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Abstract. This paper aims to study the W∗−curvature tensor on relativistic space-times.

The energy-momentum tensor T of a space-time having a semi-symmetric W⋆−curvature

tensor is semi-symmetric, whereas the whereas the energy-momentum tensor T of a space-

time having a divergence free W⋆−curvature tensor is of Codazzi type. A space-time

having a traceless W∗−curvature tensor is Einstein. A W∗−curvature flat space-time is

Einstein. Perfect fluid space-times which admits W⋆−curvature tensor are considered.

1. Introduction

In [12, 13, 14, 15, 16], the authors introduced some curvature tensors similar to
the projective curvature tensor of [9]. They investigated their geometrical proper-
ties and physical significance. These tensors have been recently studied in different
ambient spaces [1, 4, 5, 18, 17, 20, 11]. However, we have noticed that little at-
tention has been paid to the W∗

3−curvature tensor. This tensor is a (0, 4) tensor
defined as

W⋆
3 (U, V, Z, T ) = R (U, V, Z, T )− 1

n− 1
[g (V, Z)Ric (U, T )− g (V, T )Ric (U,Z)] ,
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where R (U, V, Z, T ) = g(R ((U, V )Z, T ), R (U, V )Z = ∇U∇V −∇U∇V −∇[U,V ]Z
is the Riemann curvature tensor, ∇ is the Levi-Civita connection, and Ric (U, V ) is
the Ricci tensor. For simplicity, we will denote W⋆

3 by W⋆; in local coordinates, it
is

(1.1) W⋆
ijkl = Rijkl −

1

n− 1
[gjkRil − gjlRik] .

The W∗−curvature tensor has neither symmetry nor cyclic properties.
A semi-Riemannian manifold M is semi-symmetric [19] if

R (ζ, ξ) ·R = 0,

where R (ζ, ξ) acts as a derivation on R. M is Ricci semi-symmetric [8] if

R (ζ, ξ) · Ric = 0,

whereR (ζ, ξ) acts as a derivation on Ric. A semi-symmetric manifold is known to be
Ricci semi-symmetric as well. The converse does not generally hold. Along the same
line of the above definitions we say that M has a semi-symmetric W⋆−curvature
tensor if

R (ζ, ξ) ·W⋆ = 0,

where R (ζ, ξ) acts as a derivation on W⋆.
This study was designed to fill the above mentioned gap. The relativistic

significance of the W⋆−curvature tensor is investigated. First, it is shown that
space-times with semi-symmetric W⋆

jk = gilW⋆
ijkl tensor have Ricci semi-symmetric

tensor and consequently the energy-momentum tensor is semi-symmetric. The di-
vergence of the W⋆−curvature tensor is considered and it is proved that the energy-
momentum tensor T of a space-time M is of Codazzi type if M has a divergence
free W⋆−curvature tensor. If M admits a parallel W⋆−curvature tensor, then T is
a parallel. Finally, a W⋆−flat perfect fluid space-time performs as a cosmological
constant. A dust fluid W⋆−flat space-time satisfies Einstein’s field equation is a
vacuum space.

2. W⋆-semi-symmetric Space-times

A 4−dimensional relativistic space-time M is said to have a semi-symmetric
W⋆-curvature tensor if

R (ζ, ξ) ·W⋆ = 0,

where R (ζ, ξ) acts as a derivation on the tensor W⋆. In local coordinates, one gets

(∇µ∇ν −∇ν∇µ)W
⋆
ijkl = (∇µ∇ν −∇ν∇µ)Rijkl −

1

3
[gjk (∇µ∇ν −∇ν∇µ)Ril

− gjl (∇µ∇ν −∇ν∇µ)Rik.(2.1)
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Contracting both sides with gil yields

(2.2) (∇µ∇ν −∇ν∇µ)W
⋆
jk =

4

3
(∇µ∇ν −∇ν∇µ)Rjk,

where W⋆
jk = gilW⋆

ijkl. Thus we have the following theorem.

Theorem 2.1. M is Ricci semi-symmetric if and only if W⋆
jk = gilW⋆

ijkl is semi-
symmetric.

The following result is a direct consequence of this theorem.

Corollary 2.2. M is Ricci semi-symmetric if the W∗-curvature is semi-symmetric.

A space-time manifold is conformally semi-symmetric if the conformal curvature
tensor C is semi-symmetric.

Theorem 2.3. Assume that M is a space-time admitting a semi-symmetric
W⋆

jk = gilW⋆
ijkl. Then, M is conformally semi-symmetric if and only if it is semi-

symmetric i.e. ∇[µ∇ν]Rijkl = 0 ⇔ ∇[µ∇ν]Cijkl = 0.

The Einstein’s field equation is

(2.3) Rij −
1

2
gijR+ gijΛ = kTij ,

where Λ, R, k are the cosmological constant, the scalar curvature, and the gravita-
tional constant. Then

(2.4) (∇µ∇ν −∇ν∇µ)Rij = k (∇µ∇ν −∇ν∇µ)Tij ,

i.e., M is Ricci semi-symmetric if and only if the energy-momentum tensor is semi-
symmetric.

Theorem 2.4. The energy-momentum tensor of a space-time M is semi-symmetric
if and only if W⋆

jk = gilW⋆
ijkl is semi-symmetric.

Remark 2.5. A space-time M with semi-symmetric energy-momentum tensor has
been studied by De and Velimirovic in [2].

It is clear that ∇µW
⋆
ijkl = 0 implies (∇µ∇ν −∇ν∇µ)W

⋆
ijkl = 0. Thus the

following result rises.

Corollary 2.6. Let M be a space-time having a covariantly constant W∗−curvature
tensor. Then M is conformally semi-symmetric and the energy-momentum tensor
is semi-symmetric.

A space-time is called Ricci recurrent if the Ricci curvature tensor satisfies

(2.5) ∇µRij = bµRij ,
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where b is called the associated recurrence 1−form. Assume that the Ricci tensor
is recurrent, then

(∇µ∇ν −∇ν∇µ)Rij = ∇µ (∇νRij)−∇ν (∇µRij)

= ∇µ (bνRij)−∇ν (bµRij)

= (∇µbν)Rij + bν∇µRij − (∇νbµ)Rij − bµ∇νRij

= [∇µbν −∇νbµ]Rij .(2.6)

Corollary 2.7. The following conditions on a space-time M are equivalent

(1) The Ricci tensor is recurrent with closed recurrence one form,

(2) T is semi-symmetric, and

(3) W⋆
jk = gilW⋆

ijkl is semi-symmetric.

3. Space-times admitting Divergence Free W⋆-curvature Tensor

The tensor W⋆h
jkl of type (1, 3) is given by

W⋆h
jkl = ghiW⋆

ijkl

= Rh
jkl −

1

3
[gjkR

h
l − gjlR

h
k ].

Consequently, one defines its divergence as

∇hW
⋆h
jkl = ∇hR

h
jkl −

1

3
[gjk∇hR

h
l − gjl∇hR

h
k ]

= ∇hR
h
jkl −

1

3
[gjk∇lR− gjl∇kR].(3.1)

It is well known that the contraction of the second Bianchi identity gives

∇hR
h
jkl = ∇lRjk −∇kRjl.

Thus, equation (3.1) becomes

(3.2) ∇hW
⋆h
jkl = ∇lRjk −∇kRjl −

1

3
[gjk∇lR− gjl∇kR].

If the W⋆−curvature tensor is divergence free, then equation (3.2) turns into

0 = ∇lRjk −∇kRjl −
1

3
[gjk∇lR− gjl∇kR].

Multiplying by gjk we have

(3.3) ∇lR = 0.
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Thus, the tensor Rij is a Codazzi tensor and R is constant. Conversely, assume
that the Ricci tensor is a Codazzi tensor. Then

∇hW
⋆h
jkl = −1

3
[gjk∇lR− gjl∇kR]

0 = ∇lRjk −∇kRjl

However, the last equation implies that ∇lR = 0. Consequently, the W⋆−curvature
tensor has zero divergence.

Theorem 3.1. The W⋆−curvature tensor has zero divergence if and only if the
Ricci tensor is a Codazzi tensor. In both cases, the scalar curvature is constant.

The divergence of the Weyl curvature C tensor is given by

∇hC
h
ijk =

n− 3

n− 2
[∇kRij −∇jRik] +

1

2 (n− 1)
[gij∇kR− gik∇jR].

Remark 3.2. Since divergence free of W⋆−curvature tensor implies that Rij is a
Codazzi tensor, the conformal curvature tensor has zero divergence.

Equation (2.3) yields

∇lRij −
1

2
gij∇lR = k∇lTij .

The above theorem now implies the following result.

Corollary 3.3. The energy-momentum tensor is a Codazzi tensor if and only if
the W⋆−curvature tensor has zero divergence. In both cases, the scalar curvature is
constant.

Einstein’s field equation infers

k (∇lTij −∇iTjl) = ∇l

(
Rij −

1

2
gijR

)
−∇i

(
Rlj −

1

2
gljR

)
(3.4)

= ∇lRij −∇iRlj −
1

2
(gij∇lR− glj∇iR)

= ∇hW
⋆h
jil −

1

6
(gij∇lR− glj∇iR) .

Now, it is noted that the above theorem may be proved using this identity.

4. W⋆-symmetric Space-times

A space-time M is called W⋆-symmetric if

∇mW⋆
ijkl = 0.
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Applying the covariant derivative on the both sides of equation (1.1), one gets

(4.1) ∇mW⋆
ijkl = ∇mRijkl −

1

n− 1
[gjk∇mRil − gjl∇mRik] .

If M is a W⋆−symmetric space-time, then

∇mRijkl =
1

3
[gjk∇mRil − gjl∇mRik].

Multiplying the both sides by gil, we get

∇mRjk =
1

3
[gjk∇mR−∇mRjk],

and hence

(4.2) ∇mRjk =
1

4
gjk∇mR.

Now, the following theorem rises.

Theorem 4.1. Assume that M is a W⋆−symmetric space-time, then M is a Ricci
symmetric if the scalar curvature is constant.

The second Bianchi identity for W⋆−curvature tensor is

∇mW⋆
ijkl +∇kW

⋆
ijlm +∇lW

⋆
ijmk

= −1

3
[gjk(∇mRil −∇lRim) + gjl(∇kRim −∇mRik)](4.3)

− 1

3
gjm(∇lRik −∇kRil).

If the Ricci tensor satisfies ∇mRil = ∇lRim, then

(4.4) ∇mW⋆
ijkl +∇kW

⋆
ijlm +∇lW

⋆
ijmk = 0.

Conversely, if the above equation holds, then equation (4.3) implies

(4.5) gjk(∇mRil −∇lRim) + gjl(∇kRim −∇mRik) + gjm(∇lRik −∇kRil) = 0.

Multiplying the both sides with gik, then we have

(4.6) ∇mRjl = ∇lRjm,

which means that the Ricci tensor is of Codazzi type.

Theorem 4.2. The Ricci tensor satisfies ∇mRil = ∇lRim if and only if the
W⋆−curvature tensor satisfies equation (4.4).
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For a purely electro-magnetic distribution, Eequation (2.3) reduces to

(4.7) Rij = kTij .

Its contraction with gij gives

(4.8) R = −kT.

In this case, it is T = R = 0. Thus equation (4.2) yields ∇mTjk = 0.

Theorem 4.3. The energy-momentum tensor of a W⋆−symmetric space-time obey-
ing Einstein’s field equation for a purely electro-magnetic distribution is locally sym-
metric.

5. W⋆-flat Space-times

Now, we consider W⋆−flat space-times. Multiplying both sides of equation (1.1)
by gil yields

W⋆
jk = gilW⋆

ijkl

=
4

3

(
Rjk − R

4
gjk

)
.

Thus, a W⋆
jk−curvature flat space-time is Einstein, i.e.,

(5.1) Rjk =
R

4
gjk.

Now, equation (1.1) becomes

W⋆
ijkl = Rijkl −

R

12
[gikgjl − gjlgjk].

Theorem 5.1. A space-time manifold M is Einstein if and only if W⋆
jk = 0.

Moreover, a W∗−flat space-time has a constant curvature.

A vector field ξ is said to be a conformal vector field if

Lξg = 2ϕg,

where Lξ denotes the Lie derivative along the flow lines of ξ and ϕ is a scalar. ξ is
called Killing if ϕ = 0. Let Tij be the energy-momentum tensor defined on M . ξ is
said to be a matter inheritance collineation if

LξT = 2ϕT.

The tensor Tij is said to have a symmetry inheritance property along the flow lines
of ξ. ξ is called a matter collineation if ϕ = 0. A Killing vector field ξ is a matter
collineation. However, a matter collineation is not generally Killing.
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Theorem 5.2. Assume that M is a W⋆−flat space-time. Then, ξ is conformal if
and only if LξT = 2ϕT .

Proof. Using equations (5.1) and (2.3), we have

(5.2)

(
Λ− R

4

)
gij = kTij .

Then

(5.3)

(
Λ− R

4

)
Lξg = kLξT.

Assume that ξ is conformal. The above two equations lead to

2ϕ

(
Λ− R

4

)
g = kLξT

2ϕT = LξT.

Conversely, suppose that the energy-momentum tensor has a symmetry inheritance
property along ξ. It is easy to show that ξ is a conformal vector field. 2

Corollary 5.3. Assume that M is a W⋆−flat space-time. Then, M admits a matter
collineation ξ if and only if ξ is Killing.

Equations (5.1) and (2.3) imply

(5.4)

(
Λ− R

4

)
gij = kTij .

Taking the covariant derivative of 5.4 we get

(5.5) ∇lTij =
1

k
∇l

(
Λ− R

4

)
gij .

Since a W⋆−curvature flat space-time has ∇lR = 0, ∇lTij = 0.

Theorem 5.4. The energy-momentum tensor of a W⋆−flat space-time is covari-
antly constant.

Let M be a space-time and W∗i
klm = gijW∗

jklm be a (1, 3) curvature tensor.

According to [3], there exists a unique traceless tensor Bi
klm and three unique (0, 2)

tensors Ckl, Dkl, Ekl such that

W∗i
klm = Bi

klm + δikClm + δilDkm + δimEkl.

All of these tensors are given by

Cml =
1

33

[
10W∗t

tml − 2
(
W∗t

mtl +W∗t
lmt

)]
= 0,
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Dkm =
1

33

[
−2

(
W∗t

tkm +W∗t
mkt

)
+ 10W∗t

ktm

]
=

1

9
[Rkm − gkm

4
R],

and

Ekl =
1

33

[
10W∗t

klt − 2
(
W∗t

tlk +W∗t
ltk

)]
=

−1

9

[
Rkl −

gkl
4
R
]
.

Assume that the W∗−curvature tensor is traceless. Then

Ckl = Dkl = Ekl = 0,

and consequently

Rml =
gml

4
R.

Theorem 5.5. Assume that M is a space-time admitting a traceless W∗−curvature
tensor. Then, M is an Einstein space-time.

For a perfect fluid space-time with the energy density µ and isotropic pressure
p, we have

(5.6) Tij = (µ+ p)uiuj + pgij ,

where ui is the velocity of the fluid flow with gijuj = ui and uiu
i = −1 [10, 6, 7]. In

[2, Theorem 2.2], a characterization of such space-times is given. This result leads
us to the following.

Theorem 5.6. Assume that the perfect fluid space-time M is W⋆−semi-symmetric.
Then, M is regarded as inflation and this fluid acts as a cosmological constant.
Moreover, the perfect fluid represents the quintessence barrier.

Using Equations (5.2), we have

(5.7)

(
Λ− kp− R

4

)
gij = k (µ+ p)uiuj .

Multiplying the both sides by gij we get

(5.8) R = 4Λ + k (µ− 3p) .

For W⋆−curvature flat space-times, the scalar curvature is constant and conse-
quently

(5.9) µ− 3p = constant.
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Again, a contraction of equation (5.7) with ui leads to

(5.10) R = 4 (kµ+ Λ) .

The comparison between (5.8) and (5.10) gives

(5.11) µ+ p = 0,

i.e., the perfect fluid performs as a cosmological constant. Then equation (5.6)
implies

(5.12) Tij = pgij .

For a W⋆−flat space-time, the scalar curvature is constant. Thus µ = constant
and consequently p = constant. Therefore, the covariant derivative of equation
(5.12) implies ∇lTij = 0.

Theorem 5.7. Let M be a perfect fluid W⋆−flat space-time obeying equation (2.3),
then the µ and p are constants and µ + p = 0 i.e. the perfect fluid performs as a
cosmological constant. Moreover, ∇lTij = 0.

The following results are two direct consequences of being W⋆−curvature flat.

Corollary 5.8. A W⋆−flat space-time M obeying equation (4.7) is a Euclidean
space.

Corollary 5.9. Let M be a dust fluid W⋆−flat space-time satisfying equation (2.3)
(i.e. Tij = µuiuj). Then M is a vacuum space-time(i.e. Tij = 0).
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