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ON PSEUDO SEMICONFORMALLY

SYMMETRIC MANIFOLDS

Jaeman Kim

Abstract. In this paper, a type of Riemannian manifold (namely, pseudo
semiconformally symmetric manifold) is introduced. Also the several geo-
metric properties of such a manifold is investigated. Finally the existence
of such a manifold is ensured by a proper example.

1. Introduction

As a special subgroup of the conformal transformation group, Ishii [10] in-
troduced the notion of conharmonic transformation under which a harmonic
function transforms into a harmonic function. In [10] the conharmonic curva-
ture tensor Hi

jkl of type (1,3) on a Riemannian manifold (Mn, g) of dimension
n ≥ 4 was defined as follows:

(1.1) Hi
jkl = Ri

jkl −
1

n− 2
(gjkr

i
l − δikrjl + δilrjk − gjlr

i
k),

which remains invariant under conharmonic transformation, where R and r are
the Riemannian curvature and Ricci curvature tensors respectively.

In [22] Shaikh and Hui showed that the conharmonic curvature tensor sat-
isfies the symmetries and skew symmetries properties of the Riemannian cur-
vature tensor as well as cyclic ones. The conharmonic curvature tensor has
many applications in the theory of general relativity. In [1] Abdussattar inves-
tigated its physical significance in the theory of general relativity. This tensor
has also been studied by Siddiqui and Ahsan [23]; Ghosh, De and Taleshian [9]
and many others. In [11] the author introduces a type of curvature-like tensor
called semiconformal curvature tensor such that its (1,3) components remain
invariant under conharmonic transformation. More precisely, the semiconfor-
mal curvature tensor P i

jkl of type (1,3) on a Riemannian manifold (Mn, g) is
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defined as follows:

(1.2) P i
jkl = −(n− 2)bCi

jkl + [a+ (n− 2)b]Hi
jkl,

where a, b are constants not simultaneously zero and Ci
jkl is the conformal

curvature tensor of type (1,3). Note that the conformal curvature tensor Ci
jkl

of type (1,3) remains invariant under conformal transformation and that such a
tensor is traceless. The conformal curvature tensor Ci

jkl of type (1,3) is defined
as follows:
(1.3)

Ci
jkl = Ri

jkl−
1

n− 2
(gjkr

i
l−δikrjl+δilrjk−gjlr

i
k)+

s

(n− 1)(n− 2)
(δilgjk−δikgjl),

where s is the scalar curvature.
In particular, if a = 1 and b = − 1

n−2 , then the semiconformal curvature
tensor reduces to conformal curvature tensor whereas for a = 1 and b = 0,
such a tensor turns into conharmonic curvature tensor. The semiconformal
curvature tensor Pijkl of type (0,4) possesses the several symmetric and skew
symmetric properties as well as the cyclic ones. For instance, it is easy to see
that the semiconformal curvature tensor Pijkl of type (0.4) holds

Pijkl = −Pjikl = −Pijlk = Pklij

and

(1.4) Pijkl + Pkijl + Pjkil = 0.

Pijkl belongs to a class of tensors named generalized curvature tensors and
denoted with Kijkl. They were introduced by Kobayashi and Nomizu [12] and
satisfy properties (1.4).

In [3] Chaki introduced a type of Riemannian manifold (Mn, g) whose cur-
vature tensor Rijkl of type (0,4) satisfies the condition

Rijkl;m = 2AmRijkl +AiRmjkl +AjRimkl +AkRijml +AlRijkm ,

where A is a nonzero 1-form and the semicolon denotes the covariant differen-
tiation with respect to the metric tensor g. Such a manifold is called a pseudo
symmetric manifold. This manifold has received a great deal of attention and is
studied in considerable detail by many authors [3, 4, 5, 6, 8, 18]. Motivated by
the above studies, in the present paper, we introduce a pseudo semiconformally
symmetric manifold. A Riemannian manifold (Mn, g) of dimension n ≥ 4 (this
condition is assumed throughout the paper as for n ≤ 3, the conformal cur-
vature tensor vanishes) is said to be pseudo semiconformally symmetric if its
pseudo semiconformal curvature tensor Pijkl of type (0,4) satisfies the relation

(1.5) Pijkl;m = 2AmPijkl +AiPmjkl +AjPimkl +AkPijml +AlPijkm ,

where A is an associated 1-form which is not zero.
If a generalized curvature tensor Kijkl satisfies the condition

Kijkl;m = 2AmKijkl +AiKmjkl +AjKimkl +AkKijml +AlKijkm,
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then the manifold is named pseudo-K symmetric and denoted with (PKS)n
[7]. Some properties of (PKS)n manifolds were studied in [13] and [15].

The purpose of this paper is to investigate the various properties of pseudo
semiconformally symmetric manifold on which some geometric conditions are
imposed.

2. Pseudo semiconformally symmetric manifolds

Let (Mn, g) be a Riemannian manifold. The semiconformal curvature tensor
P i
jkl of (M

n, g) is said to be harmonic if the divergence of the semiconformal

curvature tensor P i
jkl vanishes, i.e.,

(2.6) P h
jkl;h = 0.

Notice that in this paper, we adopt the Einstein convention (that is, when an
index variable appears once in an upper and once in a lower position in a term,
it implies summation of that term over all the values of the index). Now we
can state the following:

Theorem 2.1. Let (Mn, g) be a Riemannian manifold with harmonic semi-

conformal curvature tensor. If the constant [a+ (n− 2)b] in (1.2) is nonzero,

then the scalar curvature s of (Mn, g) is constant.

Proof. By virtue of the second Bianchi identity, we have

(2.7) Rm
jkl;m = rjk;l − rjl;k

and then

(2.8) rkl;k =
1

2
s;l.

Taking account of (1.1), (1.2) and (1.3) we obtain from (2.7) and (2.8)

Pm
jkl;m = − (n− 2)bCm

jkl;m + [a+ (n− 2)b]Hm
jkl;m

= − (n− 2)b(
n− 3

n− 2
)[rjk;l − rjl;k −

s;l

2(n− 1)
gjk +

s;k

2(n− 1)
gjl]

+ [a+ (n− 2)b][(
n− 3

n− 2
)(rjk;l − rjl;k)−

1

2(n− 2)
(gjks;l − gjls;k)].(2.9)

Using the condition (2.6) and multiplying (2.9) by gjk we get from (2.8)

0 = − (n− 2)b(
n− 3

n− 2
)[s;l − rkl;k −

s;l

2(n− 1)
n+

s;l

2(n− 1)
]

+ [a+ (n− 2)b][(
n− 3

n− 2
)(s;l − rkl;k)−

1

2(n− 2)
(ns;l − s;l)]

= [a+ (n− 2)b](
−s;l

n− 2
),

which yields from [a + (n − 2)b] 6= 0 that the scalar curvature s is constant.
This completes the proof. �
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Note that Theorem 2.1 is a particular case of the following result concern-
ing harmonic generalized curvature tensors, i.e., generalized curvature tensors
with the property Km

jkl;m = 0 (see [14, Prop. 4.6], [16, Theorem 2.2] and [17,

Theorem 3.7]): Let (Mn, g) be an n-dimensional Riemannian manifold having
a generalized curvature tensor with the property

Km
jkl;m = cRm

jkl;m + d[s;lgjk − s;kgjl],

where c and d are constants. If Km
jkl;m = 0 and the condition d 6= c

2(n−1) is

satisfied, then the scalar curvature is a covariant constant s;j = 0.
Concerning pseudo semiconformally symmetric manifold, we have:

Theorem 2.2. Let (Mn, g) be a pseudo semiconformally symmetric manifold

with harmonic semiconformal curvature tensor. If the constant [a + (n − 2)b]
in (1.2) is nonzero, then the scalar curvature s of (Mn, g) is zero.

Proof. By virtue of (1.5) and (2.6), we have

(2.10) 0 = 2AmPm
jkl +AmPmjkl +AjP

m
mkl +AkP

m
jml + AlP

m
jkm.

Multiplying (2.10) by gjk, we have from (1.1), (1.2) and (1.3)

0 = 2Al[a+ (n− 2)b](
−s

n− 2
) +Al[a+ (n− 2)b](

−s

n− 2
)

−Al[a+ (n− 2)b](
−s

n− 2
) +Al[a+ (n− 2)b](

−s

n− 2
n)

= 2Al[a+ (n− 2)b](
−s

n− 2
) +Al[a+ (n− 2)b](

−s

n− 2
n)

= −Al[a+ (n− 2)b](
n+ 2

n− 2
)s,

which yields from [a + (n − 2)b] 6= 0 and A 6= 0 that the scalar curvature s of
(Mn, g) vanishes. This completes the proof. �

Theorem 2.3. Let (Mn, g) be a pseudo semiconformally symmetric manifold.

If both the scalar curvature s of (Mn, g) and the constant [a+(n− 2)b] in (1.2)
are not zero, then the associated 1-form A in (1.5) is closed.

Proof. Multiplying (1.5) by gil and then multiplying the relation obtained thus
by gjk, we have

[a+ (n− 2)b](
−s;m

n− 2
)n

= 2Am[a+ (n− 2)b](
−s

n− 2
)n+Am[a+ (n− 2)b](

−s

n− 2
)

+Am[a+ (n− 2)b](
−s

n− 2
) +Am[a+ (n− 2)b](

−s

n− 2
)

+Am[a+ (n− 2)b](
−s

n− 2
).(2.11)
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By virtue of [a+ (n− 2)b] 6= 0, we have from (2.11)

(2.12) s;m =
2(n+ 2)

n
Ams.

Taking the covariant derivative of (2.12), we get

s;mt =
2(n+ 2)

n
[Am;ts+Ams;t]

=
2(n+ 2)

n
[Am;ts+

2(n+ 2)

n
AmAts](2.13)

because of (2.12).
Therefore it follows from (2.13) that

0 = s;mt − s;tm =
2(n+ 2)

n
s[Am;t −At;m],

which yields from s 6= 0 that

Am;t −At;m = 0,

showing that the associated 1-form A is closed. This completes the proof. �

A Riemannian manifold (Mn, g) is said to be recurrent if its curvature tensor
Rijkl of type (0.4) satisfies the condition

(2.14) Rijkl;m = BmRijkl,

where the associated 1-form B is nonzero. Now we can state:

Theorem 2.4. Let (Mn, g) be a pseudo semiconformally symmetric manifold

with [a+(n−2)b] 6= 0 and s 6= 0. If the manifold is recurrent, then the associated

1-forms A in (1.5) and B in (2.14) satisfy the relation A = n
2(n+2)B.

Proof. Taking the covariant derivative of (1.2), we have from (1.1) and (1.3)

Pijkl;m = − (n− 2)bCijkl;m + [a+ (n− 2)b]Hijkl;m

= − (n− 2)b[
s;m

(n− 1)(n− 2)
(gilgjk − gikgjl)]

+ a[Rijkl;m −
1

(n− 2)
(gjkril;m − gikrjl;m + gilrjk;m − gjlrik;m)].(2.15)

Multiplying (2.14) by gil and then multiplying the relation obtained thus by
gjk, we have

(2.16) rjk;m = Bmrjk

and then

(2.17) s;m = Bms.

Taking account of (2.14), (2.16) and (2.17) we have from (2.15)

Pijkl;m = −
Bmsb

(n− 1)
(gilgjk − gikgjl)
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(2.18) +a[BmRijkl −
1

(n− 2)
(gjkBmril − gikBmrjl + gilBmrjk − gjlBmrik)].

Multiplying (2.18) by gil and then multiplying the relation obtained thus by
gjk, we get

(2.19) gilgjkPijkl;m = −
n

n− 2
Bms[a+ (n− 2)b].

On the other hand, multiplying (1.5) by gil and then multiplying the relation
obtained thus by gjk, we get

(2.20) gilgjkPijkl;m = Am[a+ (n− 2)b]sn
−2(n+ 2)

n(n− 2)
.

Taking account of [a+ (n− 2)b] 6= 0 and s 6= 0, we have from (2.19) and (2.20)

Bm =
2(n+ 2)

n
Am.

This completes the proof. �

A Riemannian manifold (Mn, g) is said to be Einstein if its Ricci tensor r is
proportional to the metric tensor g (that is, r = s

n
g). Note that in this case,

its scalar curvature s is constant under n ≥ 3 [2].
Now we have the following.

Lemma 2.5. Let (Mn, g) be a pseudo semiconformally symmetric manifold

with [a + (n − 2)b] 6= 0. If the manifold is Einstein, then its Ricci tensor

vanishes.

Proof. By virtue of (1.1), (1.2) and (1.3), we have
(2.21)

Pijkl = aRijkl −
a

n− 2
(gilrjk − gikrjl + rilgjk − rikgjl)−

bs

n− 1
(gilgjk − gikgjl).

From rij = s
n
gij it follows that s;i = 0 and thus rij;k = 0 and from (2.9) it is

inferred that Pm
jkl;m = 0. From Theorem 2.2 it is s = 0 and consequently rij =

0. Moreover it follows from (2.21) that Pijkl = aRijkl , Pijkl;m = aRijkl;m. �

Theorem 2.6. Let (Mn, g) be a pseudo semiconformally symmetric manifold

with [a+(n−2)b] 6= 0 and a 6= 0. If the manifold is Einstein, then the manifold

is pseudo symmetric.

Proof. Taking account of Lemma (2.5) and (2.21), the relation (1.5) leads to

aRijkl;m = 2AmaRijkl +AiaRmjkl +AjaRimkl +AkaRijml +AlaRijkm.

Since a 6= 0, the last relation reduces to

Rijkl;m = 2AmRijkl +AiRmjkl +AjRimkl +AkRijml +AlRijkm ,

showing that the manifold is pseudo symmetric. �
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Theorem 2.7. Let (Mn, g) be a pseudo semiconformally symmetric manifold

with [a + (n − 2)b] 6= 0. If the manifold admits a parallel vector field V , then

we have either V mAm = 0 or s = 0.

Proof. From the Ricci identity and a parallel vector field V , it follows

(2.22) 0 = V t
;jk − V t

;kj = V mRt
mjk.

Taking the covariant derivative of (2.22), we obtain

V mRt
mjk;l = 0.

Multiplying the last relation by gti we have

VmRimjk;l = 0

or equivalently

(2.23) V mRjkim;l = 0.

Taking account of the second Bianchi identity, we get from (2.23)

V mRjkli;m + V mRjkml;i = 0

or equivalently
V mRjkli;m − V mRjklm;i = 0,

which reduces to

(2.24) VmRjkli;m = 0

because of (2.23).
Multiplying (2.24) by gji and then multiplying the relation obtained thus

by gkl, we have

(2.25) V mrkl;m = 0

and then

(2.26) V ms;m = 0.

From (2.21), (2.24), (2.25) and (2.26), it follows that

V mPijkl;m = 0

or equivalently

(2.27) V m[2AmPijkl +AiPmjkl +AjPimkl +AkPijml +AlPijkm] = 0.

Multiplying (2.27) by gil and then multiplying the relation obtained thus by
gjk, we get from (2.21)

Vm[Am(
−s

n− 2
)(2n+ 4)][a+ (n− 2)b] = 0,

which leads to either V mAm = 0 or s = 0. This completes the proof. �

Note that results (2.22), (2.23), (2.24), (2.25) and (2.26) are essentially con-
tained in Lemma 1.5 of [21].

We immediately have the following:
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Corollary 2.8. Let (Mn, g) be a pseudo semiconformally symmetric manifold

with [a + (n − 2)b] 6= 0. If the covariant derivative of its associated 1-form A

vanishes, then the scalar curvature s of (Mn, g) vanishes.

Proof. Multiplying gim to the given condition Ai;l = 0, we have

Am
;l = 0.

Now it follows from Theorem 2.7 that we have either AmAm = 0 or s = 0,
which leads to

s = 0

because of A 6= 0. This completes the proof. �

Now we will provide a proper example of a pseudo semiconformally symmet-
ric manifold.

Example. Let (Rn
+, g) be a Riemannian manifold given by

Rn
+ = {(x1, x2, . . . , xn)|xi > 0, i = 1, 2, . . . , n}

and

g = f(dx1)2 + δαβdx
αdxβ + 2dx1dxn,

where Greek indices α and β run over the range 2, 3, . . . , n− 1, and

f = (Eαβ + δαβ)x
αxβe(x

1)2 .

Here δαβ is the Kronecker delta, and Eαβ is constant and satisfies the relations

Eαβ = 0 if α 6= β; Eαβ = constant (6= 0) if α = β; |Eαβ | < 1;
∑n−1

α=2 Eαα = 0.
This kind of metric was appeared in [19, 20]. In the metric described as above,
the only nonvanishing components of Christoffel symbols, the curvature tensors
and the Ricci tensors are, according to [19, 20]

Γβ
11 = −

1

2
Eαβf,α, Γn

11 =
1

2
f,1, Γn

1α =
1

2
f,α,

(2.28) R1αβ1 =
1

2
f,αβ, r11 =

1

2
δαβf,αβ,

where the comma denotes the partial differentiation with respect to the coor-
dinates. It is easy to see that the relations

f,αβ = 2(Eαβ + δαβ)e
(x1)2

and

(2.29) δαβf,αβ = 2(n− 2)e(x
1)2

hold. From (2.28) and (2.29), it follows that the only nonzero components for
the curvature tensor Rijkl and the Ricci tensor rjk are

R1αα1 =
1

2
f,αα = (Eαα + 1)e(x

1)2
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and

(2.30) r11 =
1

2
f,αβδ

αβ = (n− 2)e(x
1)2 .

From the given metric g, we obtain gni = gin = 0 for i 6= 1, which yields
g11 = 0. Therefore the scalar curvature s of (Mn, g) vanishes because s =
gijrij = g11r11 = 0. Hence by considering the results mentioned above and
(2.21), we find the only nonzero components for the semiconformal curvature
tensor Pijkl as

(2.31) P1αα1 = a[R1αα1 −
1

n− 2
(gααr11)] = aEααe

(x1)2 .

In this case, it follows from (2.31) that the only nonzero components of the
covariant derivative of Pijkl are

(2.32) P1αα1;1 = 2x1aEααe
(x1)2 = 2x1P1αα1.

Let us consider the associated 1-form A as Ai =
x1

2 for i = 1 and 0 otherwise.
To verify the relation (1.5), it is sufficient to prove the relation

P1αα1;1 = 4A1P1αα1.

Taking account of the definition of the associated 1-form A and (2.32), it is
easy to see that the last relation holds. The other components of each term of
(1.5) vanishes identically and hence the relation (1.5) holds.
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