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ON GENERALIZED QUASI-CONFORMAL
N (k, u)-MANIFOLDS

KANAK KANTI BAISHYA AND PARTHA ROY CHOWDHURY

ABSTRACT. The object of the present paper is to introduce a new curva-
ture tensor, named generalized quasi-conformal curvature tensor which
bridges conformal curvature tensor, concircular curvature tensor, pro-
jective curvature tensor and conharmonic curvature tensor. Flatness and
symmetric properties of generalized quasi-conformal curvature tensor are
studied in the frame of (k, )-contact metric manifolds.

1. Introduction

In 1968, Yano and Sawaki [27] introduced the notion of quasi-conformal
curvature tensor which contains both conformal curvature tensor as well as
concircular curvature tensor, in the context of Riemannian geometry. In tune
with Yano and Sawaki [27], the present paper attempts to introduce a new
tensor field, named generalized quasi-conformal curvature tensor. The beauty
of generalized quasi-conformal curvature tensor lies in the fact that it has the
flavour of Riemann curvature tensor R, conformal curvature tensor C' [8] con-
harmonic curvature tensor C' [9], concircular curvature tensor E [26, p. 84],
projective curvature tensor P [26, p. 84] and m-projective curvature tensor H
[15], as particular cases. The generalized quasi-conformal curvature tensor is

defined as
2n —1
W(X,Y)Z = 2" 1 [ = b+ 2na) — {1+ 20(a + 1)} C(X,Y)Z
n
+[1-b+4+2na|E(X,Y)Z+2n (b—a) P(X,Y)Z
2n—1
1.1 e
( ) + 2n+1
for all X,Y,Z € x(M), the set of all vector field of the manifold M, where a,
b and c are real constants. The above mentioned curvature tensors are defined

(c—D{1+2n(a+b)} C(X,Y)Z
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as follows

1
X,Y)Z = R(X,Y)Z —
CXY)Z = RX,Y)Z -5

+9(YaZ) QX—g(X,Z) QY]

[S(Y,2)X — S(X, 2)Y]

(1.2) ey X = (X, 2V,
(13)  BOOY)Z = RGY)Z = 5oaes [0V 2)X = g(X, 2)Y],

(1.4) P(X,Y)Z = R(X,Y)Z — %[ S(Y,2)X — 8(X,2)Y],

(%KHZ=MKYM—Z£TWWJMFw%K@H
(1.5) +9(Y,Z) QX - g(X,Z) QY]

for all X,Y,Z € x(M), where S, @Q and r being Ricci tensor, Ricci operator
and scalar curvature respectively. The generalized quasi-conformal curvature
tensor W is reduced to be (1) Riemann curvature tensor R, if a =b = ¢ =0,
(2) conformal curvature tensor C, if a = b = —5——, ¢ = 1, (3) conharmonic
1

curvature tensor C, if a = b = — ¢ =0, (4) concircular curvature tensor

2 n—-1’
E,ifa =0b=0and ¢ =1, (5) projective curvature tensor P, if a = fﬁ,
b=0, c=0 and (6) m-projective curvature tensor H, if a = b = —ﬁ, c=0.

The m-projective curvature tensor is introduced by G. P. Pokhariyal and R. S.
Mishra [15], which is defined as follows

H(X,Y)Z = R(X,)Y) — %[ SY,2)X — S(X,2)Y
(1.6) +9(Y,7) QX — g(X,7) QV].
Note that our generalized quasi-conformal curvature tensor W is not a gener-
alized curvature tensor [7], [11], as it does not satisfy the condition
W(X1, Xo, X3, X4) = W(X3, X4, X1, Xo),
where W(X1, Xo, X3, X4) = gW(X1, X2) X3, X4) for all X1, Xo, X3, X4. More-

over our W is not a proper generalized curvature tensor [11], as it does not
satisfy the second Bianchi identity

(L.7) (Vx, W) (X2, X3) X4+ (Vx, W) (X3, X1) X4+ (Vx, W) (X1, X2) X4 = 0.

A contact metric manifold with £ belonging to (k, u)-nullity distribution (we
denote such manifold by N (k, u)-manifold), is said to be semi-symmetry type
(respectively Ricci semi-symmetry type) if the generalized quasi-conformal cur-
vature tensor W(respectively Ricci tensor S) obeys the condition

(1.8) R(X,Y)-W =0, respectively W(X,Y)-S =0 for any X,Y on M,

where the dot means that R(X,Y) acts on W (respectively on S) as derivation.
In particular, manifold satisfying the condition R(X,Y)-R = 0 (obtained from
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(1.8) by setting a = b = ¢ = 0) is said to be semi-symmetric, in the sense of Car-
tan [6, p. 265]. A full classification of such space is given by Z. I. Szab6 ([22],
[23], [24]). This type of the manifolds have been studied by several authors
such as Sekigawa and Tanno [18], Papantoniou [13], Perrone [14], Kowalski
[10], and the references therein. Our work is structured as follows. Section 2 of
the present paper is concerned with some basic results of N (k, x)-manifold. In
Section 3, we have studied generalized quasi-conformally flat N (k, z)-manifold
and it is found that such a manifold is either an Einstein space or an 7 -Einstein
space or locally isometric to the Riemann sphere E*"T1(1). Tt is also proved
that every 3-dimensional non-Sasakian N (k, u)-manifold with vanishing gener-
alized quasi-conformal curvature tensor is necessarily N (k)-manifold. Section
4 is devoted to the study of N(k,u)-manifold with divergent free generalized
quasi-conformal curvature tensor and observed that the Ricci tensor of such
manifold is Codazzi tensor. N (k,p)-manifold with W - .S = 0 is discussed in
Section 5 and it is pointed that the relations -(a) M is an Einstein space, (b)
M is Ricci symmetric, i.e., VS =0, (¢) P(§.X)-S =0 (or E(£,X)-S =0)
are equivalent. In the next section, we have investigated N (k, 11)-manifold sat-
isfying R(&,X) - W = 0 and based on it, the nature of the Ricci tensors for
different semi-symmetry type conditions are obtained and tabled. Furthermore,
we bring out that a N(k, u)-manifold satisfying the relation R({, X)-C =0
(resp. R(¢,X)-C = 0) is either conformally (resp. conharmonically) flat or
locally isometric to S?"T1(1).

2. Preliminaries

In this section, we recall some basic results which will be used later. A
(2n + 1)-dimensional differential manifold M?"*! is called a contact manifold
if it carries a global differentiable 1-form 7 such that nA(dn)™ # 0 everywhere
on M?"*1, This 1-form 7 is called the contact form on M?"*!. A Riemannian
metric g is said to be associated with a contact manifold if there exist a (1,1)
tensor field ¢ and a contravariant global vector field £, called the characteristic
vector field of the manifold such that

(2.1) PP =—I+n®E& nE) =1, =0, nop =0,
(22)  g(¢X,8Y) =g(X,Y) —n(X)n(Y),
(2'3) g(Xa ¢Y) = _g(K ¢X)7 g(XaE) = n(X)a g(X7 ¢Y) = dn(XaY)

for all vector fields X, Y on M. In a contact metric manifold we define a (1,1)
tensor field h by h = %f ¢®, where £ denotes the Lie differentiation. Then h
is symmetric and satisfies h¢p = — ¢h. We have Trh = Tr¢h = 0 and hé = 0.
Also,

(2.4) Vx&=—¢X — ¢hX,

holds in a contact metric manifold. D. E. Blair, T. Koufogiorgos and B. J.
Papantioniou [4] considered the (k,u)-nullity condition on a contact metric
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manifold and gave several reasons for studying it. The (k, u)-nullity distribution

N(k, ) ([2], [13], [25]) of a contact metric manifold M is defined by
N(k,pu):p— Np(k,u)=U € TpM|R(X,Y)Z

(2.5) ={(kI + ph)g(Y, Z)X — (X, Z2)Y'}

for all X,Y € TM, where (k, ) € R?. A contact metric manifold M?"*+! with

& € N(k,p) is called a (k,u)-contact metric manifold, which we denote by
N (k, p)-manifold. We have

(2.6)  R(X,Y)¢=k[n(Y)X = n(X)Y]+ u[n(Y)hX —n(X)nY].
Also, in a (k, u)-contact metric manifold, the following relations hold [3]:

(2.7) h? = (k-1)¢* k<1,
(2.8) (Vxo)(Y) = g(X + hX,Y)§ — n(Y)(X + hX),
n(R(X,Y)Z) = klg(Y, Z)n(X) — g(X, Z)n(Y)]

(2.9) + plg(hY, Z)n(X) — g(hX, Z)n(Y)],
(210) R X)Y = k[g(X,Y)E —n(Y)X] + plg(hX,Y)E — n(Y)RX],
(2.11) R(§, X)€ = k[n(X)§ — X]| — phX,

S(X,Y) = [2(n — 1) = nulg(X,Y) + [2(n — 1) + plg(hX,Y)
(2.12) +[2(1 = n) +n2k + @)]n(X)n(Y).
(2.13) S(X,€) = 2nkn(X),
(2.14)  S(6X,¢Y) = S(X,Y) — 2nkn(X)n(Y) — 2(2n — 2 + p)g(hX,Y),

where S is the Ricci tensor of type (0,2) of the manifold.

(215)  (Vxm)(Y) = g(X + hX,6Y),
(Vxh)(Y) = {(1 - K)g(X, 8Y) + g(X, hoV )&
(2.16) (Y ){R(9X + 6hX)} — pm(X)ghY.

If u = 0, the (k, u)-nullity distribution is reduced to k-nullity distribution [25].
The (k, u)-contact metric manifolds are studied by several geometers (see [5],
3], [19], [20], [21], etc.).

Proposition 2.1 ([3]). Let M?"*1(¢,£,m,9) be a (k, p)-contact metric mani-
fold. Then the relation

(2.17) Qb — ¢Q =2[2(n — 1) + plh¢ holds.

Lemma 2.2 ([3]). Let M?"*1(¢,£,m,9) be a N(k, u)-manifold with harmonic
curvature tensor. Then M is either (i) Einstein Sasakian manifold, or (i) n-
Einstein manifold, or (iii) locally isometric to the Riemannian product E*"1 x
S(4) including a flat contact metric structure for n = 1.
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3. Generalized quasi-conformally flat N (k, p)-manifolds

In this section, we study the flatness of the generalized quasi-conformal cur-
vature tensor in N (k, p)-manifold. In consequence of (1.2)-(1.5) and (1.1), the
generalized quasi-conformal curvature tensor VV takes the form

W(X,Y)Z = R(X,Y)Z +alS(Y, 2)X — S(X, Z)Y]
+b[g(Y, 2)QX — g(X, Z)QY]

(3.1) - % (% +a+ b) [9(Y, Z)X — g(X, 2)Y).

Definition. A N(k, 1)-manifold is said to be n-Einstein if its Ricci tensor S
satisfies

(32) S(X,Y) = ag(X,Y) + An(X)n(Y),VX,Y € x(M)
for some real constants o and f.

Such notion was first introduced and studied by Okumura [12] and named
by Sasaki [17] in his lecture notes 1965. In particular, if 5 = 0, we say that
N (k, 1)-manifold is Einstein. Suppose that M2"T1(¢,£&,n, g) is a generalized
quasi-conformally flat N(k, p)-manifold. Then from (3.1), we obtain

R(X,Y)Z = —a[S(Y,2)X — S(X,2)Y] -b[g(Y,2)QX — g(X, Z)QY]

(3.3) + % <% ta+ b> [9(Y, 2)X — g(X, Z)Y).

Taking inner product on both sides of (3.3) by ¢ and then using (2.9) and
(2.13), we get

k(1 + 2nb) — 2;1 - (% ta+ b)} (9(Y, Z)n(X) — g(X, Z)n(Y)}
+ p{g(hY, Z)n(X) — g(hX, Z)n(Y)}
(3.4)  +a{S(Y,Z)n(X) - S(X,Z)n(Y)} = 0.
Substituting Y by & in (3.4), we obtain by virtue of (2.1) and (2.13), that
(3.5) S(X.2) = ag(X, 2) = Lg(hX. 2) + n(X)n(2)

for all X and Z, provided a # 0, where

1 cr 1
a=—=|k(1+2nb) — — ta+ nd

8= é{1+2n(a+b)} {k%}

In view of (2.1), (2.7), (2.12) and (3.5), we have

a{2(n —1) + ptat+p{2(n — 1) — nu}
pla+1) +2a(n —1)

S(X,Z) = [ }g(X,Z)
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B{2(n —1) + pta+p{2(1 — n) + n(2k + p)}
pla+1) +2a(n —1)

Again, for a N(k, )-manifold with R =0 or E = 0 (i.e., for the case a = 0 and

b = 0), one can easily determine that such manifold is an Einstein. This leads

to the followings:

(3.6) + n(X)n(Z).

Theorem 3.1. Let M*" (¢, &,n, g) (n > 1) be a generalized quasi-conformally
flat N (k, p)-manifold. Then M is either an Einstein manifold or an n-FEinstein
manifold or isometric to the Riemann sphere S*"+1(1).

Again, in view of (3.5), we have

(3.7) 0X = aX — %hX + Bn(X)e
which gives
(3.8) Qb — dQ = —%”hqa as ¢h + he = 0.
By virtue of (2.17) and (3.8), we have

~ [2a(n—-1)

Thus for n = 1, we can state the following corollary

Theorem 3.2. Every three dimensional non-Sasakian N (k, u)-manifold with
vanishing generalized quasi-conformal curvature tensor is necessarily N (k)-
manifold.

Theorem 3.3. Let M1 (¢,£,m,9) be a generalized quasi-conformally flat
N (k, p)-manifold. Then grad r and the characteristic vector field & are co-
directional.

Proof. Differentiating (3.7), we obtain

(310)  (VyQX = —E(Vym)X + B(Tyn) X +n(X)Vye].

In consequence of (2.4), (2.15) and (2.16), the relations (3.10) reduces to
9(VyQX.U) = — L[{(1 = K)gly, 6X) + g(¥, hoX)}n(U)

+ (X ){g(¢Y, hU) + g(¢hY, hU)} + pm(Y)g(ohX , U)]
(3.11) + Blg(Y + hY, ¢ X)n(U) — n(X)g(¢Y,U) — n(X)g(ohY, U)].
Let {e1,e2,€3,...,ean, €2,+1 = &} be an orthonormal basis of the tangent space
at any point of the manifold. Contracting Y over U, we get from the above

(3.12) (divQ)X = -0 {ﬂ - @] n(X) for all X,
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where U = trace(¢). This gives

k—1
(3.13) X = ¢, gradr = 2¥ {% - ﬂ] .
This completes the proof. (I

Again, for ¥ = 0 and Lemma 2.1 we can easily bring out the following
theorem.

Theorem 3.4 ([13]). Let M*" "1 (¢,&,m,9) (n > 1) be a generalized quasi-
conformally flat N(k, p)-manifold with trace(¢p) = 0. Then M is either (i)
FEinstein Sasakian manifold, or (ii) n-Einstein manifold, or (iil) locally iso-
metric to the Riemannian product E"1x S™(4) including a flat contact metric
structure for n = 1.

4. N (k, p)-manifold with divergent free generalized
quasi-conformal curvature tensor

Theorem 4.1. Let M*" (¢, £,m,9) (n > 1) be a N(k, p)-manifold with diver-
gent free generalized quasi-conformal curvature tensor. Then the Ricci tensor
S is a Codazzi tensor.

Proof. Let M?"*1(¢,¢&,m,9) be a N(k, pu)-manifold satisfying the condition
(4.1) (divW) (X, Y)Z = 0,

ie., divR(X,Y)Z + a[(VxS)(Y, Z) — (VyS)(X, Z)]

Jrg[dr(X)g(Y, Z)—dr(Y)g(X, Z)]

(4.2) 5T [% +a+t b] [dr(X)g(Y, Z) — dr(Y)g(X, Z)] = 0,

ie

. (1 +a)[(Vx9)(Y,Z) — (VyS)(X, Z)]

b c 1
4. e XY, Z)— Y)g(X,Z) =0.
43+ |3 5y (g +otd) | e 2) - arigx. 2 =0
Putting X = Z = ¢; in (4.3) and then taking summation over i, 1 <14 < 2n+1,
we get

(1+a) Bdr(Y) - dr(Y)} +2ldr(Y) — (20 + Ddr(Y)] =0,

(4.4) [1+4a+2nbldr(Y) =0,

hence dr(Y) =0 for all Y, provided 1 + a + 2nb # 0.
Using (4.4) in (4.3), we get

(VxS)(Y,Z2) = (VyS)(X, Z) =0,
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ie.,

(4.5) (VxQ)(Y) = (VyQ)(X).
This completes the proof. (I

The above theorem implies that the curvature tensor R of the manifold is
harmonic. Consequently we state the following theorem.

Theorem 4.2 ([3]). Let M*"*1(¢,&,n,9) (n > 1) be a N(k,u)-manifold with
divergent free gemeralized quasi-conformal curvature tensor. Then M is either
(i) PEinstein Sasakian manifold, or (ii) n-Fintein manifold, or (iii) locally iso-
metric to the Riemannian product E*"*1x S(4) including a flat contact metric
structure for n = 1.

5. N(k, p)-manifold with W-S =0

Let M2?"*tY(¢,€,m,9) (n > 1) be a generalized quasi-conformal N (k, u)-
manifold satisfying the condition

(5.1) W(EY)-S=0,

ie., W (Y)S(Z,U)—-SW (£,Y)Z,U) - S(Z,W(EY)U) =0,
(5.2) SOW (£,Y)Z,U) + S(Z, W(E,Y)U) = 0.

Taking U = ¢ in (5.2) and using (2.13), we get

(5.3) 2nknW(E,Y)Z) 4+ S(Z,W(E,Y)E) = 0.

In view of (2.10), (2.13) and (3.1), we have

nOV(E,Y)Z) = [k(l—i—an) - 2;:1 (% —l—a—i—b)} 9(Y, 2)

- [k:(l + 2na + 2nb) — c: - (% ta+ b)] n(Y)n(2)

2n
(5.4) + ug(hY,Z) 4+ aS(Y, Z)+aS(Y, Z),

S(Z,W(E,Y)E) = — {k(l + 2na) — 2;: - <% Ya+ bﬂ S(Y, Z)

+ 2nk [k:(l + 2na + 2nb) — —— (i +a+b>} n(Y)n(2)

2n+1 \2n
(5.5) —uS(hY, Z) — bS*(Y, Z).
By virtue of (5.4) and (5.5), (5.3) yields
2nk cr 1
2(Y,Z) = = |k(1+2nb) — — Y,Z
S(Y, Z) , [kz( + 2nb) 2n+1(2n+a+b)]g(, )

1 cr 1
— k- — Y, Z
b[k 2n+1(2n+a+b)}s( 2



ON GENERALIZED QUASI-CONFORMAL N (k, n)-MANIFOLDS 171

2nk
(5.6) + R g(hY, 2) - LS(hY, 2)

for all Y, Z provided b # 0, where S?(X,Y) = S(QX,Y).

Theorem 5.1. Let M*" (¢, &,m,9) (n > 1) be a generalized quasi-conformal
N (k, p)-manifold with W -S = 0. Then the Ricci tensor S admits the relation
(5.6) provided b # 0.

Now for b = 0, the equation (5.6) reduces to
cr 1
ke (5 a) | s)
1
(5.7) = 2nk {k = (— + aﬂ 9(Y, Z) + 2nkpg(hY, Z) — uS(hY, Z).

C2n+1\2n
Replacing Y by hY in the above equation and using (2.1) and (2.7), we get

{k - 27;: - (% + aﬂ S(hY, Z)

:2nk[kz— =l (i+a)]g(hy,2)

2n+1 \2n
(5.8) + (k= 1)S(Y, Z)=2nku(k — 1)g(Y, Z).
By virtue of (5.8), the equation (5.7) becomes
A2 1 2(F _ A2 4 2(F _
1 Ay
ie.,
(5.9) S(Y,Z) = 2nkg(Y,Z), or A? + p*(k — 1) =0,

2n+1
easily point out the following theorem.

Theorem 5.2. Let M?" (¢, €, m,9) (n > 1) be a N(k, p)-manifold with W - S
= 0. Then the following conditions are equivalent:

(a) M is an Einstein space.

(b) M is Ricci symmetric, i.e., V.S = 0.

(c) P(£.X)-S=0(or E(,X)-S=0) for all X € x(M).

Theorem 5.3. Let M?" (¢, &,m,9) (n > 1) be a N(k,p)-manifold. If M sat-
isfies P(€,X)-S =0 (or E(&,X)-S = 0), M is locally isometric to E"1x S"(4)
or is Einstein-Sasakian.

where A = {k — 52 (= + a)} . From the equations (5.8) and (5.9) one can

6. Generalized quasi-conformally semi-symmetric N (k, u)-manifold

Definition. A (2n + 1)-dimensional (n > 1) N(k, p)-manifold is said to be
semi-symmetric type [22] if the condition R(X,Y") -W = 0 holds, for any vector
fields X, Y on the manifold where R(X,Y") acts on W as derivation.



172 K. K. BAISHYA AND P. ROY CHOUDHURY

Let us consider a (2n + 1)-dimensional N (k, u)-manifold M, satisfying the
condition

(6.1) (R(§, X) e W)(Y, 2)U =0
which yields
By virtue of (2.5) the above equation reduces to

[(X WY, Z)U) = n(X)nWV(Y, 2)U) = g(X,Y)n(W(E, 2)U)

+n(Y)n(W(X, 2)U) + g(X, Z)n(W (&, Y)U) = n(Z)n(W(X,Y)U)
(U)W, 2)X)] + ulg(hX, WY, 2)U) — g(X, Y)n(W(E, Z)U)
+77(Y)77( (hX, Z)U)+g(hX,Z)77( (& Y)U) = n(Z)n(W(hX,Y)U)
+n(U)n

(6.3) U)nW(Y, Z)hX)] =
Replacing X by hX in (6.3), we obtain
k[ (hX, WY, Z)U) = g(h X, Y )n(W(E, Z)U) +n(Y )n(W(hX, Z)U)

+9(hX, Z)nW (&, Y)U) = n(Z)n(W(hX,Y)U) + n(U)n(WV (Y, Z)hX))]
—p(k = D[g(X, WY, 2)U) = g(X, Y)n(W(E, 2)U) + (Y )n(W(X, 2)U)
+9(X, Z)nW(E Y)U) = n(Z)nWV (X, Y)U) + n(U)n(WV(Y, Z)X)

(
(6.4) —n(X)n(WV(Y, Z2)U)] = 0.
Using (6.3) and (6.4), we can easily bring out
6% + 1*(k = D][g(X, W(Y, 2)U) — g(X,Y)n(W(&, 2)U)
+n(Y )W (X, 2)U) + g(X, Z)yn(WV (& Y)U) = n(Z)n(W(X, Y)U)
(6.5)  +nU)nOWV(Y, 2)X) = n(X)n(W(Y, Z)U)] = 0.

For a non-Sasakian N (k, u)-manifold, we have [k + p?(k — 1)] # 0. Hence,
contracting X over Y, we get

2n+1
Z V_V(eia Za Ua 61') - 2”77(W(£a Z)U)
i=1
2n+1 2n+1
(66) + D U)W (en 2),ei) = > n(Z)nW(es, e)U) = 0.
i=1 i=1
Again, from (3.1), we have
2n+1
> Wlei, Z,U,e;) = (1 - a+ 2nb)S(Z,U)
i=1

(6.7) + {ar - Q”irl <i ta+ b> }g(Z, ),
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221 nOW(ei, Z),e;) = — 2nk(1 — a + 2nb)n(Z2)
(6.8) - {ar 2?1”?1 (i ta+ b)} n(2).

In view of (6.7) and (6.8), we have

2nyW(E, Z)U) = (1 —a+2nb)S(Z,U) — 2nkn(Z)n(U)

(6.9) + {ar - ;nfl (2— ta+ b) } {9(Z,U) —9(Z2)n(2Z)}.
Using (2.9) and (2.13) in (3.1), we obtain
nW(Y, 2)U)
cr 1
= {k(l + 2nb) — 1 <— +a+ b>} [g(Z, UnY)—g(Y,Un(Z)]

(6.10)  + ulg(hZ,Un(Y) = g(hY,U)n(2)] + a[S(2, U)n(Y) = S(Y, U)n(Z)].
Comparing (6.9) and (6.10), we get
[ 2nk(1+2nb) —ar
5(2,0) = {1 —(2n+ 1)a+2nb}g(z’ U)
ar — 2nka(1 + 2n)
{ 1-(2n+1)a+ 2nb} n(Un(2)

2nu
hz,U).
T~ @nt a4 )

In view of (2.12) and (6.11), we have

2(n—1)+ 2nk(14+2nb)—ar}t—2nu{2(n—1)—n
[{ (n=D)+p}{ 1(—(2n+)1)a+}énb p{2(n—1) #}} 9(Z,U)

(6.11) +

2(n—1)4+ ar—2nka(142n)}—2np{2(1—n)+n(2k+
+ [{ (n=1)+p}{ 17(2n+1)i+2nlg{ (1—n)+n( M)}} n(U)n(Z)

612) = {200~ 1)ty 1oty } S(ZU).
Using (6.11) in (6.10), we get
n(W(y, z)U)
= {k(1+2nb) o <L ‘a H) 2nka(1 + 2nb) _a%«}

2n +1 1—(2n+1)a+2nb
9(Z.U)n(Y) — g(¥.U)n(2)]
613) L2 G ) — oY, Un(2).

1—(2n+1)a+2ndb
In view of (6.13) equation (6.5) becomes

W(Y7 Z’ U’ X)
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cr 1 2nka(l + 2nb) — a’r
= ¢k(1+42nd b
{( +anb) =50 +1< T +) 1—(2n+1)a—|—2nb}
l9(Z,

(X,Y) —g(YV,U)g(X, Z)]
(6.14) + 7

U)g
Ein +a ;;a2 j—b;nb[ (hZ,U)g(X,Y) = g(hY,U)g(X, Z)].

From (6.5) and (6.14), we can easily bring out the followings theorem and
corollary.

Theorem 6.1. Let M*" (¢, &,n,9) (n > 1) be a N(k,u)-manifold. If M
admit R(¢,X)-C =0 (resp. R(&,X)-C =0). Then M is either (i) conformlly
flat (resp. conharmonically flat) or (iii) locally isometric to the Riemannian
product E"t1 xS (4).

Theorem 6.2. Let M*"T1(¢,&,1m,9) (n > 1) be a non-Sasakian N (k,u)-
manifold. Then for respective semi-symmetry type conditions, the Ricci tensor
of the manifold M takes the respective forms as follows:

‘ Curvature condition Expression for Ricci tensor
5= Zn[k{z(n 1)+u} 20—l |
RIEX)R=0 TN Y
’ 2n, n— n L

(Obtain by a =b=c=0) TG 1€

n-Einstein manifold

(2(,; 1)+;1L}{17 P

S = znu(znn(nl) 2((n 1)) np} |9
REX)C =0 T In(n-D(-p)
(Obtain by ¢ :'1 &a=b=—-1_ ) |: 2(n—=1)+u}{r—2nk(1+2n) +

n—1 Tn(n—1(I=
an(nt 3t o (e} |1
dn(n—1)(1—p)
n-Einstein manifold

2n=—D+u}{r=2nk}
o= |: :| !

Tn(n—D){1—7)
2npu(2n—1){2(n-1)—nu}
. Ty TS a—
R(& X)-C =0, -
(Obtainby c=0& a =b=—5") { {2(n=Dtpd{r—2nk(1+2n)} 2"1‘(H2")}+

2n—1 An(n— _
" 2n(2n— 1>(M{2(11 171)#)7,(2““)} nen
An(n—1)(1—p)
n-Einstein manifold
§ = R0 Dtui—p2i—D—nuj]
2(n—1)+pu(1-2n)

R(EX)-E=0 +
(Obtain by a=b=0,c=1) W" ®n
n-Einstein manifold
{2(n=1)+u}{r+4n?k}
v An+1){2(n—1)+pu}—4n>
5= 7(4’;2#2;/1(7"1)£)2(7¢7}1)—L7151 9
(An+1){2(n—1)+pu}—4n?p

R(EX)-P =0
(Obtain by c=0a=—5-,b=0) [ 2ebtu{2nk(tan) r} |
(ng D) {2(n—1)+p} —dn’p ®
an?p{2(1— n)n (ki) nen
L GniD{2(-Dtuy—an’p |
n-Einstein manifold
— 20— Dtu)—4nu{2(n—1)—nu}
5= EntD)2(n-D+ut—anp 9
+
R(EX)-H=0 : [ {2nk@nt)—r}{2(n—1)+u}
in by ¢ = —p=—_L 2n+1){2(n—1)+p}—dnZp
(Obtain by c=0a=15b 37) ( s #{{2((1 7L))+7‘:(}2)€+#)‘} nen
@t ){2(n—DFpt—an’p |
n-Einstein manifold
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Remark 6.3. In a N(k,p)-manifold R(§, X)W = 0 and R(§,X)-E =0 are
equivalent.
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