SEMI-RIEMANNIAN SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

AHMET YÜCESAN AND EROL YAŞAR

ABSTRACT. We study some properties of a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Then, we prove that the Ricci tensor of a semi-Riemannian submanifold of a semi-Riemannian space form admitting a semi-symmetric non-metric connection is symmetric but is not parallel. Last, we give the conditions under which a totally umbilical semi-Riemannian submanifold with a semi-symmetric non-metric connection is projectively flat.

1. Introduction

The notion of a semi-symmetric linear connection on a differentiable manifold was initiated by Friedmann and Schouten [5] in 1924. In 1992, Agashe and Chafle [1] defined a semi-symmetric non-metric connection on a Riemannian manifold and studied the Weyl projective curvature tensor with respect this connection. Moreover, in 1994 they considered in [2] a submanifold admitting a semi-symmetric non-metric connection and studied some of its properties when the ambient manifold is a space form admitting a semi-symmetric nonmetric connection. In 1995, the properties of hypersurfaces of a Riemannian manifold with a semi-symmetric non-metric connection were studied by De and Kamilya [4]. In 2000, Sengupta, De and Binh [9] defined a semi-symmetric non-metric connection which generalized the notion of the semi-symmetric nonmetric connection introduced by Agashe and Chafle. Later, they derived the curvature tensor and the Weyl projective curvature tensor with respect to the semi-symmetric non-metric connection. Prasad and Verma [8], in 2004, got the necessary and sufficient condition in order that the Weyl projective curvature tensor of a semi-symmetric non-metric connection is equal to the Weyl projective curvature of the Riemannian connection. Moreover, they showed that if the curvature tensor with respect to the semi-symmetric non-metric connection

Received August 2, 2011.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53B15,\ 53B30,\ 53C05.$

Key words and phrases. semi-symmetric non-metric connection, Levi-Civita connection, semi-Riemannian submanifold, Ricci tensor, projectively flat.

vanishes, then the Riemannian manifold is projectively flat. Yücesan and Yaşar [11] studied non-degenerate hypersurfaces of a semi-Riemannian manifold with a semi-symmetric non-metric connection and got the conditions under which a non-degenerate hypersurface with a semi-symmetric non-metric connection is projectively flat.

This paper is organized as follows: In Section 2, we consider a semi-Riemannian submanifold immersed in an ambient semi-Riemannian manifold. Then we determine the semi-symmetric non-metric connection, and give the equations of Gauss and Weingarten for a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Furthermore, we show that on a semi-Riemannian submanifold the connection induced from the semi-symmetric non-metric connection is also a semi-symmetric non-metric connection. In Section 3, by using the equations stated above, we derive Gauss curvature and Codazzi-Mainardi equations with respect to the semi-symmetric non-metric connection. In Section 4, we show that the Ricci tensor of a semi-Riemannian submanifold of a semi-Riemannian space form admitting a semi-symmetric non-metric connection is symmetric, but is not parallel. In the last section, we prove that a totally umbilical semi-Riemannian submanifold in a projectively flat semi-Riemannian manifold with a semi-symmetric non-metric connection is projectively flat.

2. Semi-symmetric non-metric connection

We suppose that M is an n-dimensional semi-Riemannian manifold of an (n+p)-dimensional semi-Riemannian manifold \widetilde{M} with semi-Riemannian metric \widetilde{g} of index $0 \le \nu \le n+p$. Let us denote by g the induced semi-Riemannian metric tensor on M from \widetilde{g} on \widetilde{M} . As M has codimension p, we can locally choose p cross sections ξ_{α} , $1 \le \alpha \le p$, of the normal bundle TM^{\perp} of M in \widetilde{M} which are orthonormal at each point of M. The index of \widetilde{g} restricted to TM^{\perp} is called the co-index of M in \widetilde{M} and $ind\widetilde{M} = \nu = indM + coindM$ (see [7]).

A linear connection $\stackrel{\sim}{\nabla}$ on \widetilde{M} is called a *semi-symmetric non-metric connection* if its torsion tensor \widetilde{T} satisfies

$$\widetilde{T}(\widetilde{X},\widetilde{Y}) = \widetilde{\pi}(\widetilde{Y})\widetilde{X} - \widetilde{\pi}(\widetilde{X})\widetilde{Y}$$

and

$$(\widetilde{\bigtriangledown}_{\widetilde{X}}\widetilde{g})(\widetilde{Y},\widetilde{Z}) = -\widetilde{\pi}(\widetilde{Y})\widetilde{g}(\widetilde{X},\widetilde{Z}) - \widetilde{\pi}(\widetilde{Z})\widetilde{g}(\widetilde{X},\widetilde{Y})$$

for \widetilde{X} , $\widetilde{Y} \in \chi(\widetilde{M})$, where $\widetilde{\pi}$ is a 1-form on \widetilde{M} (see [1]).

We define a linear connection $\stackrel{\sim}{\bigtriangledown}$ on \widetilde{M} given by

$$(2.1) \hspace{1cm} \widetilde{\bigtriangledown}_{\widetilde{X}}\widetilde{Y} = \overset{\circ}{\widetilde{\bigtriangledown}}_{\widetilde{X}}\widetilde{Y} + \widetilde{\pi}(\widetilde{Y})\widetilde{X}$$

for \widetilde{X} , $\widetilde{Y} \in \chi(\widetilde{M})$, where $\overset{\circ}{\nabla}$ denotes the Levi-Civita connection with respect to \widetilde{g} and $\widetilde{\pi}$ is a 1-form associated to a vector field \widetilde{Q} by $\widetilde{g}(\widetilde{Q},\widetilde{X}) = \widetilde{\pi}(\widetilde{X})$ for

 $\widetilde{X} \in \chi(\widetilde{M})$. Then $\widetilde{\nabla}$ is a semi-symmetric non-metric connection on \widetilde{M} . On M we define a vector field Q and real valued functions μ_{α} , $1 \leq \alpha \leq p$, by decomposing \widetilde{Q} into its unique tangential and normal components, thus

(2.2)
$$\widetilde{Q} = Q + \sum_{\alpha=1}^{p} \mu_{\alpha} \xi_{\alpha}.$$

If we denote by $\overset{\circ}{\nabla}$ the induced Levi-Civita connection on M from $\overset{\circ}{\widetilde{\nabla}}$ on \widetilde{M} , then we have the Gauss equation with respect to $\overset{\circ}{\nabla}$ given by

(2.3)
$$\overset{\circ}{\nabla}_X Y = \overset{\circ}{\nabla}_X Y + \sum_{\alpha=1}^p \overset{\circ}{h}_{\alpha}(X,Y) \xi_{\alpha}$$

for $X, Y \in \chi(M)$, where $\overset{\circ}{h}_{\alpha}, 1 \leq \alpha \leq p$, are the second fundamental forms on M [7]. Let ∇ on M be induced connection from the semi-symmetric non-metric connection $\overset{\circ}{\nabla}$ on \widetilde{M} . Thus, the equation given by

(2.4)
$$\widetilde{\nabla}_X Y = \nabla_X Y + \sum_{\alpha=1}^p h_{\alpha}(X, Y) \xi_{\alpha},$$

will be called the Gauss equation with respect to $\stackrel{\sim}{\nabla}$ for $X, Y \in \chi(M)$, where $h_{\alpha}, 1 \leq \alpha \leq p$, are tensors of type (0,2) on M.

Substituting (2.3) and (2.4) into (2.1), we see that

$$\nabla_X Y + \sum_{\alpha=1}^p h_{\alpha}(X, Y) \xi_{\alpha} = \nabla_X Y + \sum_{\alpha=1}^p \mathring{h}_{\alpha}(X, Y) \xi_{\alpha} + \pi(Y) X$$

from which we get

$$(2.5) \qquad \qquad \nabla_X Y = \stackrel{\circ}{\nabla}_X Y + \pi(Y) X,$$

where

$$\pi(Y) = g(Y, Q),$$

and we obtain

$$(2.6) h_{\alpha} = \overset{\circ}{h}_{\alpha}, \ 1 \le \alpha \le p,$$

for $X, Y \in \chi(M)$. By using (2.5), we deduce that

$$(2.7) \qquad (\nabla_X g)(Y, Z) = -\pi(Y)g(X, Z) - \pi(Z)g(X, Y)$$

for $X, Y, Z \in \chi(M)$.

Also, from (2.5) the torsion tensor of the connection ∇ , denoted by T, can be obtained as

(2.8)
$$T(X,Y) = \pi(Y)X - \pi(X)Y.$$

Then from (2.7) and (2.8) we have the following theorem:

Theorem 1. The induced connection on a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection is also a semi-symmetric non-metric connection.

The Weingarten equation with respect to $\overset{\circ}{\nabla}$ is given by

(2.9)
$$\overset{\circ}{\nabla}_{X} \xi_{\alpha} = -\overset{\circ}{A}_{\xi_{\alpha}}(X) + D_{X} \xi_{\alpha}, \ 1 \le \alpha \le p,$$

for $X \in \chi(M)$, where D is a metric connection on the normal bundle TM^{\perp} with respect to the fibre metric induced from \widetilde{g} , and the (1,1) tensor fields $\overset{\circ}{A}_{\xi_{\alpha}}, 1 \leq \alpha \leq p$, on M such that

(2.10)
$$h_{\alpha}(X,Y) = \varepsilon_{\alpha} g(\mathring{A}_{\xi_{\alpha}}(X),Y)$$

are called the shape operators of $M \subset \widetilde{M}$ (see [7]).

By virtue of (2.1) and (2.2), we get

$$\widetilde{\nabla}_X \xi_\alpha = \widetilde{\widetilde{\nabla}}_X \xi_\alpha + \varepsilon_\alpha \mu_\alpha X, \ 1 \le \alpha \le p.$$

From the above and (2.9) it follows that

(2.11)
$$\overset{\sim}{\nabla}_X \xi_{\alpha} = -(\overset{\circ}{A}_{\xi_{\alpha}} - \varepsilon_{\alpha} \mu_{\alpha} I)(X) + D_X \xi_{\alpha} , 1 \le \alpha \le p,$$

where I is the identity tensor and

$$\varepsilon_{\alpha} = \begin{cases} -1, & \xi_{\alpha} \text{ is timelike,} \\ +1, & \xi_{\alpha} \text{ is spacelike.} \end{cases}$$

Let the shape operators $A_{\xi_{\alpha}}, \ 1 \leq \alpha \leq p$, of type (1,1) on M be denoted by

(2.12)
$$A_{\xi_{\alpha}} = \overset{\circ}{A}_{\xi_{\alpha}} - \varepsilon_{\alpha} \mu_{\alpha} I, \ 1 \le \alpha \le p.$$

So, equation (2.11), called the Weingarten equation with respect to $\stackrel{\sim}{\bigtriangledown}$, can be rewritten as

(2.13)
$$\widetilde{\nabla}_X \xi_\alpha = -A_{\xi_\alpha}(X) + D_X \xi_\alpha, \ 1 \le \alpha \le p,$$

for $X \in \chi(M)$.

By using (2.6), (2.10) and (2.12), we have

(2.14)
$$\varepsilon_{\alpha}h_{\alpha}(X,Y) = g(A_{\xi_{\alpha}}X,Y) + \varepsilon_{\alpha}\mu_{\alpha}g(X,Y).$$

Let $\xi = \sum_{\alpha=1}^{p} a_{\alpha} \xi_{\alpha}$, $\eta = \sum_{\alpha=1}^{p} b_{\alpha} \xi_{\alpha}$ be two normal vector fields on M. Then from (2.12), we see that

$$A_{\xi}A_{\eta} = \overset{\circ}{A}_{\xi}\overset{\circ}{A}_{\eta} - \varepsilon_{\alpha}a_{\alpha}\mu_{\alpha}\overset{\circ}{A}_{\eta} - \varepsilon_{\alpha}b_{\alpha}\mu_{\alpha}\overset{\circ}{A}_{\xi} + a_{\alpha}b_{\alpha}\mu_{\alpha}^{2}I.$$

Thus,

$$[A_{\xi}, A_{\eta}] = [\mathring{A}_{\xi}, \mathring{A}_{\eta}],$$

and

$$g([\overset{\circ}{A_\xi},\overset{\circ}{A_\eta}]X,Y)=g([A_\xi,A_\eta]X,Y)$$
 for all $X,Y\in\chi(M).$ Hence we have:

Theorem 2. Let M be a semi-Riemannian submanifold of a semi-Riemannian manifold M admitting a semi-symmetric non-metric connection. Then the second fundamental tensors with respect to the semi-symmetric non-metric connection are simultaneously diagonalizable if and only if second fundamental tensors with respect to the Levi-Civita connection are simultaneously diagonalizable.

Let $E_1, \ldots, E_{\nu}, \ldots, E_n$ be the principal vector fields on M corresponding to the unit normal section $\xi = \sum_{\alpha=1}^{p} a_{\alpha} \xi_{\alpha}$ with respect to $\stackrel{\circ}{\nabla}$. Then by using (2.12), we have

$$(2.15) A_{\varepsilon}(E_i) = (\overset{\circ}{k_i} - \varepsilon_{\alpha} a_{\alpha} \mu_{\alpha}) E_i, \ 1 \le i \le n,$$

where k_i , $1 \leq i \leq n$, are the principal curvatures corresponding to the unit normal section ξ with respect to the Levi-Civita connection $\stackrel{\sim}{\nabla}$. Taking

$$(2.16) k_i = \overset{\circ}{k}_i - \varepsilon_{\alpha} a_{\alpha} \mu_{\alpha}, \ 1 \le i \le n, \ 1 \le \alpha \le p.$$

So, by (2.16), equation (2.15) is reformed as

$$(2.17) A_{\mathcal{E}}(E_i) = k_i E_i, \ 1 \le i \le n,$$

where k_i , $1 \le i \le n$, are the principal curvatures of the unit normal section ξ with respect to the semi-symmetric non-metric connection ∇ .

From (2.15), (2.16) and (2.17), we assert the following:

Theorem 3. The principal directions of the unit normal direction ξ with respect to the Levi-Civita connection $\overset{\circ}{\bigtriangledown}$ and the semi-symmetric non-metric con $nection \ riangledown$ coincides and corresponding principal curvatures are equal if and only if ξ is orthogonal to \overline{Q} .

The mean curvature vector field of M with respect to $\stackrel{\circ}{\nabla}$ is given by

(2.18)
$$\mathring{H} = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \sum_{\alpha=1}^{p} \mathring{h}_{\alpha}(E_i, E_i) \xi_{\alpha},$$

where

$$\varepsilon_i = \left\{ \begin{array}{ll} -1, & E_i \text{ is timelike,} \\ +1, & E_i \text{ is spacelike} \end{array} \right.$$

(see [7]). We define similarly the mean curvature vector field of M with respect to ∇ by

(2.19)
$$H = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \sum_{\alpha=1}^{p} h_{\alpha}(E_i, E_i) \xi_{\alpha}.$$

From (2.6), (2.18) and (2.19), $H = \overset{\circ}{H}$. Hence we have:

Lemma 4. A semi-Riemannian submanifold M of a semi-Riemannian manifold \widetilde{M} admitting a semi-symmetric non-metric connection is totally geodesic with respect to the semi-symmetric non-metric connection if and only if it is totally geodesic with respect to the Levi-Civita connection.

Lemma 5. A semi-Riemannian submanifold M of a semi-Riemannian manifold \widetilde{M} admitting a semi-symmetric non-metric connection is totally umbilical with respect to the semi-symmetric non-metric connection if and only if it is totally umbilical with respect to the Levi-Civita connection.

3. The Gauss curvature and Codazzi-Mainardi equations

We denote by

$$\overset{\circ}{\widetilde{R}}(\widetilde{X},\widetilde{Y})\widetilde{Z} = \overset{\circ}{\nabla}_{\widetilde{X}}\overset{\circ}{\nabla}_{\widetilde{Y}}\widetilde{Z} - \overset{\circ}{\nabla}_{\widetilde{Y}}\overset{\circ}{\nabla}_{\widetilde{X}}\widetilde{Z} - \overset{\circ}{\nabla}_{\lceil\widetilde{X},\widetilde{Y}\rceil}\widetilde{Z}$$

and

$$\overset{\circ}{R}(X,Y)Z = \overset{\circ}{\bigtriangledown}_X \overset{\circ}{\bigtriangledown}_Y Z - \overset{\circ}{\bigtriangledown}_Y \overset{\circ}{\bigtriangledown}_X Z - \overset{\circ}{\bigtriangledown}_{[X,Y]}Z,$$

the curvature tensors of \widetilde{M} and M with respect to $\overset{\circ}{\nabla}$ and $\overset{\circ}{\nabla}$, respectively, where $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \chi(\widetilde{M})$ and $X, Y, Z \in \chi(M)$. Then the Gauss curvature and Codazzi-Mainardi equations with respect to $\overset{\circ}{\nabla}$ and $\overset{\circ}{\nabla}$, respectively, are given

$$\overset{\circ}{\widetilde{R}}(X,Y,Z,W) \quad = \quad \overset{\circ}{R}(X,Y,Z,W) \\ \qquad + \sum_{\alpha=1}^{p} \varepsilon_{\alpha} \{ \overset{\circ}{h}_{\alpha}(X,Z) \overset{\circ}{h}_{\alpha}(Y,W) - \overset{\circ}{h}_{\alpha}(Y,Z) \overset{\circ}{h}_{\alpha}(X,W) \},$$

and

$$\overset{\circ}{\widetilde{R}}(X,Y,Z,\xi_{\alpha}) = \varepsilon_{\alpha}\{(\overset{\circ}{\nabla}_{X}\overset{\circ}{h}_{\alpha})(Y,Z) - (\overset{\circ}{\nabla}_{Y}\overset{\circ}{h}_{\alpha})(X,Z)\}$$

$$+ \sum_{\alpha=1}^{p}\widetilde{g}(\overset{\circ}{h}_{\beta}(Y,Z)D_{X}\xi_{\beta} - \overset{\circ}{h}_{\beta}(X,Z)D_{Y}\xi_{\beta},\xi_{\alpha})$$

for $X, Y, Z \in \chi(M)$ (see [7]), where

$$\overset{\circ}{\widetilde{R}}(X,Y,Z,W) = \widetilde{g}(\overset{\circ}{\widetilde{R}}(X,Y)Z,W), \ \overset{\circ}{R}(X,Y,Z,W) = g(\overset{\circ}{R}(X,Y)Z,W).$$

Now we shall find the Gauss curvature and the Codazzi-Mainardi equations with respect to the semi-symmetric non-metric connections $\stackrel{\sim}{\bigtriangledown}$ and \bigtriangledown . The curvature tensors of \widetilde{M} and M with respect to $\stackrel{\sim}{\bigtriangledown}$ and \bigtriangledown , respectively, are defined by

$$\widetilde{R}(X,Y)Z = \widetilde{\bigtriangledown}_X \widetilde{\bigtriangledown}_Y Z - \widetilde{\bigtriangledown}_Y \widetilde{\bigtriangledown}_X Z - \widetilde{\bigtriangledown}_{[X,Y]} Z$$

and

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

for $X, Y, Z \in \chi(M)$.

By using (2.4) and (2.13), we have the curvature tensor of the semi-symmetric non-metric connection $\widetilde{\nabla}$ given by

$$\widetilde{R}(X,Y)Z = R(X,Y)Z + \sum_{\alpha=1}^{p} \{h_{\alpha}(X,Z)A_{\xi_{\alpha}}Y - h_{\alpha}(Y,Z)A_{\xi_{\alpha}}X + (\nabla_{X}h_{\alpha})(Y,Z)\xi_{\alpha} - (\nabla_{Y}h_{\alpha})(X,Z)\xi_{\alpha} + h_{\alpha}(\pi(Y)X - \pi(X)Y,Z)\xi_{\alpha} + h_{\alpha}(Y,Z)D_{X}\xi_{\alpha} - h_{\alpha}(X,Z)D_{Y}\xi_{\alpha}\}.$$

From (3.1), the Gauss curvature equation and the Codazzi-Mainardi equation with respect to $\stackrel{\sim}{\bigtriangledown}$ and $\stackrel{\sim}{\bigtriangledown}$, respectively, are obtained as:

(3.2)
$$\widetilde{R}(X,Y,Z,W) = R(X,Y,Z,W) + \sum_{\alpha=1}^{p} \varepsilon_{\alpha} \{ h_{\alpha}(X,Z) h_{\alpha}(Y,W) - h_{\alpha}(Y,Z) h_{\alpha}(X,W) + \mu_{\alpha} h_{\alpha}(Y,Z) g(X,W) - \mu_{\alpha} h_{\alpha}(X,Z) g(Y,W) \},$$

and

$$\widetilde{R}(X,Y,Z,\xi_{\alpha}) = \varepsilon_{\alpha} \{ (\nabla_{X} h_{\alpha})(Y,Z) - (\nabla_{Y} h_{\alpha})(X,Z)$$

$$+ h_{\alpha}(\pi(Y)X - \pi(X)Y,Z) \} + \sum_{\beta=1}^{p} \widetilde{g}(h_{\beta}(Y,Z)D_{X}\xi_{\beta}$$

$$- h_{\beta}(X,Z)D_{Y}\xi_{\beta},\xi_{\alpha})$$

for $X, Y, Z \in \chi(M)$.

From (2.14) and (3.2), we get

$$\begin{split} \widetilde{R}(X,Y,X,Y) &= R(X,Y,X,Y) + \sum_{\alpha=1}^{p} \{\varepsilon_{\alpha}g(A_{\xi_{\alpha}}(X),X)g(A_{\xi_{\alpha}}(Y),Y) \\ &- g(A_{\xi_{\alpha}}(X),Y)^{2}\} + \sum_{\alpha=1}^{p} \{\mu_{\alpha}g(A_{\xi_{\alpha}}(Y),Y)g(X,X) \\ &- \mu_{\alpha}g(A_{\xi_{\alpha}}(X),Y)g(X,Y)\} \end{split}$$

for $X, Y \in \chi(M)$. Therefore we have the following theorem:

Theorem 6. Let \mathcal{P} be a 2-dimensional non-degenerate subspace of T_xM , and let $\widetilde{K}(\mathcal{P})$ and $K(\mathcal{P})$ be the sectional curvatures of \mathcal{P} in \widetilde{M} and M with respect to the semi-symmetric non-metric connections ∇ and ∇ , respectively. If X

and Y form an orthonormal base of P, then

$$\widetilde{K}(\mathcal{P}) = K(\mathcal{P}) + \frac{1}{g(X,X)g(Y,Y)} \sum_{\alpha=1}^{p} \{ g(A_{\xi_{\alpha}}(X),X)g(A_{\xi_{\alpha}}(Y),Y) - g(A_{\xi_{\alpha}}(X),Y)^{2} + \mu_{\alpha}g(A_{\xi_{\alpha}}(Y),Y)g(X,X) \}.$$

As an immediate consequences of Theorem 6 we obtain:

Corollary 7. If \widetilde{M} is a 3-dimensional flat Lorentz manifold and M is a spacelike or timelike surface in \widetilde{M} , then there exists a semi-symmetric non-metric connection ∇ on M for which det A_{ξ} is an intrinsic invariant of M, and when \widetilde{Q} is tangent to M, det $A_{\xi}(=K(\mathcal{P}))$ is equal to det A_{ξ} which is the Gauss curvature of M.

4. The equation of Ricci with respect to a semi-symmetric non-metric connection

Let ξ be a normal vector field on M. We get

$$(4.1) \widetilde{R}(X,Y)\xi = \widetilde{\nabla}_X \widetilde{\nabla}_Y \xi - \widetilde{\nabla}_Y \widetilde{\nabla}_X \xi - \widetilde{\nabla}_{[X,Y]}\xi,$$

where $X, Y \in \chi(M)$. Using (2.12) and (4.1), we have

(4.2)
$$\widetilde{R}(X,Y)\xi = R^{N}(X,Y)\xi + \sum_{\alpha=1}^{p} \{h_{\alpha}(A_{\xi}X,Y) - h_{\alpha}(A_{\xi}Y,X)\}\xi_{\alpha} + A_{D_{X}\xi}Y - A_{D_{Y}\xi}X - Tor_{A_{\xi}}(X,Y),$$

where \mathbb{R}^N is the curvature tensor of the normal connection. Using (2.13) and (4.2), we obtain

$$\widetilde{R}(X,Y,\xi,\eta) = R^N(X,Y,\xi,\eta) - g([A_\xi,A_\eta]X,Y),$$

where η is a normal vector field on M. Equation (4.3) is called the *equation of* Ricci with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$.

A relation between the curvature tensor of the semi-symmetric non-metric connection $\widetilde{\nabla}$ and the Levi-Civita connection $\overset{\circ}{\widetilde{\nabla}}$ is given by

$$(4.4) \qquad \widetilde{R}(\widetilde{X},\widetilde{Y})\widetilde{Z} = \overset{\circ}{\widetilde{R}}(\widetilde{X},\widetilde{Y})\widetilde{Z} + \widetilde{\alpha}(\widetilde{X},\widetilde{Z})\widetilde{Y} - \widetilde{\alpha}(\widetilde{Y},\widetilde{Z})\widetilde{X},$$

where $\widetilde{\alpha}$ is a tensor of type (0,2) defined by

$$(4.5) \qquad \widetilde{\alpha}(\widetilde{X},\widetilde{Y}) = (\overset{\circ}{\widetilde{\nabla}}_{\widetilde{X}}\widetilde{\pi})\widetilde{Y} - \widetilde{\pi}(\widetilde{X})\widetilde{\pi}(\widetilde{Y}) \\ = (\widetilde{\nabla}_{\widetilde{X}}\widetilde{\pi})\widetilde{Y}$$

for any vector fields \widetilde{X} , \widetilde{Y} , \widetilde{Z} on \widetilde{M} .

Presently, we consider the semi-Riemannian manifold \widetilde{M} with constant curvature k. Then we have (see [7])

$$(4.6) \qquad \qquad \overset{\circ}{\widetilde{R}}(\widetilde{X},\widetilde{Y})\widetilde{Z} = k\{\widetilde{g}(\widetilde{Y},\widetilde{Z})\widetilde{X} - \widetilde{g}(\widetilde{X},\widetilde{Z})\widetilde{Y}\}.$$

From (4.4), (4.5) and (4.6), we have

$$\widetilde{R}(X,Y)\xi = ((\widetilde{\nabla}_X\widetilde{\pi})\xi)Y - ((\widetilde{\nabla}_Y\widetilde{\pi})\xi)X$$

for any vector fields X, Y and a normal vector field ξ on M. Thus, $\widetilde{R}(X,Y)\xi$ is tangent to M and hence equation (4.3) reduces to

$$R^{N}(X, Y, \xi, \eta) = g([A_{\xi}, A_{\eta}]X, Y).$$

The normal connection D in the normal bundle TM^{\perp} is said to be flat if

$$R^{N}(X,Y) = D_{X}D_{Y} - D_{Y}D_{X} - D_{[X,Y]}$$

vanishes identically on M.

Hence we have:

Corollary 8. Let M be a semi-Riemannian submanifold of a semi-Riemannian manifold \widetilde{M} with constant curvature admitting a semi-symmetric non-metric connection. Then the normal connection D in the normal bundle TM^{\perp} is flat if and only if all the second fundamental tensors with respect to the semi-symmetric non-metric connection are simultaneously diagonalizable.

Theorem 9. The Ricci tensor of a semi-Riemannian submanifold M with respect to the semi-symmetric non-metric connection is symmetric if and only if π is closed.

Proof. The Ricci tensor of a semi-Riemannian submanifold M with respect to the semi-symmetric non-metric connection is given by

(4.7)
$$Ric(X,Y) = \sum_{i=1}^{n} \varepsilon_{i} g(R(E_{i},X)Y, E_{i})$$

for $\forall X, Y \in \chi(M)$. Then using (4.4) in (4.7), we obtain

$$Ric(X,Y) = \overset{\circ}{Ric}(X,Y) - (n-1)\alpha(X,Y),$$

where $\overset{\circ}{Ric}$ denotes the Ricci tensor of M with respect to the Levi-Civita connection and

$$\alpha(X,Y) = (\nabla_X \pi)Y.$$

From above it follows that

$$Ric(X,Y) - Ric(Y,X) = (n-1)(\alpha(Y,X) - \alpha(X,Y))$$
$$= 2(n-1)d\pi(Y,X)$$

which completes the proof.

Theorem 10. Let M be a semi-Riemannian submanifold of a semi-Riemannian manifold \widetilde{M} . If \widetilde{Ric} and Ric are the Ricci tensor of \widetilde{M} and M with respect to the semi-symmetric non-metric connection, respectively, then for $\forall X, Y \in \chi(M)$

(4.8)
$$\widetilde{Ric}(X,Y) = Ric(X,Y) - \sum_{\alpha=1}^{p} \varepsilon_{\alpha} f_{\alpha} h_{\alpha}(X,Y) + h_{\alpha}(A_{\xi_{\alpha}}X,Y) + n\varepsilon_{\alpha} \mu_{\alpha} h_{\alpha}(X,Y) + \varepsilon_{\alpha} \widetilde{g}(\widetilde{R}(\xi_{\alpha},X)Y,\xi_{\alpha}),$$

where if ξ_{α} is spacelike, $\varepsilon = +1$ or if ξ_{α} is timelike, $\varepsilon = -1$ and $f_{\alpha} = \sum_{i=1}^{n} \varepsilon_{i} h_{\alpha}(E_{i}, E_{i})$.

Proof. Let $\{E_1, \ldots, E_{\nu}, E_{\nu+1}, \ldots, E_n, \xi_1, \ldots, \xi_p\}$ be an orthonormal basis of $\chi(\widetilde{M})$. Then the Ricci curvature of \widetilde{M} with respect to the semi-symmetric non-metric connection is given by

$$(4.9) \qquad \widetilde{Ric}(X,Y) = \sum_{i=1}^{n} \varepsilon_{i} \widetilde{g}(\widetilde{R}(E_{i},X)Y, E_{i}) + \sum_{\alpha=1}^{p} \varepsilon_{\alpha} \widetilde{g}(\widetilde{R}(\xi_{\alpha},X)Y, \xi_{\alpha})$$

for $\forall X, Y \in \chi(M)$. By taking account of (4.9), (3.2), (2.14) and considering the symmetry of shape operators we get (4.8).

Theorem 11. Let M be a semi-Riemannian submanifold of a semi-Riemannian manifold \widetilde{M} . If $\widetilde{\rho}$ and ρ are the scalar curvatures of \widetilde{M} and M with respect to the semi-symmetric non-metric connection, respectively, then

(4.10)
$$\widetilde{\rho} = \rho - \sum_{\alpha=1}^{p} \varepsilon_{\alpha} f_{\alpha}^{2} + n \varepsilon_{\alpha} \mu_{\alpha} f_{\alpha} + f_{\alpha}^{*} + 2 \varepsilon_{\alpha} \widetilde{Ric}(\xi_{\alpha}, \xi_{\alpha}),$$

where
$$f_{\alpha}^* = \sum_{i=1}^n \varepsilon_i h_{\alpha}(A_{\xi_{\alpha}} E_i, E_i)$$
.

Proof. Assume that $\{E_1, \ldots, E_{\nu}, E_{\nu+1}, \ldots, E_n, \xi_1, \ldots, \xi_p\}$ is an orthonormal basis of $\chi(\widetilde{M})$, then the scalar curvature of \widetilde{M} with respect to the semi-symmetric non-metric connection is

(4.11)
$$\widetilde{\rho} = \sum_{i=1}^{n} \varepsilon_{i} \widetilde{Ric}(E_{i}, E_{i}) + \sum_{\alpha=1}^{p} \varepsilon_{\alpha} \widetilde{Ric}(\xi_{\alpha}, \xi_{\alpha}).$$

By virtue of (4.8), (4.11), we obtain (4.10).

We now assume that the 1-form π is closed. Then we can define the sectional curvature for a section with respect to the semi-symmetric non-metric connection (see [1]).

Suppose that the semi-symmetric non-metric connection $\overset{\sim}{\nabla}$ is of constant sectional curvature, then $\widetilde{R}(X,Y)Z$ should be of the form

(4.12)
$$\widetilde{R}(X,Y)Z = c\{\widetilde{g}(Y,Z)X - \widetilde{g}(X,Z)Y\}$$

c being a certain scalar. Thus \widetilde{M} is a semi-Riemannian manifold of constant curvature c with respect to semi-symmetric non-metric connection and denote it by $\widetilde{M}(c)$.

Theorem 12. Let M be a semi-Riemannian submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ with a semi-symmetric non-metric connection. Then we have

(4.13)
$$Ric(X,Y) = c(n-1)g(X,Y) + \sum_{\alpha=1}^{p} \{ \varepsilon_{\alpha} f_{\alpha} h_{\alpha}(X,Y) - h_{\alpha}(A_{\xi_{\alpha}}X,Y) - \varepsilon_{\alpha} n \mu_{\alpha} h_{\alpha}(X,Y) \}$$

for $\forall X, Y \in \chi(M)$, where $\varepsilon_i = g(E_i, E_i)$, $\varepsilon_i = 1$, if E_i is spacelike or $\varepsilon_i = -1$, if E_i is timelike, and $f_{\alpha} = \sum_{i=1}^{n} \varepsilon_i h_{\alpha}(E_i, E_i)$.

Proof. Taking into account of (4.8) and (4.12), we have (4.13).

From (4.13), the following corollary can be stated as:

Corollary 13. Let M be a semi-Riemannian submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ with a semi-symmetric non-metric connection. Then the Ricci tensor of M is symmetric.

Corollary 14. Let M be a semi-Riemannian submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ with a semi-symmetric non-metric connection. Then the Ricci tensor of M is not parallel.

5. Projective curvature tensor of a semi-Riemannian submanifold with a semi-symmetric non-metric connection

We denote by

$$\overset{\circ}{\widetilde{P}}(\widetilde{X},\widetilde{Y})\widetilde{Z} = \overset{\circ}{\widetilde{R}}(\widetilde{X},\widetilde{Y})\widetilde{Z} - \frac{1}{n+p-1}\{\overset{\circ}{\widetilde{Ric}}(\widetilde{Y},\widetilde{Z})\widetilde{X} - \overset{\circ}{\widetilde{Ric}}(\widetilde{X},\widetilde{Z})\widetilde{Y}\},$$

the Weyl projective curvature tensor of an (n+p)-dimensional semi-Riemannian manifold \widetilde{M} with respect to the Levi-Civita connection $\overset{\circ}{\widetilde{\nabla}}$ for \widetilde{X} , \widetilde{Y} , $\widetilde{Z} \in \chi(\widetilde{M})$, where $\overset{\circ}{Ric}$ is Ricci tensor of \widetilde{M} with respect to the Levi-Civita connection $\overset{\circ}{\widetilde{\nabla}}$ (see [3] and [10]).

Analogous to this definition, the Weyl projective curvature tensor of \widetilde{M} with respect to the semi-symmetric non-metric connection can be defined as

$$(5.1) \qquad \widetilde{P}(\widetilde{X},\widetilde{Y})\widetilde{Z} = \widetilde{R}(\widetilde{X},\widetilde{Y})\widetilde{Z} - \frac{1}{n+p-1}\{\widetilde{Ric}(\widetilde{Y},\widetilde{Z})\widetilde{X} - \widetilde{Ric}(\widetilde{X},\widetilde{Z})\widetilde{Y}\}$$

for any \widetilde{X} , \widetilde{Y} , $\widetilde{Z} \in \chi(\widetilde{M})$, where \widetilde{Ric} is the Ricci tensor \widetilde{M} with respect to the connection $\widetilde{\nabla}$. Thus, from (5.1), the Weyl projective curvature tensors with

respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ and induced connection ∇ , respectively, are given by

$$(5.2) \qquad \widetilde{P}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U}) = \widetilde{R}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{U}) - \frac{1}{n+p-1} \{ \widetilde{Ric}(\widetilde{Y}, \widetilde{Z}) \widetilde{g}(\widetilde{X}, \widetilde{U}) - \widetilde{Ric}(\widetilde{X}, \widetilde{Z}) \widetilde{g}(\widetilde{Y}, \widetilde{U}) \}$$

and

(5.3)
$$P(X,Y,Z,U) = R(X,Y,Z,U) - \frac{1}{n-1} \{ Ric(Y,Z)g(X,U) - Ric(X,Z)g(Y,U) \}$$

for $\forall X, Y, Z \in \chi(M)$, where

$$\widetilde{P}(\widetilde{X},\widetilde{Y},\widetilde{Z},\widetilde{U}) = \widetilde{g}(\widetilde{P}(\widetilde{X},\widetilde{Y})\widetilde{Z},\widetilde{U}), \ P(X,Y,Z,U) = g(P(X,Y)Z,U)$$

and Ric is the Ricci tensor of M with respect to induced connection ∇ . From (5.2), we obtain

(5.4)
$$\widetilde{P}(\xi_{\alpha}, Y, Z, \xi_{\alpha}) = \widetilde{R}(\xi_{\alpha}, Y, Z, \xi_{\alpha}) - \frac{\varepsilon_{\alpha}}{n+p-1} \widetilde{Ric}(Y, Z).$$

Applying (4.8) to (5.4), we have

(5.5)
$$Ric(Y,Z) = \frac{n+p-2}{n+p-1}\widetilde{Ric}(Y,Z) - \sum_{\alpha=1}^{p} \{\varepsilon_{\alpha}\widetilde{P}(\xi_{\alpha},Y,Z,\xi_{\alpha}) + f_{\alpha}\varepsilon_{\alpha}h_{\alpha}(Y,Z) - n\mu_{\alpha}\varepsilon_{\alpha}h_{\alpha}(Y,Z) - h_{\alpha}(A_{\xi_{\alpha}}Y,Z)\}.$$

Then, using (5.2), (5.5) and (3.2) into (5.3) we obtain (5.6)

$$\begin{split} &= \widetilde{P}(X,Y,Z,U) - \sum_{\alpha=1}^{p} \varepsilon_{\alpha} \{h_{\alpha}(X,Z)h_{\alpha}(Y,U) - h_{\alpha}(Y,Z)h_{\alpha}(X,U) \\ &+ \mu_{\alpha}h_{\alpha}(Y,Z)g(X,U) - \mu_{\alpha}h_{\alpha}(X,Z)g(Y,U) \} \\ &+ \frac{1}{n-1} \sum_{\alpha=1}^{p} \varepsilon_{\alpha} \{\widetilde{P}(\xi_{\alpha},Y,Z,\xi_{\alpha})g(X,U) - \widetilde{P}(\xi_{\alpha},X,Z,\xi_{\alpha})g(Y,U) \} \\ &+ \frac{p-1}{(n-1)(n+p-1)} (\widetilde{Ric}(X,Z) - \widetilde{Ric}(Y,Z)) \\ &+ \frac{1}{n-1} g(Y,U) \left\{ \sum_{\alpha=1}^{p} \varepsilon_{\alpha} f_{\alpha}h_{\alpha}(X,Z) - n\varepsilon_{\alpha}\mu_{\alpha}h_{\alpha}(X,Z) - h_{\alpha}(A_{\xi_{\alpha}}X,Z) \right\} \\ &- \frac{1}{n-1} g(X,U) \left\{ \sum_{\alpha=1}^{p} \varepsilon_{\alpha} f_{\alpha}h_{\alpha}(Y,Z) - n\varepsilon_{\alpha}\mu_{\alpha}h_{\alpha}(Y,Z) - h_{\alpha}(A_{\xi_{\alpha}}Y,Z) \right\}. \end{split}$$

From (5.6), we have the following theorem:

Theorem 15. A totally umbilical semi-Riemannian submanifold in a projectively flat semi-Riemannian manifold with a semi-symmetric non-metric connection is projectively flat.

References

- N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399–409.
- [2] _____, On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Tensor (N. S.) **55** (1994), no. 2, 120–130.
- [3] B. Y. Chen, Geometry of Submanifolds, Marcel-Dekker Inc., New York, 1973.
- [4] U. C. De and D. Kamilya, Hypersurfaces of a Riemannian manifold with semi-symmetric non-metric connection, J. Indian Inst. Sci. **75** (1995), no. 6, 707–710.
- [5] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z. **21** (1924), no. 1, 211–223.
- [6] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. II. Ser. 34 (1932), 27–50.
- [7] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [8] B. Prasad and R. K. Verma, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Calcutta Math. Soc. 96 (2004), no. 6, 483–488.
- [9] J. Sengupta, U. C. De, and T. Q. Binh, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31 (2000), no. 12, 1659–1670.
- [10] K. Yano and M. Kon, Structures on Manifolds, World Scientific Co. Pte. Ltd., Singapore, 1984.
- [11] A. Yücesan and E. Yaşar, Non-degenerate hypersurfaces of a semi-Riemannian manifold with a semi-symmetric non-metric connection, to appear in Mathematical Reports.

AHMET YÜCESAN DEPARTMENT OF MATHEMATICS SÜLEYMAN DEMIREL UNIVERSITY ISPARTA 32260, TURKEY

 $E ext{-}mail\ address: ahmetyucesan@sdu.edu.tr}$

EROL YAŞAR
DEPARTMET OF MATHEMATICS
MERSIN UNIVERSITY
MEZITLI MERSIN 33343, TURKEY
E-mail address: yerol@mersin.edu.tr