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ON GENERALIZED QUASI-CONFORMAL

N(k, µ)-MANIFOLDS

Kanak Kanti Baishya and Partha Roy Chowdhury

Abstract. The object of the present paper is to introduce a new curva-
ture tensor, named generalized quasi-conformal curvature tensor which
bridges conformal curvature tensor, concircular curvature tensor, pro-
jective curvature tensor and conharmonic curvature tensor. Flatness and
symmetric properties of generalized quasi-conformal curvature tensor are
studied in the frame of (k, µ)-contact metric manifolds.

1. Introduction

In 1968, Yano and Sawaki [27] introduced the notion of quasi-conformal
curvature tensor which contains both conformal curvature tensor as well as
concircular curvature tensor, in the context of Riemannian geometry. In tune
with Yano and Sawaki [27], the present paper attempts to introduce a new
tensor field, named generalized quasi-conformal curvature tensor. The beauty
of generalized quasi-conformal curvature tensor lies in the fact that it has the
flavour of Riemann curvature tensor R, conformal curvature tensor C [8] con-

harmonic curvature tensor Ĉ [9], concircular curvature tensor E [26, p. 84],
projective curvature tensor P [26, p. 84] and m-projective curvature tensor H
[15], as particular cases. The generalized quasi-conformal curvature tensor is
defined as

W(X,Y )Z =
2n− 1

2n+ 1
[(1− b+ 2na)− {1 + 2n(a+ b)}c]C(X,Y )Z

+ [1− b+ 2na]E(X,Y )Z + 2 n (b− a) P (X,Y )Z

+
2 n− 1

2 n+ 1
(c− 1){1 + 2 n(a+ b)} Ĉ(X,Y )Z(1.1)

for all X,Y, Z ∈ χ(M), the set of all vector field of the manifold M , where a,
b and c are real constants. The above mentioned curvature tensors are defined
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as follows

C(X,Y )Z = R(X,Y )Z −
1

2n− 1
[S(Y, Z)X − S(X,Z)Y ]

+ g(Y, Z) QX − g(X,Z) QY ]

+
r

2n(2n− 1)
[ g(Y, Z)X − g(X,Z)Y ],(1.2)

E(X,Y )Z = R(X,Y )Z −
r

2n(2n+ 1)
[ g(Y, Z)X − g(X,Z)Y ],(1.3)

P (X,Y )Z = R(X,Y )Z −
1

2n
[ S(Y, Z)X − S(X,Z)Y ],(1.4)

Ĉ(X,Y )Z = R(X,Y )Z −
1

2n− 1
[ S(Y, Z)X − S(X,Z)Y ]

+ g(Y, Z) QX − g(X,Z) QY ](1.5)

for all X,Y, Z ∈ χ(M), where S, Q and r being Ricci tensor, Ricci operator
and scalar curvature respectively. The generalized quasi-conformal curvature

tensor W is reduced to be (1) Riemann curvature tensor R, if a = b = c = 0,
(2) conformal curvature tensor C, if a = b = − 1

2 n−1 , c = 1, (3) conharmonic

curvature tensor Ĉ, if a = b = − 1
2 n−1 , c = 0, (4) concircular curvature tensor

E, if a = b = 0 and c = 1, (5) projective curvature tensor P, if a = − 1
2 n

,

b = 0, c = 0 and (6) m-projective curvature tensor H, if a = b = − 1
4 n

, c = 0.
The m-projective curvature tensor is introduced by G. P. Pokhariyal and R. S.
Mishra [15], which is defined as follows

H(X,Y )Z = R(X,Y )−
1

4n
[ S(Y, Z)X − S(X,Z)Y

+ g(Y, Z) QX − g(X,Z) QY ].(1.6)

Note that our generalized quasi-conformal curvature tensor W is not a gener-
alized curvature tensor [7], [11], as it does not satisfy the condition

W(X1, X2, X3, X4) = W(X3, X4, X1, X2),

whereW(X1, X2, X3, X4) = g(W(X1, X2)X3, X4) for all X1, X2, X3, X4. More-
over our W is not a proper generalized curvature tensor [11], as it does not
satisfy the second Bianchi identity

(1.7) (∇X1
W)(X2, X3)X4 + (∇X2

W)(X3, X1)X4 + (∇X3
W)(X1, X2)X4 = 0.

A contact metric manifold with ξ belonging to (k, µ)-nullity distribution (we
denote such manifold by N(k, µ)-manifold), is said to be semi-symmetry type
(respectively Ricci semi-symmetry type) if the generalized quasi-conformal cur-
vature tensor W(respectively Ricci tensor S) obeys the condition

(1.8) R(X,Y ) · W = 0, respectively W(X,Y ) · S = 0 for any X,Y on M,

where the dot means that R(X,Y ) acts on W (respectively on S) as derivation.
In particular, manifold satisfying the condition R(X,Y ) ·R = 0 (obtained from
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(1.8) by setting a = b = c = 0) is said to be semi-symmetric, in the sense of Car-
tan [6, p. 265]. A full classification of such space is given by Z. I. Szabő ([22],
[23], [24]). This type of the manifolds have been studied by several authors
such as Sekigawa and Tanno [18], Papantoniou [13], Perrone [14], Kowalski
[10], and the references therein. Our work is structured as follows. Section 2 of
the present paper is concerned with some basic results of N(k, µ)-manifold. In
Section 3, we have studied generalized quasi-conformally flat N(k, µ)-manifold
and it is found that such a manifold is either an Einstein space or an η -Einstein
space or locally isometric to the Riemann sphere E2n+1(1). It is also proved
that every 3-dimensional non-Sasakian N(k, µ)-manifold with vanishing gener-
alized quasi-conformal curvature tensor is necessarily N(k)-manifold. Section
4 is devoted to the study of N(k, µ)-manifold with divergent free generalized

quasi-conformal curvature tensor and observed that the Ricci tensor of such
manifold is Codazzi tensor. N(k, µ)-manifold with W · S = 0 is discussed in
Section 5 and it is pointed that the relations -(a) M is an Einstein space, (b)
M is Ricci symmetric, i.e., ∇S = 0, (c) P (ξ.X) · S = 0 (or E(ξ,X) · S = 0)
are equivalent. In the next section, we have investigated N(k, µ)-manifold sat-
isfying R(ξ,X) · W = 0 and based on it, the nature of the Ricci tensors for
different semi-symmetry type conditions are obtained and tabled. Furthermore,
we bring out that a N(k, µ)-manifold satisfying the relation R(ξ,X) · C = 0

(resp. R(ξ,X) · Ĉ = 0) is either conformally (resp. conharmonically) flat or
locally isometric to S2n+1(1).

2. Preliminaries

In this section, we recall some basic results which will be used later. A
(2n+ 1)-dimensional differential manifold M2n+1 is called a contact manifold
if it carries a global differentiable 1-form η such that ηΛ(dη)n 6= 0 everywhere
on M2n+1. This 1-form η is called the contact form on M2n+1. A Riemannian
metric g is said to be associated with a contact manifold if there exist a (1, 1)
tensor field φ and a contravariant global vector field ξ, called the characteristic
vector field of the manifold such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,(2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

g(X,φY ) = −g(Y, φX), g(X, ξ) = η(X), g(X,φY ) = dη(X,Y )(2.3)

for all vector fields X, Y on M . In a contact metric manifold we define a (1, 1)
tensor field h by h = 1

2£ξφ, where £ denotes the Lie differentiation. Then h

is symmetric and satisfies hφ = − φh. We have Trh = Trφh = 0 and hξ = 0.
Also,

(2.4) ∇Xξ = −φX − φhX,

holds in a contact metric manifold. D. E. Blair, T. Koufogiorgos and B. J.
Papantioniou [4] considered the (k, µ)-nullity condition on a contact metric
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manifold and gave several reasons for studying it. The (k, µ)-nullity distribution
N(k, µ) ([2], [13], [25]) of a contact metric manifold M is defined by

N(k, µ) : p → NP (k, µ) = U ∈ TPM | R(X,Y )Z

= {(kI + µh)g(Y, Z)X − g(X,Z)Y }(2.5)

for all X,Y ∈ TM, where (k, µ) ∈ R2. A contact metric manifold M2n+1 with
ξ ∈ N(k, µ) is called a (k, µ)-contact metric manifold, which we denote by
N(k, µ)-manifold. We have

(2.6) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ].

Also, in a (k, µ)-contact metric manifold, the following relations hold [3]:

h2 = (k − 1)φ2, k ≤ 1,(2.7)

(∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX),(2.8)

η(R(X,Y )Z) = k[g(Y, Z)η(X)− g(X,Z)η(Y )]

+ µ[g(hY, Z)η(X)− g(hX,Z)η(Y )],(2.9)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X ] + µ[g(hX, Y )ξ − η(Y )hX ],(2.10)

R(ξ,X)ξ = k[η(X)ξ −X ]− µhX,(2.11)

S(X,Y ) = [2(n− 1)− nµ]g(X,Y ) + [2(n− 1) + µ]g(hX, Y )

+ [2(1− n) + n(2k + µ)]η(X)η(Y ).(2.12)

S(X, ξ) = 2nkη(X),(2.13)

S(φX, φY ) = S(X,Y )− 2nkη(X)η(Y )− 2(2n− 2 + µ)g(hX, Y ),(2.14)

where S is the Ricci tensor of type (0, 2) of the manifold.

(∇Xη)(Y ) = g(X + hX, φY ),(2.15)

(∇Xh)(Y ) = {(1− k)g(X,φY ) + g(X,hφY )}ξ

+ η(Y ){h(φX + φhX)} − µη(X)φhY.(2.16)

If µ = 0, the (k, µ)-nullity distribution is reduced to k-nullity distribution [25].
The (k, µ)-contact metric manifolds are studied by several geometers (see [5],
[3], [19], [20], [21], etc.).

Proposition 2.1 ([3]). Let M2n+1(φ, ξ, η, g) be a (k, µ)-contact metric mani-

fold. Then the relation

(2.17) Qφ− φQ = 2[2(n− 1) + µ]hφ holds.

Lemma 2.2 ([3]). Let M2n+1(φ, ξ, η, g) be a N(k, µ)-manifold with harmonic

curvature tensor. Then M is either (i) Einstein Sasakian manifold, or (ii) η-

Einstein manifold, or (iii) locally isometric to the Riemannian product E2n+1×
S(4) including a flat contact metric structure for n = 1.
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3. Generalized quasi-conformally flat N(k, µ)-manifolds

In this section, we study the flatness of the generalized quasi-conformal cur-

vature tensor in N(k, µ)-manifold. In consequence of (1.2)-(1.5) and (1.1), the
generalized quasi-conformal curvature tensor W takes the form

W(X,Y )Z = R(X,Y )Z + a[S(Y, Z)X − S(X,Z)Y ]

+ b[g(Y, Z)QX − g(X,Z)QY ]

−
cr

2n+ 1

(

1

2n
+ a+ b

)

[g(Y, Z)X − g(X,Z)Y ].(3.1)

Definition. A N(k, µ)-manifold is said to be η-Einstein if its Ricci tensor S

satisfies

(3.2) S(X,Y ) = αg(X,Y ) + βη(X)η(Y ), ∀X,Y ∈ χ(M)

for some real constants α and β.

Such notion was first introduced and studied by Okumura [12] and named
by Sasaki [17] in his lecture notes 1965. In particular, if β = 0, we say that
N(k, µ)-manifold is Einstein. Suppose that M2n+1(φ, ξ, η, g) is a generalized
quasi-conformally flat N(k, µ)-manifold. Then from (3.1), we obtain

R(X,Y )Z = − a[S(Y, Z)X − S(X,Z)Y ]− b[g(Y, Z)QX − g(X,Z)QY ]

+
cr

2n+ 1

(

1

2n
+ a+ b

)

[g(Y, Z)X − g(X,Z)Y ].(3.3)

Taking inner product on both sides of (3.3) by ξ and then using (2.9) and
(2.13), we get

[

k(1 + 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)]

{g(Y, Z)η(X)− g(X,Z)η(Y )}

+ µ{g(hY, Z)η(X)− g(hX,Z)η(Y )}

+ a{S(Y, Z)η(X)− S(X,Z)η(Y )} = 0.(3.4)

Substituting Y by ξ in (3.4), we obtain by virtue of (2.1) and (2.13), that

(3.5) S(X,Z) = αg(X,Z)−
µ

a
g(hX,Z) + βη(X)η(Z)

for all X and Z, provided a 6= 0, where

α = −
1

a

[

k(1 + 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)]

and

β =
1

a
{1 + 2n(a+ b)}

{

k −
cr

2n(2n+ 1)

}

.

In view of (2.1), (2.7), (2.12) and (3.5), we have

S(X,Z) =

[

a{2(n− 1) + µ}α+µ{2(n− 1)− nµ}

µ(a+ 1) + 2a(n− 1)

]

g(X,Z)
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+

[

β{2(n− 1) + µ}a+µ{2(1− n) + n(2k + µ)}

µ(a+ 1) + 2a(n− 1)

]

η(X)η(Z).(3.6)

Again, for a N(k, µ)-manifold with R = 0 or E = 0 (i.e., for the case a = 0 and
b = 0), one can easily determine that such manifold is an Einstein. This leads
to the followings:

Theorem 3.1. Let M2n+1(φ, ξ, η, g) (n > 1) be a generalized quasi-conformally

flat N(k, µ)-manifold. Then M is either an Einstein manifold or an η-Einstein

manifold or isometric to the Riemann sphere S2n+1(1).

Again, in view of (3.5), we have

(3.7) QX = αX −
µ

a
hX + βη(X)ξ

which gives

(3.8) Qφ− φQ = −
2µ

a
hφ as φh+ hφ = 0.

By virtue of (2.17) and (3.8), we have

(3.9) µ = −

[

2a(n− 1)

a+ 1

]

, a 6= −1.

Thus for n = 1, we can state the following corollary

Theorem 3.2. Every three dimensional non-Sasakian N(k, µ)-manifold with

vanishing generalized quasi-conformal curvature tensor is necessarily N(k)-
manifold.

Theorem 3.3. Let M2n+1(φ, ξ, η, g) be a generalized quasi-conformally flat

N(k, µ)-manifold. Then grad r and the characteristic vector field ξ are co-

directional.

Proof. Differentiating (3.7), we obtain

(3.10) (∇Y Q)X = −
µ

a
(∇Y h)X + β[(∇Y η)X + η(X)∇Y ξ].

In consequence of (2.4), (2.15) and (2.16), the relations (3.10) reduces to

g(∇Y Q)X,U) = −
µ

a
[{(1− k)g(y, φX) + g(Y, hφX)}η(U)

+ η(X){g(φY, hU) + g(φhY, hU)}+ µη(Y )g(φhX ,U)]

+ β[g(Y + hY, φX)η(U)− η(X)g(φY, U)− η(X)g(φhY, U)].(3.11)

Let {e1, e2, e3, . . . , e2n, e2n+1 = ξ} be an orthonormal basis of the tangent space
at any point of the manifold. Contracting Y over U, we get from the above

(divQ)X = −Ψ

[

β −
µ(k − 1)

a

]

η(X) for all X,(3.12)
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where Ψ = trace(φ). This gives

X = ξ, gradr = 2Ψ

[

µ(k − 1)

a
− β

]

ξ.(3.13)

This completes the proof. �

Again, for Ψ = 0 and Lemma 2.1 we can easily bring out the following
theorem.

Theorem 3.4 ([13]). Let M2n+1(φ, ξ, η, g) (n > 1) be a generalized quasi-

conformally flat N(k, µ)-manifold with trace(φ) = 0. Then M is either (i)
Einstein Sasakian manifold, or (ii) η-Einstein manifold, or (iii) locally iso-

metric to the Riemannian product En+1×Sn(4) including a flat contact metric

structure for n = 1.

4. N(k, µ)-manifold with divergent free generalized

quasi-conformal curvature tensor

Theorem 4.1. Let M2n+1(φ, ξ, η, g) (n > 1) be a N(k, µ)-manifold with diver-

gent free generalized quasi-conformal curvature tensor. Then the Ricci tensor

S is a Codazzi tensor.

Proof. Let M2n+1(φ, ξ, η, g) be a N(k, µ)-manifold satisfying the condition

(4.1) (divW)(X,Y )Z = 0,

i.e., divR(X,Y )Z + a[(∇XS)(Y, Z)− (∇Y S)(X,Z)]

+
b

2
[dr(X)g(Y, Z)− dr(Y )g(X,Z)]

−
c

2n+ 1

[

1

2n
+ a+ b

]

[dr(X)g(Y, Z)− dr(Y )g(X,Z)] = 0,(4.2)

i.e., (1 + a)[(∇XS)(Y, Z)− (∇Y S)(X,Z)]

+

[

b

2
−

c

2n+ 1

(

1

2n
+ a+ b

)]

[dr(X)g(Y, Z)− dr(Y )g(X,Z)] = 0.(4.3)

Putting X = Z = ei in (4.3) and then taking summation over i, 1 ≤ i ≤ 2n+1,
we get

(1 + a)

[

1

2
dr(Y )− dr(Y )

]

+
b

2
[dr(Y )− (2n+ 1)dr(Y )] = 0,

i.e.,

(4.4) [1 + a+ 2nb]dr(Y ) = 0,

hence dr(Y ) = 0 for all Y , provided 1 + a+ 2nb 6= 0.
Using (4.4) in (4.3), we get

(∇XS)(Y, Z)− (∇Y S)(X,Z) = 0,
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i.e.,

(4.5) (∇XQ)(Y ) = (∇Y Q)(X).

This completes the proof. �

The above theorem implies that the curvature tensor R of the manifold is
harmonic. Consequently we state the following theorem.

Theorem 4.2 ([3]). Let M2n+1(φ, ξ, η, g) (n > 1) be a N(k, µ)-manifold with

divergent free generalized quasi-conformal curvature tensor. Then M is either

(i) Einstein Sasakian manifold, or (ii) η-Eintein manifold, or (iii) locally iso-

metric to the Riemannian product E2n+1×S(4) including a flat contact metric

structure for n = 1.

5. N(k, µ)-manifold with W·S = 0

Let M2n+1(φ, ξ, η, g) (n > 1) be a generalized quasi-conformal N(k, µ)-
manifold satisfying the condition

(5.1) W(ξ, Y ) · S = 0,

i.e., W (ξ, Y )S(Z,U)− S(W (ξ, Y )Z,U)− S(Z,W(ξ, Y )U) = 0,

i.e.,

S(W (ξ, Y )Z,U) + S(Z,W(ξ, Y )U) = 0.(5.2)

Taking U = ξ in (5.2) and using (2.13), we get

(5.3) 2nkη(W(ξ, Y )Z) + S(Z,W(ξ, Y )ξ) = 0.

In view of (2.10), (2.13) and (3.1), we have

η(W(ξ, Y )Z) =

[

k(1 + 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)]

g(Y, Z)

−

[

k(1 + 2na+ 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)]

η(Y )η(Z)

+ µg(hY, Z) + aS(Y, Z)+aS(Y, Z),(5.4)

S(Z,W(ξ, Y )ξ) = −

[

k(1 + 2na)−
cr

2n+ 1

(

1

2n
+ a+ b

)]

S(Y, Z)

+ 2nk

[

k(1 + 2na+ 2nb)−
cr

2n+ 1

(

1

2n
+a+b

)]

η(Y )η(Z)

− µS(hY, Z)− bS2(Y, Z).(5.5)

By virtue of (5.4) and (5.5), (5.3) yields

S2(Y, Z) =
2nk

b

[

k(1 + 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)]

g(Y, Z)

−
1

b

[

k −
cr

2n+ 1

(

1

2n
+ a+ b

)]

S(Y, Z)
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+
2nkµ

b
g(hY, Z)−

µ

b
S(hY, Z)(5.6)

for all Y, Z provided b 6= 0, where S2(X,Y ) = S(QX, Y ).

Theorem 5.1. Let M2n+1(φ, ξ, η, g) (n > 1) be a generalized quasi-conformal

N(k, µ)-manifold with W · S = 0. Then the Ricci tensor S admits the relation

(5.6) provided b 6= 0.

Now for b = 0, the equation (5.6) reduces to
[

k −
cr

2n+ 1

(

1

2n
+ a

)]

S(Y, Z)

= 2nk

[

k −
cr

2n+ 1

(

1

2n
+ a

)]

g(Y, Z) + 2nkµg(hY, Z)− µS(hY, Z).(5.7)

Replacing Y by hY in the above equation and using (2.1) and (2.7), we get
[

k −
cr

2n+ 1

(

1

2n
+ a

)]

S(hY, Z)

= 2nk

[

k −
cr

2n+ 1

(

1

2n
+ a

)]

g(hY, Z)

+ µ(k − 1)S(Y, Z)−2nkµ(k − 1)g(Y, Z).(5.8)

By virtue of (5.8), the equation (5.7) becomes

Ā2
1 + µ2(k − 1)

Ā1
S(Y, Z) = 2nk

{

Ā2
1 + µ2(k − 1)

Ā1

}

g(Y, Z),

i.e.,

S(Y, Z) = 2nkg(Y, Z), or Ā2
1 + µ2(k − 1) = 0,(5.9)

where Ā1 =
[

k − cr
2n+1

(

1
2n + a

)

]

. From the equations (5.8) and (5.9) one can

easily point out the following theorem.

Theorem 5.2. Let M2n+1(φ, ξ, η, g) (n > 1) be a N(k, µ)-manifold with W · S
= 0. Then the following conditions are equivalent:

(a) M is an Einstein space.

(b) M is Ricci symmetric, i.e., ∇S = 0.
(c) P (ξ.X) · S = 0 (or E(ξ,X) · S = 0) for all X ∈ χ(M).

Theorem 5.3. Let M2n+1(φ, ξ, η, g) (n > 1) be a N(k, µ)-manifold. If M sat-

isfies P (ξ,X)·S = 0 (or E(ξ,X)·S = 0), M is locally isometric to En+1×Sn(4)
or is Einstein-Sasakian.

6. Generalized quasi-conformally semi-symmetric N(k, µ)-manifold

Definition. A (2n + 1)-dimensional (n > 1) N(k, µ)-manifold is said to be
semi-symmetric type [22] if the condition R(X,Y ) ·W = 0 holds, for any vector
fields X, Y on the manifold where R(X,Y ) acts on W as derivation.
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Let us consider a (2n + 1)-dimensional N(k, µ)-manifold M , satisfying the
condition

(6.1) (R(ξ,X) ◦W)(Y, Z)U = 0

which yields

g(R(ξ,X)W(Y, Z)U, ξ)− g(W(R(ξ,X)Y, Z)U, ξ)

−g(W(Y,R(ξ,X)Z)U, ξ)− g(W(Y, Z)R(ξ,X)U, ξ) = 0.(6.2)

By virtue of (2.5) the above equation reduces to

k[g(X,W(Y, Z)U)− η(X)η(W(Y, Z)U)− g(X,Y )η(W(ξ, Z)U)

+η(Y )η(W(X,Z)U) + g(X,Z)η(W(ξ, Y )U)− η(Z)η(W(X,Y )U)

+η(U)η(W(Y, Z)X)] + µ[g(hX,W(Y, Z)U)− g(X,Y )η(W(ξ, Z)U)

+η(Y )η(W(hX,Z)U) + g(hX,Z)η(W(ξ, Y )U)− η(Z)η(W(hX, Y )U)

+η(U)η(W(Y, Z)hX)] = 0.(6.3)

Replacing X by hX in (6.3), we obtain

k[g(hX,W(Y, Z)U)− g(hX, Y )η(W(ξ, Z)U) + η(Y )η(W(hX,Z)U)

+g(hX,Z)η(W(ξ, Y )U)− η(Z)η(W(hX, Y )U) + η(U)η(W(Y, Z)hX)]

−µ(k − 1)[g(X,W(Y, Z)U)− g(X,Y )η(W(ξ, Z)U) + η(Y )η(W(X,Z)U)

+g(X,Z)η(W(ξ, Y )U)− η(Z)η(W(X,Y )U) + η(U)η(W(Y, Z)X)

−η(X)η(W(Y, Z)U)] = 0.(6.4)

Using (6.3) and (6.4), we can easily bring out

[k2 + µ2(k − 1)][g(X,W(Y, Z)U)− g(X,Y )η(W(ξ, Z)U)

+η(Y )η(W(X,Z)U) + g(X,Z)η(W(ξ, Y )U)− η(Z)η(W(X,Y )U)

+η(U)η(W(Y, Z)X)− η(X)η(W(Y, Z)U)] = 0.(6.5)

For a non-Sasakian N(k, µ)-manifold, we have [k2 + µ2(k − 1)] 6= 0. Hence,
contracting X over Y , we get

2n+1
∑

i=1

W̄(ei, Z, U, ei)− 2nη(W(ξ, Z)U)

+

2n+1
∑

i=1

η(U)η(W(ei, Z), ei)−

2n+1
∑

i=1

η(Z)η(W(ei, ei)U) = 0.(6.6)

Again, from (3.1), we have

2n+1
∑

i=1

W̄(ei, Z, U, ei) = (1− a+ 2nb)S(Z,U)

+

{

ar −
2ncr

2n+ 1

(

1

2n
+ a+ b

)}

g(Z,U),(6.7)
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2n+1
∑

i=1

η(W(ei, Z), ei) = − 2nk(1− a+ 2nb)η(Z)

−

{

ar −
2ncr

2n+ 1

(

1

2n
+ a+ b

)}

η(Z).(6.8)

In view of (6.7) and (6.8), we have

2nη(W(ξ, Z)U) = (1− a+ 2nb)S(Z,U)− 2nkη(Z)η(U)

+

{

ar −
2ncr

2n+ 1

(

1

2n
+ a+ b

)}

{g(Z,U)− η(Z)η(Z)}.(6.9)

Using (2.9) and (2.13) in (3.1), we obtain

η(W(Y, Z)U)

=

[

k(1 + 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)]

[g(Z,U)η(Y )− g(Y, U)η(Z)]

+ µ[g(hZ,U)η(Y )− g(hY, U)η(Z)] + a[S(Z,U)η(Y )− S(Y, U)η(Z)].(6.10)

Comparing (6.9) and (6.10), we get

S(Z,U) =

{

2nk(1 + 2nb)− ar

1− (2n+ 1)a+ 2nb

}

g(Z,U)

+

{

ar − 2nka(1 + 2n)

1− (2n+ 1)a+ 2nb

}

η(U)η(Z)

+
2nµ

1− (2n+ 1)a+ 2nb
g(hZ,U).(6.11)

In view of (2.12) and (6.11), we have
[

{2(n−1)+µ}{2nk(1+2nb)−ar}−2nµ{2(n−1)−nµ}
1−(2n+1)a+2nb

]

g(Z,U)

+
[

{2(n−1)+µ}{ar−2nka(1+2n)}−2nµ{2(1−n)+n(2k+µ)}
1−(2n+1)a+2nb

]

η(U)η(Z)

=
{

2(n− 1) + µ− 2nµ
1−(2n+1)a+2nb

}

S(Z,U).(6.12)

Using (6.11) in (6.10), we get

η(W (Y, Z)U)

=

{

k(1 + 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)

+
2nka(1 + 2nb)− a2r

1− (2n+ 1)a+ 2nb

}

[g(Z,U)η(Y )− g(Y, U)η(Z)]

+
µ(1− a+ 2nb)

1− (2n+ 1)a+ 2nb
[g(hZ,U)η(Y )− g(hY, U)η(Z)].(6.13)

In view of (6.13) equation (6.5) becomes

W̄(Y, Z, U,X)
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=

{

k(1 + 2nb)−
cr

2n+ 1

(

1

2n
+ a+ b

)

+
2nka(1 + 2nb)− a2r

1− (2n+ 1)a+ 2nb

}

[g(Z,U)g(X,Y )− g(Y, U)g(X,Z)]

+
µ(1− a+ 2nb)

1− (2n+ 1)a+ 2nb
[g(hZ,U)g(X,Y )− g(hY, U)g(X,Z)].(6.14)

From (6.5) and (6.14), we can easily bring out the followings theorem and
corollary.

Theorem 6.1. Let M2n+1(φ, ξ, η, g) (n > 1) be a N(k, µ)-manifold. If M

admit R(ξ,X) ·C = 0 (resp. R(ξ,X) · Ĉ = 0). Then M is either (i) conformlly

flat (resp. conharmonically flat) or (iii) locally isometric to the Riemannian

product En+1×S2n(4).

Theorem 6.2. Let M2n+1(φ, ξ, η, g) (n > 1) be a non-Sasakian N(k, µ)-
manifold. Then for respective semi-symmetry type conditions, the Ricci tensor

of the manifold M takes the respective forms as follows:

Curvature condition Expression for Ricci tensor

R(ξ,X)·R = 0
(Obtain by a = b = c = 0)

S = 2n[k{2(n−1)+µ}−µ{2(n−1)−nµ}]
2(n−1)+µ(1−2n) g

+ 2nµ{2(n−1)−n(2k+µ)}
2(n−1)+µ(1−2n) η ⊗ η

η-Einstein manifold

R(ξ,X)·C = 0
(Obtain by c = 1 & a = b = − 1

2n−1 )

S =

[

{2(n−1)+µ}{r−2nk}
4n(n−1)(1−µ) −

2nµ(2n−1){2(n−1)−nµ}
4n(n−1)(1−µ)

]

g

−
[

{2(n−1)+µ}{r−2nk(1+2n)}
4n(n−1)(1−µ) +

2n(2n−1)µ{2(1−n)+n(2k+µ)}
4n(n−1)(1−µ)

]

η ⊗ η

η-Einstein manifold

R(ξ,X)·Ĉ = 0,
(Obtain by c = 0 & a = b = − 1

2n−1 )

S =

[

{2(n−1)+µ}{r−2nk}
4n(n−1)(1−µ) −

2nµ(2n−1){2(n−1)−nµ}
4n(n−1)(1−µ)

]

g

−
[

{2(n−1)+µ}{r−2nk(1+2n)}
4n(n−1)(1−µ) +

2n(2n−1)µ{2(1−n)+n(2k+µ)}
4n(n−1)(1−µ)

]

η ⊗ η

η-Einstein manifold

R(ξ,X) ·E = 0
(Obtain by a = b = 0, c = 1)

S = 2n[k{2(n−1)+µ}−µ{2(n−1)−nµ}]
2(n−1)+µ(1−2n) g

+
2nµ{2(n−1)−n(2k+µ)}

2(n−1)+µ(1−2n) η ⊗ η

η-Einstein manifold

R(ξ,X)·P = 0
(Obtain by c = 0 a = − 1

2n , b = 0)

S =





{2(n−1)+µ}{r+4n2k}
(4n+1){2(n−1)+µ}−4n2µ

− 4n2µ(2n−1){2(n−1)−nµ}
(4n+1){2(n−1)+µ}−4n2µ



 g

+
[ {2(n−1)+µ}{2nk(1+2n)−r}

(4n+1){2(n−1)+µ}−4n2µ
+

4n2µ{2(1−n)+n(2k+µ)}
(4n+1){2(n−1)+µ}−4n2µ

]

η ⊗ η

η-Einstein manifold

R(ξ,X) ·H = 0
(Obtain by c = 0 a = b = − 1

2n )

S = r{2(n−1)+µ}−4n2µ{2(n−1)−nµ}
(2n+1){2(n−1)+µ}−4n2µ

g

+
[

{2nk(2n+1)−r}{2(n−1)+µ}
(2n+1){2(n−1)+µ}−4n2µ

−
4n2µ{2(1−n)+n(2k+µ)}
(2n+1){2(n−1)+µ}−4n2µ

]

η ⊗ η

η-Einstein manifold
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Remark 6.3. In a N(k, µ)-manifold R(ξ,X)·W = 0 and R(ξ,X)·E = 0 are
equivalent.
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