1) - \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b)][\eta(Y)\bar{S}(\xi, Z) + \bar{S}(Y, Z)]$$

$$\begin{split} +a(\beta^2-1)g(Y,Z)\bar{S}(\xi,\xi)-a\beta(\beta-1)\bar{S}(\xi,Y)\eta(Z) + a(\beta-1)\bar{S}(\xi,\xi)\eta(Y)\eta(Z) \\ -\frac{\bar{r}}{n}(\frac{a}{n-1}+2b)][g(Y,Z)\bar{S}(\xi,\xi)-\eta(Z)\bar{S}(\xi,Y)] = 0, \end{split}$$

which by using (3.6) takes the form

$$\bar{S}(Y,Z) = Ag(Y,Z) + B\eta(Y)\eta(Z),$$

where

(6.5)

$$A = \frac{\left[\frac{\bar{r}}{n}(\frac{a}{n-1} + 2b) - a(\beta^2 - 1)\right]\beta(\beta - 1)(n-1)}{\frac{\bar{r}}{n}(\frac{a}{n-1} + 2b) - a\beta(\beta - 1)}, \quad \frac{\bar{r}}{n}(\frac{a}{n-1} + 2b) \neq a\beta(\beta - 1)$$

and

(6.6)
$$B = -\frac{a\beta(\beta-1)^2(n-1)}{\frac{\bar{r}}{n}(\frac{a}{n-1}+2b) - a\beta(\beta-1)}, \quad \frac{\bar{r}}{n}(\frac{a}{n-1}+2b) \neq a\beta(\beta-1).$$

Thus we can state the following theorem:

Theorem 6.1. An n-dimensional Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection satisfying the condition $\bar{C} \cdot \bar{S} = 0$ is an η -Einstein manifold.

7. Symmetric Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection

DEFINITION 7.1. A Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection is said to be *symmetric* if

$$(7.1) \qquad (\bar{\nabla}_X \bar{R})(Y, Z)W = 0$$

for all vector fields X, Y, Z and W on M, where \overline{R} is the curvature tensor with respect to the connection $\overline{\nabla}$.

Let M be a symmetric Lorentzian β -Kenmotsu manifold with respect to the connection $\bar{\nabla}$. Then $(\bar{\nabla}_X \bar{R})(Y,Z)W=0$. By suitable contraction of this equation, we have

$$(\bar{\nabla}_X \bar{S})(Z, W) = \bar{\nabla}_X \bar{S}(Z, W) - \bar{S}(\bar{\nabla}_X Z, W) - \bar{S}(Z, \bar{\nabla}_X W) = 0.$$

Taking $W = \xi$ in the above equation, we have

(7.2)
$$\bar{\nabla}_X \bar{S}(Z,\xi) - \bar{S}(\bar{\nabla}_X Z,\xi) - \bar{S}(Z,\bar{\nabla}_X \xi) = 0.$$

By using (3.6) and (3.9) in (7.2), we find (7.3)

$$(\beta - 1)(n-1)(\bar{\nabla}_X \eta)Z + \bar{S}(X, Z) + \beta(\beta - 1)(n-1)\eta(X)\eta(Z) = 0, \quad \beta \neq 0,$$

which in view of (3.10) yields

$$(7.4) \quad \bar{S}(X,Z) = (\beta - 1)^2 (n - 1) q(X,Z) - (\beta - 1)(n - 1) \eta(X) \eta(Z).$$

Contracting (7.4) over X and Z, we obtain

$$\bar{r} = (n-1)(\beta - 1)(n\beta - n + 1).$$

Thus we have the following theorem:

THEOREM 7.2. Let M be an n-dimensional symmetric Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection. Then the manifold is an η -Einstein manifold with the scalar curvature $(n-1)(\beta-1)(n\beta-n+1)$.

8. Ricci pseudo-symmetric Lorentzian β -Kenmotsu manifolds with respect to the semi-symmetric semi-metric connection

DEFINITION 8.1. A Lorentzian β -Kenmotsu manifold is said to be *Ricci pseudo-symmetric* if and only if the relation [7, 8]

$$(8.1) R \cdot S = fQ(g, S)$$

holds on the set $U_S = [x \in M : S \neq 0 \text{ at } x]$, where f is some function on U_S , $R \cdot S$ and Q(g, S) are respectively defined by

$$(8.2) (R(X,Y) \cdot S)(U,V) = -S(R(X,Y)U,V) - S(U,R(X,Y)V)$$

and

$$(8.3) Q(g,S) = ((X \wedge_g Y) \cdot S)(U,V),$$

where $(X \wedge_q Y)Z = g(Y, Z)X - g(X, Z)Y$ for all X, Y, U and $V \in \chi(M)$.

Assume that the manifold M is a Ricci pseudo-symmetric Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric connection. Then we have

(8.4)
$$(\bar{R}(X,Y) \cdot \bar{S})(U,V) = f\bar{Q}(g,\bar{S})(X,Y;U,V)$$

for all $X, Y, U, V \in \chi(M)$. It is equivalent to

(8.5)
$$(\bar{R}(X,Y)\cdot\bar{S})(U,V) = f((X\wedge_g Y)\cdot\bar{S})(U,V),$$

which in view of (8.2) and (8.3) becomes (8.6)

$$-\bar{S}(\bar{R}(X,Y)U,V) - \bar{S}(U,\bar{R}(X,Y)V) = f[-g(Y,U)\bar{S}(X,V) + g(X,U)\bar{S}(Y,V) - g(Y,V)\bar{S}(U,X) + g(X,V)\bar{S}(U,Y)].$$

Putting $X=U=\xi$ in (8.6) and using (2.1), (3.4) and (3.6), we get (8.7)

$$-\beta(\beta-1)[\bar{S}(Y,V)+\eta(Y)\bar{S}(\xi,V)]+\beta(\beta-1)(\beta^2-1)(n-1)[g(Y,V)+\eta(Y)\eta(V)]$$

$$= f[-\bar{S}(Y,V)+\beta(\beta-1)(n-1)g(Y,V)],$$

which by using (3.6) and simplifying takes the form

(8.8)
$$\bar{S}(Y,V) = Ag(Y,V) + B\eta(Y)\eta(V),$$

where

(8.9)
$$A = \frac{\beta(\beta - 1)(n - 1)(f - \beta^2 + 1)}{f - \beta(\beta - 1)}, \quad f \neq \beta(\beta - 1)$$

and

(8.10)
$$B = -\frac{\beta(\beta - 1)^2(n - 1)}{f - \beta(\beta - 1)}, \quad f \neq \beta(\beta - 1).$$

Thus we have the following theorem:

THEOREM 8.2. An n-dimensional Ricci pseudo-symmetric Lorentzian β -Kenmotsu manifold with respect to the semi-symmetric semi-metric is an η -Einstein manifold.

References

- [1] Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer-Verlag, **509** 1976.
- [2] Blair, D. E. and Oubina, J. A., Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques, 34 (1990), 199-207.

- [3] Chinea, D. and Gonzales, C., Curvature relations in trans-sasakian manifolds, (Spanish), in "Proceedings of the XIIth Portuguese-Spanish Conference on Mathematics, Vol. II, (Portuguese), Braga, 1987", Univ. Minho, Braga, (1987), 564-571
- [4] De, U. C. and Majhi, P., ϕ -semi-symmetric generalized Sasakian space-forms, Arab J. Math. Sci., **21** (2015), 170-178.
- [5] De, U. C. and Sarkar, A., On three-dimensional trans-Sasakian manifolds, Extracta Mathematicae, 23 (2008), 265-277.
- [6] De, U. C. and Tripathi, M. M., Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247-255.
- [7] De, U. C., Han, Yangling, and Mandal, K., On para-Sasakian manifolds satisfying certain curvature conditions, Filomat 31 (2017), no. 7, 1941-1947.
- [8] Deszcz. R., On pseudo-symmetric spaces, Bull. Soc. Belg. Math., Ser A., 44 (1992), 1-34.
- [9] Friedmann, A. and Schouten, J. A., *Uber die Geometric der halbsymmetrischen Ubertragung*, Math. Z., **21** (1924), 211-223.
- [10] Gray, A. and Hervella, L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pura Appl., 123 (1980), 35-58.
- [11] Haseeb, A., Jun, J. B., Siddiqi, M. D., and Ahmad, M., Semi-symmetric semimetric connection in a Lorentzian β-Kenmotsu manifold, Advanced Studies in Contemporary Mathematics, 27 (2017), 577-585.
- [12] Janssens, D. and Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981), 1-27.
- [13] Marrero, J. C., The local structure of trans-sasakian manifolds, Ann. Mat. Pura Appl., 162 (1992), no. 4, 77-86.
- [14] Matsumoto, K., On a Lorentzian para-contact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
- [15] Narain, D., Prakash, A., and Prasad, B., Quasi-concircular curvature tensor on a Lorentzian para-Sasakian manifold, Bull. Cal. Math. Soc., 101 (2009), no. 4, 387-394.
- [16] Oubina, J. A., New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
- [17] Prasad, B. and Mourya, A., Quasi-concircular curvature tensor on a Riemannain manifold, News Bull. Cal. Math. Soc., 30 (2007), 5-6.
- [18] Shaikh, A. A., Baishya, K. K., and Eyasmin, S., On D-homothetic deformation of trans-sasakian structure, Demonstratio Mathematica, 41 (2008), 171-188.
- [19] Schouten, J. A., Ricci Calculus, Springer, 1954.
- [20] Yaliniz, A. F., Yildiz, A., and Turan, M., On three dimensional Lorentzian β-Kenmotsu manifolds, Kuwait J. Sci. Eng., 36 (2009), 51-62.

*

Department of Pure Mathematics Faculty of Science, Integral University Kursi Road, Lucknow-226026, India E-mail: mobinahmad680gmail.com

**

Department of Mathematics
Faculty of Science, Jazan University
Gizan P. O. Box-2097, Kingdom of Saudi Arabia.

E-mail: malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa

Department of Mathematics Faculty of Natural Science, Kookmin University Seoul 135-702, Republic of Korea E-mail: jbjun@kookmin.ac.kr