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Abstract. The main objective of the paper is to provide a full classification of quasi-

conformally recurrent Riemannian manifolds with harmonic quasi-conformal curvature

tensor. Among others it is shown that a quasi-conformally recurrent manifold with har-

monic quasi-conformal curvature tensor is any one of the following:

(i) quasi-conformally symmetric, (ii) conformally flat, (iii) manifold of constant curvature,

(iv) vanishing scalar curvature, (v) Ricci recurrent.

1. Introduction

Let M be an n-dimensional connected Riemannian manifold with Riemannian
metric g and Levi-Civita connection ∇. Let R (resp. S , κ) be the Riemannian
curvature tensor (resp. the Ricci tensor, the scalar curvature ) of the manifold M .

Let T be a tensor field of type (0, k), k ≥ 1, on M . The tensor field T is said to
be recurrent [15], if the following condition holds on M

(1.1) (∇T )(X1, ..., Xk;X)T (Y1, ..., Yk) = (∇T )(Y1, ..., Yk;X)T (X1, ..., Xk),

where X, Y , X1, Y1, . . ., Xk, Yk ∈ TM , the tangent bundle of M . From (1.1) it
follows that at a point p ∈ M if the tensor T is non-zero, then there exists a unique
1-form A defined on a neighborhood U of p, such that

∇T = A⊗ T, A = d(log ∥T∥),

holds on U , where ∥T∥ denotes the norm of T , ∥T∥2 = g(T, T ). Hence a non-flat
Riemannian manifold is recurrent [15] if its curvature tensor satisfies ∇R = A⊗R,
A being a unique non-zero 1-form on M .
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Let {Ei : i = 1, ..., n} be an orthonormal frame of the tangent bundle TM . Then
the codifferential δT of T is defined by

δT (X1, ..., Xk−1) =
k∑

i=1

(∇EiT )(Ei, X1, ..., Xk−1)

for any vector fields X1, X2, ..., Xk−1 ∈ TM . If δR = 0, then M is said to have
harmonic curvature tensor [6].

During the study of conformal transformation group on a Riemannian mani-
fold, in 1968 Yano and Sawaki [16] defined a generalized curvature tensor, called
quasi-conformal curvature tensor which includes both the conformal and concircular
curvature tensor as special cases. The quasi-conformal curvature tensor W of type
(1, 3) on a Riemannian manifold M of dimension n > 3 [this condition is assumed
throughout the paper as for n = 3, the conformal curvature tensor vanishes ] is
defined by

(1.2) Wh
ijk = −(n− 2)bCh

ijk + [a+ (n− 2)b]C̃h
ijk,

where a, b are arbitrary constants not simultaneously zero, Ch
ijk and C̃h

ijk are con-
formal and concircular curvature tensor of type (1, 3) respectively.

Especially, if a = 1 and b = − 1
n−2 , then the quasi-conformal curvature tensor

turns into conformal curvature tensor, whereas for a = 1 and b = 0 such a tensor
turns into concircular curvature tensor.

A non-flat Riemannian manifold M is said to be quasi-conformally recurrent if
it satisfies ∇W = A ⊗ W , where A is a unique non-zero 1-form. In particular, if
∇W = 0, it is said to be quasi-conformally symmetric. Quasi-conformally recurrent
manifold is studied by De and Shaikh [5]. The manifold M is said to have harmonic
quasi-conformal curvature tensor if it satisfies δW = 0, that is∑

i

Wijkli = 0, where Wijkl = ghlW
h
ijk and Wijklp

are the components of ∇W . Here all the indices run from 1 to n.
In [3] Chaki and Gupta, in [10] Miyazawa and also in [4] Derdziński and Roter

studied conformally symmetric manifolds and they obtained full classification of
such a manifold. Again in [1] Adati and Miyazawa studied conformally recurrent
manifolds. Recently in [14] Suh et. al. gave the full classification of conformally
recurrent manifolds with harmonic conformal curvature tensor. Generalizing the
results of [14], in the present paper a full classification of quasi-conformally recur-
rent manifolds with harmonic quasi-conformal curvature tensor is given. The paper
is organized as follows:
Section 2 deals with preliminaries where we have discussed some notations and
properties of quasi-conformally flat manifolds along with necessary and sufficient
conditions for a Riemannian manifold to be of harmonic quasi-conformal curvature
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tensor (see, Proposition 2.2, 2.3). The last section is devoted to the study of quasi-
conformally recurrent manifolds with harmonic quasi-conformal curvature tensor
and it is shown that such a manifold is any one of the following:
(i) quasi-conformally symmetric, (ii) quasi-conformally flat, (iii) Ricci recurrent.
Again, it is proved that a quasi-conformally recurrent manifold with harmonic
quasi-conformal curvature tensor and non-vanishing scalar curvature is either locally
symmetric or quasi-conformally flat. Finally, it is shown that a quasi-conformally
recurrent manifold with harmonic quasi-conformal curvature tensor is either quasi-
conformally flat or recurrent. As the particular case of our results we can obtain
the results of [14], where conformally recurrent manifold with harmonic conformal
curvature tensor is classified.

2. Preliminaries

Let Rijkl, Sij denote respectively the components of the curvature tensor R of
type (0, 4) and the Ricci tensor S of type (0, 2) where Sij =

∑
k Rkijk. The scalar

curvature of the manifold is given by κ =
∑

i Sii. The conformal curvature tensor

C of type (0, 4) with components Cijkl and the concircular curvature tensor C̃ of

type (0, 4) with components C̃ijkl are respectively given by

Cijkl = Rijkl −
1

n− 2
[Sjkgil − Sikgjl + Silgjk − Sjlgik]

+
κ

(n− 1)(n− 2)
[gjkgil − gikgjl]

(2.1)

and

(2.2) C̃ijkl = Rijkl −
κ

n(n− 1)
[gjkgil − gikgjl].

In view of (2.1) and (2.2), (1.2) takes the form

Wijkl = aRijkl + b {(gjkSil − gikSjl) + (gilSjk − gjlSik)}(2.3)

−κ

n

(
a

n− 1
+ 2b

)
(gilgjk − gjlgik),

where Wijkl denotes the components of the quasi-conformal curvature tensor W of
type (0, 4). If M is Einstein (Sij =

κ
ngij) with a = 1, then

Wijkl = C̃ijkl.

Let θi, θij and Θij be the canonical form, the connection form and the cur-
vature form on M respectively, with respect to the local orthonormal frame field
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{Ei : i = 1, ..., n}. Then we have the structure equations

dθi +
∑
j

θij ∧ θj = 0, θij + θji = 0,

dθij +
∑
k

θik + θkj = Θij ,

Θij = −1

2

∑
k,l

Rijklθk ∧ θl.

Let DkM be the vector bundle consisting of smooth k-forms and DM =∑n
k=0 D

kM , where D0M is the algebra of smooth functions on M . For any tensor
field K in DkM the components Kijklh of the covariant derivative ∇K of K of type
(0, 4) are defined by∑

h

Kijlmhθh = dKijlm −
∑
h

(Khjlmθhi +Kihlmθhj +Kijhmθhl +Kijlhθhm).

The symmetric tensor K of type (0, 2) with components Kij is called the Weyl
tensor [14], if it satisfies

Kijl −Kilj =
1

2(n− 1)
[κlgij − κjgil],

where κ = TrK, Kijl and κj denote respectively the components of the covariant
derivative ∇K and ∇κ. Again, if Kij is the Ricci tensor of type (0, 2) then the
manifold is called nearly conformally symmetric introduced by Roter [11]. The
manifold M is said to be quasi-conformally flat if its quasi-conformal curvature
tensor vanishes identically. In [2] Amur and Maralabhavi studied quasi-conformally
flat Riemannian manifold. In fact, they obtained the following:

Theorem A. A quasi-conformally flat Riemannian manifold M is any one of the
following:

(i) conformally flat,
(ii) manifold of constant curvature,
(iii) manifold of vanishing scalar curvature.

From (2.3), it follows that∑
r

Wrjkmr

=(a+ b)(Sjkm − Sjmk) +

{
(n− 1)(n− 4)b− 2a

2n(n− 1)

}
(κmgjk − κkgjm).

(2.4)

If M has harmonic quasi-conformal curvature tensor, then (2.4) yeilds

(Sjkm − Sjmk)

=

{
2a− (n− 1)(n− 4)b

2n(n− 1)(a+ b)

}
(κmgjk − κkgjm), provided that a+ b ̸= 0.

(2.5)
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From (2.5), it follows that the Ricci tensor is the Weyl tensor if

2a− (n− 1)(n− 4)b

2n(n− 1)(a+ b)
=

1

2(n− 1)
,

i.e., if a+ (n− 2)b = 0.

Hence we can state the following:

Proposition 2.1. If a Riemannian manifold M has harmonic quasi-conformal
curvature tensor, then the Ricci tensor is the Weyl tensor provided that a + b ̸= 0
and a+ (n− 2)b = 0.

Again contracting (2.5) over m and k, we get κj = 0 provided that a + (n −
2)b ̸= 0, which implies that the manifold is of constant scalar curvature. Again
a Riemannian manifold is said to be of Codazzi type ([7], [12]) Ricci tensor if its
Ricci tensor satisfies Sjkm = Sjmk for all j, k,m. It is then obvious that the scalar
curvature is constant. Hence if the Ricci tensor is of Codazzi type, then from (2.4) it
follows that the quasi-conformal curvature tensor is harmonic. Hence we can state
the following:

Proposition 2.2. A Riemannian manifold M with a+ b ̸= 0 and a+ (n− 2)b ̸= 0
has harmonic quasi-conformal curvature tensor if and only if its Ricci tensor is of
Codazzi type.

Again a Riemannian manifold has harmonic curvature tensor if and only if its
Ricci tensor is of Codazzi type. Hence by virtue of Proposition 2.2, we can state
the following:

Proposition 2.3. A Riemannian manifold M with a+ b ̸= 0 and a+ (n− 2)b ̸= 0
has harmonic quasi-conformal curvature tensor if and only if its curvature tensor
is harmonic.

We note that in [13] Shaikh and Binh studied Riemannian manifolds with Co-
dazzi type Ricci tensor and proved the existence of such a class by several non-trivial
examples.

The above results will be used in the sequel.

3. Quasi-conformally recurrent manifolds with harmonic quasi-conformal
curvature tensor

Let M be an n(> 3)-dimensional Riemannian manifold with Riemannian met-
ric g and Riemannian connection ∇. To obtain our main theorem we require some
lemmas which will be derived at first.

Lemma 3.1. If a Riemannian manifold M has harmonic quasi-conformal curva-
ture tensor with a+ b ̸= 0, then the following relation holds

(3.1)
∑
r

(RrikmSrj +RrimjSrk +RrijkSrm) = 0.
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Proof. To prove this Lemma we need the following identity due to Lovelock ([9],
page 289):

(3.2)
∑
r

(Rrjkmri +Rrkimrj +Rrijmrk) =
∑
r

(SirRjkmr + SjrRkimr + SkrRijmr),

where Rijkm = ghmRh
ijk, Rijkml and Rijkmln are respectively the components of

∇R and ∇∇R. By performing the covariant derivative of (2.4), we obtain∑
r

Wrjkmri = (a+ b)(Sjkmi − Sjmki) +

{
(n− 1)(n− 4)b− 2a

2n(n− 1)

}
(κmigjk − κkigjm).

Summing over a cyclic permutations of the indices i, j, k and then using (3.2), we
obtain ∑

r

(Wrjkmri +Wrkimrj +Wrijmrk)(3.3)

= (a+ b)
∑
r

(SirRjkmr + SjrRkimr + SkrRijmr).

From (3.3) it follows that if M has harmonic quasi-conformal curvature tensor and
a+ b ̸= 0, then we obtain (3.1). 2

Lemma 3.2. If a Riemannian manifold M is quasi-conformally recurrent with
harmonic quasi-conformal curvature tensor such that a+ b ̸= 0, then the following
relations hold:

(3.4)
∑
r

(WrikmSrj +WrimjSrk +WrijkSrm) = 0,

(3.5)
∑
r

(WrikmSrjh +WrimjSrkh +WrijkSrmh) = 0.

Proof. In view of (2.3) and (3.1), we can easily obtain (3.4). Differentiating (3.4)
covariantly we obtain∑
r

(WrikmhSrj+WrimjhSrk+WrijkhSrm+WrikmSrjh+WrimjSrkh+WrijkSrmh) = 0.

Since the manifold under consideration is quasi-conformally recurrent, by virtue of
(3.4) the last relation turns into (3.5). 2

We now state and prove our main theorem.

Theorem 3.1. If a Riemannian manifold M is quasi-conformally recurrent with
harmonic quasi-conformal curvature tensor such that a+b ̸= 0 and a+(n−2)b ̸= 0,
then the manifold is any one of the following:
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(i) quasi-conformally symmetric,
(ii) quasi-conformally flat,
(iii) Ricci recurrent.

Proof. Let Wijkmhp be the components of the covariant derivative ∇2W of ∇W .
Then we have

(3.6) Wijkmhp = (AhAp +Ahp)Wijkm.

Now we define by f the scalar product of W , namely, we put f = g(W,W ). Let
M ′ = {x ∈ M : f(x) = 0}. Then M ′ ⊂ M . On the open subset M −M ′, we have

∇f = 2g(∇W,W ) = 2Af,

and hence A = ∇f/2f , from which it follows that

2A = ∇ log |f |.

This implies that

(3.7) Aij = Aji on M −M ′.

So, on M −M ′, by (3.6) and (3.7) we have Wijkmhp = Wijkmph. Therefore by the
Ricci identity we get

(3.8)
∑
r

(RphirWrjkm +RphjrWirkm +RphkrWijrm +RphmrWijkr) = 0.

Differentiating above covariantly and taking account of Wijkmh = AhWijkm, we get∑
r

[(RphirqWrjkm +RphjrqWirkm +RphkrqWijrm +RphmrqWijkr)

+Aq(RphirWrjkm +RphjrWirkm +RphkrWijrm +RphmrWijkr)] = 0.

Hence by virtue of (3.8) we get

(3.9)
∑
r

(RphirqWrjkm +RphjrqWirkm +RphkrqWijrm +RphmrqWijkr) = 0.

On the other hand, by (2.3) and AhWijkl = Wijklh, we have

Ah[aRijkm + b {(gjkSim − gikSjm) + (gimSjk − gjmSik)}

−κ

h

(
a

n− 1
+ 2b

)
(gimgjk − gjmgik)]

= aRijkmh + b {(gjkSimh − gikSjmh) + (gimSjkh − gjmSikh)}

−κh

n

(
a

n− 1
+ 2b

)
(gimgjk − gjmgik),
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and hence we get

aRijkmh = AhaRijkm(3.10)

+b {Ah(gjkSim − gikSjm)− (gjkSimh − gikSjmh)}
+b {Ah(gimSjk − gjmSik)− (gimSjkh − gjmSikh)}

−κ

n

(
a

n− 1
+ 2b

)
Ah(gimgjk − gjmgik), since κh = 0.

From (3.9) and (3.10), it follows that∑
r

[Aq(RphirWrjkm +RphjrWirkm +RphkrWijrm +RphmrWijkr)]

+
b

a

∑
r

[{Aq(ghiSpr − gpiShr)− (Sprqghi − Shrqgpi)}Wrjkm

+ {Aq(gprShi − ghrSpi)− (Shiqgpr − Spiqghr)}Wrjkm

+ {Aq(ghjSpr − gpjShr)− (Sprqghj − Shrqgpj)}Wirkm

+ {Aq(gprShj − ghrSpj)− (Shjqgpr − Spjqghr)}Wirkm

+ {Aq(ghkSpr − gpkShr)− (Sprqghk − Shrqgpk)}Wijrm

+ {Aq(gprShk − ghrSpk)− (Shkqgpr − Spkqghr)}Wijrm

+ {Aq(ghmSpr − gpmShr)− (Sprqghm − Shrqgpm)}Wijkr

+ {Aq(gprShm − ghrSpm)− (Shmqgpr − Spmqghr)}Wijkr]

− κ

n

(
1

n− 1
+

2b

a

)
Aq[(ghiWpjkm + ghjWipkm + ghkWijpm + ghmWijkp)

− (gpiWhjkm + gpjWihkm + gpkWijhm + gpmWijkh) = 0, a ̸= 0.

Now using (3.8), we obtain

(ShiqWpjkm + ShjqWipkm + ShkqWijpm + ShmqWijkp)

− (SpiqWhjkm + SpjqWihkm + SpkqWijhm + SpmqWijkh)

−
∑
r

(gpiWrjkm + gpjWirkm + gpkWijrm + gpmWijkr)Shrq

+
∑
r

(ghiWrjkm + ghjWirkm + ghkWijrm + ghmWijkr)Sprq

+Aq(SpiWhjkm + SpjWihkm + SpkWijhm + SpmWijkh)

−Aq(ShiWpjkm + ShjWipkm + ShkWijpm + ShmWijkp)

+Aq

∑
r

(gpiWrjkm + gpjWirkm + gpkWijrm + gpmWijkr)Shr

−Aq

∑
r

(ghiWrjkm + ghjWirkm + ghkWijrm + ghmWijkr)Spr

+
κ

n

(
a

(n− 1)b
+ 2

)
Aq[(ghiWpjkm + ghjWipkm + ghkWijpm + ghmWijkp)
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−(gpiWhjkm + gpjWihkm + gpkWijhm + gpmWijkh)] = 0, a, b ̸= 0.

Accordingly, we have

[(Shiq −AqShi)Wpjkm + (Shjq −AqShj)Wipkm(3.11)

+(Shkq −AqShk)Wijpm + (Shmq −AqShm)Wijkp]

−[(Spiq −AqSpi)Whjkm + (Spjq −AqSpj)Wihkm

+(Spkq −AqSpk)Wijhm + (Spmq −AqSpm)Wijkh]

−
∑
r

(gpiWrjkm + gpjWirkm + gpkWijrm + gpmWijkr)(Shrq −AqShr)

+
∑
r

(ghiWrjkm + ghjWirkm + ghkWijrm + ghmWijkr)(Sprq −AqSpr)

+
κ

n

(
a

(n− 1)b
+ 2

)
Aq[(ghiWpjkm + ghjWipkm + ghkWijpm + ghmWijkp)

−(gpiWhjkm + gpjWihkm + gpkWijhm + gpmWijkh)] = 0, a, b ̸= 0.

The equation (3.11) can be written as

[(Shiq −AqShi)Wpjkm + (Shjq −AqShj)Wipkm(3.12)

+(Shkq −AqShk)Wijpm + (Shmq −AqShm)Wijkp]

−[(Spiq −AqSpi)Whjkm + (Spjq −AqSpj)Wihkm

+(Spkq −AqSpk)Wijhm + (Spmq −AqSpm)Wijkh]

−
∑
s

(gpiWsjkm + gpjWiskm + gpkWijsm + gpmWijks)(Shsq −AqShs)

+
∑
s

(ghiWsjkm + ghjWiskm + ghkWijsm + ghmWijks)(Spsq −AqSps)

+
κ

n

(
a

(n− 1)b
+ 2

)
Aq[(ghiWpjkm + ghjWipkm + ghkWijpm + ghmWijkp)

−(gpiWhjkm + gpjWihkm + gpkWijhm + gpmWijkh)] = 0, a, b ̸= 0.

If we transvect (3.12) with ghp, then it can be easily shown that the term multiplying

by κ
n

(
a

(n−1)b + 2
)
Aq will vanish. Then setting i = p = r in the resulting equation

and then taking summation with respect to r we obtain by virtue of (3.4) and (3.5)
that ∑

r

[(n− 2)(Shrq −AqShr)Wrjkm + (Sjrq −AqSjr)Wrhkm(3.13)

+(Skrq −AqSkr)Wrjhm + (Smrq −AqSmr)Wrjkh

+
∑
s

{ghk(Srsq −AqSrs)Wrjms − ghm(Srsq −AqSrs)Wrjks}] = 0.
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Suppose that M is quasi-conformally recurrent and M has harmonic quasi-
conformal curvature tensor. Then it satisfies

∑
r Wrjkmr = 0. Hence we have

(3.14)
∑
r

ArWrjkm = 0.

Putting m = q in (3.13), summing up with respect to m and taking account of (3.2)
and (3.14), we get∑

r,s

{(n− 2)ShrsWrjks + SjrsWrhks + SkrsWrjhs −AsSrsWrjkh}(3.15)

+
∑
r,s,t

ghkSrstWrjts −
∑
r,s

(Srsh −AhSrs)Wrjks = 0.

Now ∑
r,s,t

ghkSrstWrjts =
1

2

∑
r,s,t

ghk(Srst − Srts)Wrjts = 0, by virtue of (2.5).

From (2.5), it follows that ∑
r,s

(Srhs − Srsh)Wrjks = 0,

and hence (3.15) reduces to∑
r,s

{(n− 3)ShrsWrjks + SjrsWrhks + SkrsWrjhs −AsSrsWrjkh}(3.16)

+
∑
r,s

AhSrsWrjks = 0.

Since M is a quasi-conformally recurrent with harmonic quasi-conformal curvature
tensor, the relation (3.5) holds. Replacing m and h by s in (3.5), we get

(3.17)
∑
r,s

(SjrsWriks − SkrsWrijs) = 0.

From (3.16) and (3.17), it follows that∑
r,s

{(n− 1)ShrsWrjks −AsSrsWrjkh}+
∑
r,s

AhSrsWrjks = 0.

The last relation together with the definition of quasi-conformally recurrent, yields

(n− 1)
∑
r,s

ShrsWrjks +
∑
r,s

Srs(Wrjkhs −Wrjksh) = 0.
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Here we note that the indices j and k in the first and third terms are symmetric
with each other, because Shrs and Srs are symmetric with respect to the indices
r and s. Hence if we take the skew-symmetric part to the above equation, then it
follows that

0 =
∑
r,s

Srs(Wrjkhs −Wrkjhs)

=
∑
r,s

Srs(Wrjkhs +Wrkhjs)

= −2
∑
r,s

SrsWrhjks.

Consequently,

(3.18)
∑
r,s

ShrsWrjks =
∑
r,s

SrshWrjks = 0.

Transvecting (3.13) to AmAhAq, summing up with respect to m,h and q and then
taking account of (3.14) and (3.18), we obtain

∥A∥2
∑
r,s

SrsWrjks = 0,

where ∥A∥2 = ∥
∑

r ArAr∥. This implies that M is quasi-conformally symmetric or
M satisfies

(3.19)
∑
r,s

SrsWrjks = 0.

In view of (3.13), (3.18) and (3.19), we get∑
r

[(n− 2)(Shrq −AqShr)Wrjkm + (Sjrq −AqSjr)Wrhkm

+(Skrq −AqSkr)Wrjhm + (Smrq −AqSmr)Wrjkh] = 0.

By virtue of Lemma 3.2 we obtain∑
r

{(Skrq −AqSkr)Wrjhm + (Smrq −AqSmr)Wrjkh}

=
∑
r

{(Skrq −AqSkr)Wrjhm − (Skrq −AqSkr)Wrjhm − (Shrq −AqShr)Wrjmk}

= −
∑
r

(Shrq −AqShr)Wrjmk.

From the above two equations, we obtain∑
r

{(n− 1)(Shrq −AqShr)Wrjkm + (Sjrq −AqSjr)Wrhkm} = 0,
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which implies that∑
r

(Sjrq −AqSjr)Wrhkm = −(n− 1)
∑
r

(Shrq −AqShr)Wrjkm.

Hence it follows that

(3.20)
∑
r

(Sjrq −AqSjr)Wrhkm = 0.

Transvecting Shiq − AqShi, or Wpjkm to (3.12) and applying the equation (3.19)
and (3.20), we can obtain

(3.21) ∥∇S −A⊗ S∥2 W = 0, or ∥W∥2 (∇S −A⊗ S) = 0

on M −M ′, which means that M is Ricci recurrent or M is quasi-conformally flat.
This proves the theorem. 2

As a particular case of Theorem 3.1, we can state the following:

Corollary 3.1([14]). A conformally recurrent manifold with harmonic conformal
curvature tensor and constant scalar curvature, is any one of the following:

(i) conformally symmetric,
(ii) conformally flat,
(iii) Ricci recurrent.

Again by virtue of Theorem A, Theorem 3.1 can be stated as follows:

Theorem 3.2. Let M be a quasi-conformally recurrent manifold with harmonic
quasi-conformal curvature tensor such that a + b ̸= 0 and a + (n − 2)b ̸= 0. Then
the manifold is any one of the following:

(i) quasi-conformally symmetric,
(ii) conformally flat,
(iii) manifold of constant curvature,
(iv) vanishing scalar curvature,
(v) Ricci recurrent.

Lemma 3.3. If a Riemannian manifold M is quasi-conformally symmetric, then
it is either quasi-conformally flat or locally symmetric, provided a+ (n− 2)b ̸= 0.

Proof. If the manifold is not quasi-conformally flat, then from (2.3) it follows that

Wijklm = aRijklm + b[gjkSilm − gikSjlm + gilSjkm − gjlSikm](3.22)

−κm

n

(
a

n− 1
+ 2b

)
(gilgjk − gjlgik).

If the manifold is quasi-conformally symmetric, then the last relation yields

aRijklm + b[gjkSilm − gikSjlm + gilSjkm − gjlSikm]

− κm

n

(
a

n− 1
+ 2b

)
(gilgjk − gjlgik) = 0.
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Contracting over i and l we have

Sjkm =
1

n
κmgjk, if a+ (n− 2)b ̸= 0.

Again taking contraction over j and m we have (n−2)κk = 0, which implies κk = 0
as (n > 3). Hence from above we have ∇S = 0 and hence ∇R = 0 for a ̸= 0. This
proves the lemma. 2

Lemma 3.4. If a Riemannian manifold M is quasi-conformally recurrent with
harmonic quasi-conformal curvature tensor such that a+b ̸= 0 and a+(n−2)b ̸= 0,
then the following relation holds

W ⊗ (∇R−A⊗R) = 0.

Proof. From Theorem 3.1 we get

A⊗W ⊗ (∇S −A⊗ S) = 0.

Let M1 = {x ∈ M : A(x) = 0}. Then M1 ⊂ M . First we suppose that M1 is not
empty. If IntM1 is empty, then the non-vanishing 1-form A implies that W = 0 or
∇S−A⊗S = 0, which yields κm = Amκ. Since in the manifold under consideration
the scalar curvature κ is constant, that is κm = 0 and the 1-form A is non-vanishing,
it follows that κ = 0. Hence using Wijklm = AmWijkl, (2.3) and (3.22) we obtain
∇R − A ⊗ R = 0. Consequently by the continuity of W and ∇R − A ⊗ R, the
conclusion holds in such a case.

Next suppose that IntM1 is not empty. Then A = 0 on IntM1 and hence M is
quasi-conformally symmetric. Therefore by Lemma 3.3, we have W = 0 or ∇R = 0
on IntM1. Thus we have W = 0 or ∇R = A ⊗ R on IntM1. Hence we have
W ⊗ (∇R−A⊗R) = 0 on M .

We now suppose that M1 is empty. Then non-vanishing 1-form A implies that
W = 0 or ∇S−A⊗S = 0. If ∇S−A⊗S = 0, then we also have ∇R−A⊗R = 0,
because M is quasi-conformally recurrent. This proves the lemma. 2

Theorem 3.3. Let M be a quasi-conformally recurrent manifold with harmonic
quasi-conformal curvature tensor and non-vanishing scalar curvature such that a+
b ̸= 0 and a + (n − 2)b ̸= 0. Then the manifold is either quasi-conformally flat or
locally symmetric.

Proof. Let M ′′ = {x ∈ M : (∇R−A⊗R)(x) = 0}. Then M ′′ ⊂ M and we have
(∇κ− Aκ)(x) = 0 on M ′′. We suppose that the manifold under consideration has
non-zero scalar curvature. Since in the manifold under consideration the scalar
curvature κ is constant, we must have κ is a non-zero constant, and hence we get
A(x) = 0 on M ′′. Hence by virtue of Lemma 3.4, it follows that A = 0 or W = 0,
that is, A⊗W = 0 on M .

We now consider an open subsetM∗ ofM such thatM∗ = {x ∈ M : W (x) = 0}.
Then on such an open subset we have ∇W = 0 and the inner product g(W,W ) = 0,
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where g denotes the Riemannian metric tensor on M . By the continuity of g(W,W ),
if M∗ is not empty, then g(W,W ) = 0 on M , namely W = 0 on M . Hence M is
quasi-conformally flat with non-vanishing scalar curvature as the scalar curvature
can not be zero by our supposition. If M∗ is empty, then A⊗W = 0 implies that
A = 0 on M and in this case M is quasi-conformally symmetric. This completes
the proof of our theorem. 2

As a particular case we can state the following:

Corollary 3.2([14]). If a Riemannian manifold M is conformally recurrent with
harmonic conformal curvature tensor such that the scalar curvature is a non-zero
constant, then the manifold is either conformally flat or locally symmetric.

If the manifold is non-vanishing scalar curvature, then by virtue of Theorem A,
Theorem 3.3 can be stated as follows:

Theorem 3.4. Let M be a quasi-conformally recurrent manifold with harmonic
quasi-conformal curvature tensor such that a + b ̸= 0 and a + (n − 2)b ̸= 0. Then
the manifold is any one of the following:

(i) conformally flat,
(ii) manifold of constant curvature,
(iii) locally symmetric.

In [8] Goldberg and Okumura proved that in an n(> 3)-dimensional compact
conformally flat manifold if the length of the Ricci tensor is constant and less than
κ/

√
n− 1, then the manifold is of constant curvature. Improving this result we can

state and prove the following.

Theorem 3.5. Let M be a quasi-conformally recurrent manifold with harmonic
quasi-conformal curvature tensor such that a + b ̸= 0 and a + (n − 2)b ̸= 0. Then
the manifold is either quasi-conformally flat or recurrent.

Proof. Without loss of generality, we may suppose that A does not vanish identically
on M . From Lemma 3.4, we have W ⊗ (∇R−A⊗R) = 0 on M . Let M1, M2 and
M3 be the subsets of M defined as follows:

M1 = {x ∈ M : A(x) = 0} ,
M2 = {x ∈ M : W (x) = 0}

and M3 = {x ∈ M : (∇R−A⊗R)(x) = 0} .

We now consider the following cases:
Case I) We suppose that IntM3 is not empty. Then we have ∇R − A ⊗ R = 0

on IntM3, and hence we get
∇S −A⊗ S = 0

on IntM3. Accordingly, by the assumption we get

∇g(S, S) = 2Ag(S, S) = 0,
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where g denotes a Riemannian metric tensor on M . From this we have g(S, S) = 0
on M or otherwise g(S, S) ̸= 0 on M and A = 0 on IntM3.

In the first case, we see that S = 0, which implies that the scalar curvature κ
vanishes identically on M , which means that W = aR on M and hence

∇W = a∇R = aA⊗R

on M . This implies that M is recurrent.
In the other one, we have A = 0 on IntM3. From the construction of the set

M3 it follows that ∇R = A⊗ R on IntM3. Moreover we know that the subset M3

is contained in M1, because

Int M3 ⊂ IntM3 ⊂ M1 = M1,

where ‘—’ denotes the closure. Hence, we have M = M1 ∪M2. From this together
with the assumption of quasi-conformal recurrence we get ∇W = 0 on M .

We suppose that there is a point x in M1 at which W (x) ̸= 0. Since the inner
product g(W,W ) is constant on M , it is a non-zero constant, which yields that the
subset M2 is empty. Then M is only M = M1. So we have ∇R = 0 on M . We
suppose that there does not exist a point x in M1 at which W (x) ̸= 0. So we see
that W = 0 on M , which yields the conclusion.

Case II) Next we suppose that IntM3 is empty. From the construction of the
sets M1, M2 and M3 and Lemma 3.4 we know that M3 ⊃ M −M1 ∪M2, the set
M3 is empty. So we have M = M1 ∪M2. Since ∇W = 0 on M1, the inner product
g(W,W ) is constant on M . This implies that W = 0 or ∇W = 0 on M . By virtue
of Lemma 3.3, we have W = 0 or ∇R = 0 on M . This completes the proof. 2

As a particular case we can state the following:

Corollary 3.3([14]). If a Riemannian manifold M is conformally recurrent with
harmonic conformal curvature tensor, constant scalar curvature and if the length of
the Ricci tensor is constant, then the manifold is either conformally flat or recurrent.

Again by virtue of Theorem A, Theorem 3.5 can be stated as follows:

Theorem 3.6. Let M be a quasi-conformally recurrent manifold with harmonic
quasi-conformal curvature tensor such that a + b ̸= 0 and a + (n − 2)b ̸= 0. Then
the manifold is any one of the following:

(i) conformally flat,
(ii) manifold of constant curvature,
(iii) vanishing scalar curvature,
(iv) locally symmetric,
(v) recurrent.
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