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ABSTRACT. This paper aims to study the W*—curvature tensor on relativistic space-times.
The energy-momentum tensor T of a space-time having a semi-symmetric W*—curvature
tensor is semi-symmetric, whereas the whereas the energy-momentum tensor 7" of a space-
time having a divergence free W*—curvature tensor is of Codazzi type. A space-time
having a traceless W*—curvature tensor is Einstein. A W*—curvature flat space-time is
Einstein. Perfect fluid space-times which admits W* —curvature tensor are considered.

1. Introduction

In [12, 13, 14, 15, 16], the authors introduced some curvature tensors similar to
the projective curvature tensor of [9]. They investigated their geometrical proper-
ties and physical significance. These tensors have been recently studied in different
ambient spaces [1, 4, 5, 18, 17, 20, 11]. However, we have noticed that little at-
tention has been paid to the Wj—curvature tensor. This tensor is a (0,4) tensor
defined as

W3 (U,V, 2,T) = R(UV, 2,T) ~ —— [g (V. ) Ric (U,T) — g (V, T) Ric (U, 2)].
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where R(U,V,Z,T) = g(R((U,V)Z,T), R(U,V)Z = VyVy — VyVy — Vg2
is the Riemann curvature tensor, V is the Levi-Civita connection, and Ric (U, V) is
the Ricci tensor. For simplicity, we will denote W3 by W*; in local coordinates, it
is
. 1

(1.1) Wik = Riji — ] lgjk Rt — g Rik] -
The W*—curvature tensor has neither symmetry nor cyclic properties.

A semi-Riemannian manifold M is semi-symmetric [19] if

R(¢.§) - R=0,
where R ((,€) acts as a derivation on R. M is Ricci semi-symmetric [8] if
R(¢,€) - Ric =0,

where R (¢, £) acts as a derivation on Ric. A semi-symmetric manifold is known to be
Ricci semi-symmetric as well. The converse does not generally hold. Along the same
line of the above definitions we say that M has a semi-symmetric W*—curvature
tensor if

R(¢,§)-Wr=0,

where R (¢, ) acts as a derivation on W*.

This study was designed to fill the above mentioned gap. The relativistic
significance of the W*—curvature tensor is investigated. First, it is shown that
space-times with semi-symmetric W7, = g”ij «; tensor have Ricci semi-symmetric
tensor and consequently the energy-momentum tensor is semi-symmetric. The di-
vergence of the W*—curvature tensor is considered and it is proved that the energy-
momentum tensor T of a space-time M is of Codazzi type if M has a divergence
free W*—curvature tensor. If M admits a parallel W*—curvature tensor, then T is
a parallel. Finally, a W*—flat perfect fluid space-time performs as a cosmological
constant. A dust fluid W*—flat space-time satisfies Einstein’s field equation is a
vacuum space.

2. W*-semi-symmetric Space-times

A 4—dimensional relativistic space-time M is said to have a semi-symmetric
W*-curvature tensor if
R(Cag) W = Oa

where R (¢, €) acts as a derivation on the tensor W*. In local coordinates, one gets

N 1
(VuVy, =V, V)W = (VuVy =V V) Rijr — g[gjk; (VuVy, =V, V) Ry

(2'1) — gji (vuvu - VVVM) Rip.
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Contracting both sides with g% yields

" 4
(2'2) (vuvu - vyvu) ik = g (VNVV - VVVM) Rjk,

where W7, = g“W,’[jkl. Thus we have the following theorem.

Theorem 2.1. M is Ricci semi-symmetric if and only if W7, = g”Wi*jkl 15 semi-
symmetric.

The following result is a direct consequence of this theorem.

Corollary 2.2. M is Ricci semi-symmetric if the W*-curvature is semi-symmetric.

A space-time manifold is conformally semi-symmetric if the conformal curvature
tensor € is semi-symmetric.

Theorem 2.3. Assume that M is a space-time admitting a semi-symmetric
Wi, = g”Wjjkl, Then, M is conformally semi-symmetric if and only if it is semi-
symmetric i.e. V[,V Rijr = 0% V[, V1€ = 0.

The Einstein’s field equation is
1
(2.3) Rij — §gin + gijA = kTij7

where A, R, k are the cosmological constant, the scalar curvature, and the gravita-
tional constant. Then

(2.4) (VuVy, =V, V,)Ri; =k (V,V, =V, V,)Tij,

i.e., M is Ricci semi-symmetric if and only if the energy-momentum tensor is semi-
symmetric.

Theorem 2.4. The energy-momentum tensor of a space-time M is semi-symmetric
if and only if W7, = g”W;‘jkl is semi-symmetric.

Remark 2.5. A space-time M with semi-symmetric energy-momentum tensor has
been studied by De and Velimirovic in [2].

It is clear that V, Wi, = 0 implies (V,V, =V, V)W, = 0. Thus the
following result rises.

Corollary 2.6. Let M be a space-time having a covariantly constant W* — curvature
tensor. Then M is conformally semi-symmetric and the energy-momentum tensor
18 semi-symmetric.

A space-time is called Ricci recurrent if the Ricci curvature tensor satisfies

(2.5) vuRij = buR,‘j,
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where b is called the associated recurrence 1—form. Assume that the Ricci tensor
is recurrent, then

(VuVy =VuVy) Rij =V (Vo Rij) = Vo, (VRij)
=V (byRij) = Vo (buRij)
= (Vub,)Rij + b,V Rij — (Vb)) Rij — b,V Ry
(2.6) = [V,uby — Vb, Rij.

Corollary 2.7. The following conditions on a space-time M are equivalent
(1) The Ricci tensor is recurrent with closed recurrence one form,
(2) T is semi-symmetric, and
(3) Wi, = g"Wyjy, is semi-symmetric.
3. Space-times admitting Divergence Free W*-curvature Tensor
The tensor Wiy, of type (1,3) is given by
h hi
Wﬁz =9 1W3;}kz
1
h } }
=R — g[gijzl — g Ry].

Consequently, one defines its divergence as
1
Vhwﬁil = vhR?kl - g[gjthR? — gV R}
1
(3.1) = vhR?kl - g[gjszR — g5 ViR].
It is well known that the contraction of the second Bianchi identity gives
ViR}y, = ViRjk — ViRj.
Thus, equation (3.1) becomes
1
(3.2) VWi = ViR, — ViRj — g[gjleR — g7 ViR].
If the W*—curvature tensor is divergence free, then equation (3.2) turns into
1
0= lejk — Vkle — g[gjleR — glekR].

Multiplying by ¢7* we have
(3.3) ViR =0.
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Thus, the tensor R;; is a Codazzi tensor and R is constant. Conversely, assume
that the Ricci tensor is a Codazzi tensor. Then

1
th;Zl = *g[gjleR — 951 ViR]
0=ViR; — ViRj
However, the last equation implies that V;R = 0. Consequently, the W*—curvature
tensor has zero divergence.

Theorem 3.1. The W*—curvature tensor has zero divergence if and only if the
Ricci tensor is a Codazzi tensor. In both cases, the scalar curvature is constant.

The divergence of the Weyl curvature € tensor is given by

n—3

5 [9ij ViR — git V; R].

1
2(n—1)

Remark 3.2. Since divergence free of W*—curvature tensor implies that R;; is a
Codazzi tensor, the conformal curvature tensor has zero divergence.

Equation (2.3) yields

1
ViRij — 59 ViR = kVi Ty

The above theorem now implies the following result.

Corollary 3.3. The energy-momentum tensor is a Codazzi tensor if and only if
the W* — curvature tensor has zero divergence. In both cases, the scalar curvature is
constant.

Einstein’s field equation infers

1 1
(3.4) k (VlTij — V,’le) = Vl <Rij - 29¢jR) — VZ' <le - 2gljR>

=ViR; —V;Ryj — % (9i; ViR — g1;ViR)

= VhW;ihz - % (9i;VIR — g1;ViR) .
Now, it is noted that the above theorem may be proved using this identity.
4. W*-symmetric Space-times

A space-time M is called W*-symmetric if

Vmwzjkl == O
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Applying the covariant derivative on the both sides of equation (1.1), one gets

1
(4.1) VWi = Vi Rijra — 1 95k VmRit — 951V m Rix] -

If M is a W*—symmetric space-time, then
1
Vi Rijr = g[gjkvail — 91V mRix).
Multiplying the both sides by g%, we get
1
VinRje = 3195Vm B = Vi Rji],

and hence

1
(4.2) Vijk = ZgjkaR.

Now, the following theorem rises.

Theorem 4.1. Assume that M is a W*—symmeltric space-time, then M is a Ricci
symmetric if the scalar curvature is constant.

The second Bianchi identity for W*—curvature tensor is

Vi Wik + ViWiim + ViW5e

1
(4.3) =3 9k (VmRi — ViRim) + 91(ViRim — Vi Rig)]
1
- ggjm(leik — ViRi).

If the Ricci tensor satisfies V,, R;; = VR, then
(4.4) Vi Wik + VWi, + VW = 0.
Conversely, if the above equation holds, then equation (4.3) implies
(4.5)  gjx(VimRi — ViRim) + 6j1(ViRim — Vi Ri) + gjm (ViR — Vi Ry) = 0.
Multiplying the both sides with ¢**, then we have
(4.6) VimRji = ViRjm,

which means that the Ricci tensor is of Codazzi type.

Theorem 4.2. The Ricci tensor satisfies Vi, Ry = Vi Rim if and only if the
W* — curvature tensor satisfies equation (4.4).
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For a purely electro-magnetic distribution, Eequation (2.3) reduces to
(4.7) R = kT;.
Its contraction with g% gives
(4.8) R = —FkT.

In this case, it is T'= R = 0. Thus equation (4.2) yields V,,Tj; = 0.

Theorem 4.3. The energy-momentum tensor of a W*—symmetric space-time obey-
ing Finstein’s field equation for a purely electro-magnetic distribution is locally sym-
metric.

5. W*-flat Space-times

Now, we consider W*—flat space-times. Multiplying both sides of equation (1.1)
by ¢% yields

*x il pox
ij =g Wijkl

4 R
=3 (Rjk - 4gjk) :

Thus, a W;k—curvature flat space-time is Einstein, i.e.,

R
(51) Rjk = Zgjk.

Now, equation (1.1) becomes

R
ikt = Rijrt — E[ngjz — 9195k

Theorem 5.1. A space-time manifold M is Einstein if and only if W;, = 0
Moreover, a W*—flat space-time has a constant curvature.

A vector field £ is said to be a conformal vector field if

Leg = 299,

where £¢ denotes the Lie derivative along the flow lines of £ and ¢ is a scalar. £ is
called Killing if ¢ = 0. Let Tj; be the energy-momentum tensor defined on M. £ is
said to be a matter inheritance collineation if

LT = 24T.

The tensor Tj; is said to have a symmetry inheritance property along the flow lines
of €. £ is called a matter collineation if ¢ = 0. A Killing vector field £ is a matter
collineation. However, a matter collineation is not generally Killing.
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Theorem 5.2. Assume that M is a W*—flat space-time. Then, £ is conformal if
and only if LT = 2¢T.

Proof. Using equations (5.1) and (2.3), we have

R
(5.2) <A - 4> 9ij = kTij.
Then
(5.3) (A _ f) Leg = kLT

Assume that £ is conformal. The above two equations lead to

R
2¢ (A — 4) g=kLT
20T = LT.
Conversely, suppose that the energy-momentum tensor has a symmetry inheritance
property along . It is easy to show that £ is a conformal vector field. O

Corollary 5.3. Assume that M is a W*—flat space-time. Then, M admits a matter
collineation & if and only if € is Killing.

Equations (5.1) and (2.3) imply

R
(54) (A — 4) gij = kTij.

Taking the covariant derivative of 5.4 we get

1 R
(55) VlTij = EV; (A - 4) Gij-

Since a W*—curvature flat space-time has V; R = 0, V;T;; = 0.

Theorem 5.4. The energy-momentum tensor of a W*—flat space-time is covari-
antly constant.

Let M be a space-time and Wyj, = ¢g”Wj,, . be a (1,3) curvature tensor.

According to [3], there exists a unique traceless tensor B¢, ~and three unique (0, 2)
tensors Cg;, Dyi, Exr such that

;;;m = Zlm + 6]igelm + 5;ka + 5ankl-
All of these tensors are given by

1

Cot =
17 33

[1OW;, —2 (Wi, + Wik, =0,

tml — mtl
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x

ka = 33 [_2 (erim + W:ikt) + IOWZim]
_1 _ Gkm
— Q[ern 4 R]v
and
1 * * *
Ep = 33 [1OW5, — 2 (Wi, + Witk) ]

-1 Ikl
Ry - —R} .
9 { MY
Assume that the W*—curvature tensor is traceless. Then
Cri =Dy = Ep =0,

and consequently

Ry = %R

Theorem 5.5. Assume that M is a space-time admitting a traceless W* — curvature
tensor. Then, M is an Einstein space-time.

For a perfect fluid space-time with the energy density p and isotropic pressure
p, we have

(5.6) Tij = (1 + p) ugu; + pgij,

where u; is the velocity of the fluid low with g;;u/ = u; and u;u’ = —1 [10, 6, 7]. In
[2, Theorem 2.2|, a characterization of such space-times is given. This result leads
us to the following.

Theorem 5.6. Assume that the perfect fluid space-time M is W*—semi-symmetric.
Then, M is regarded as inflation and this fluid acts as a cosmological constant.
Moreover, the perfect fluid represents the quintessence barrier.

Using Equations (5.2), we have

R
(5.7 (8= ) o = Gt ) vy,

Multiplying the both sides by g% we get
(5.8) R=4A+k(u—3p).

For W*—curvature flat space-times, the scalar curvature is constant and conse-
quently

(5.9) i — 3p = constant.

193
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Again, a contraction of equation (5.7) with u’ leads to
(5.10) R=4(ku+A).

The comparison between (5.8) and (5.10) gives

(5.11) p+p=0,

i.e., the perfect fluid performs as a cosmological constant. Then equation (5.6)
implies

(5.12) Tij = pgij-

For a W*—flat space-time, the scalar curvature is constant. Thus p = constant
and consequently p = constant. Therefore, the covariant derivative of equation
(5.12) implies VlTij =0.

Theorem 5.7. Let M be a perfect fluid W*—flat space-time obeying equation (2.3),
then the u and p are constants and pu+p = 0 i.e. the perfect fluid performs as a
cosmological constant. Moreover, V,T;; = 0.

The following results are two direct consequences of being W*—curvature flat.

Corollary 5.8. A W*—flat space-time M obeying equation (4.7) is a Euclidean
space.

Corollary 5.9. Let M be a dust fluid W*— flat space-time satisfying equation (2.3)
(i.e. T;j = pusu;). Then M is a vacuum space-time(i.e. T;; =0).
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