KYUNGPOOK Math. J. 60(2020), 185-195 https://doi.org/10.5666/KMJ.2020.60.1.185 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

The W^* -curvature Tensor on Relativistic Space-times

Hassan Abu-Donia

Department of Mathematics, Faculty of Science, Zagazig University, Egypt e-mail: donia_1000@yahoo.com

SAMEH SHENAWY*

Basic Science Department, Modern Academy for Engineering and Technology, Maadi, Egypt

e-mail: drshenawy@mail.com and drssshenawy@eng.modern-academy.edu.eg

ABDALLAH ABDELHAMEED SYIED

Department of Mathematics, Faculty of Science, Zagazig University, Egypt e-mail: a.a_syied@yahoo.com

ABSTRACT. This paper aims to study the \mathcal{W}^* -curvature tensor on relativistic space-times. The energy-momentum tensor T of a space-time having a semi-symmetric \mathcal{W}^* -curvature tensor is semi-symmetric, whereas the energy-momentum tensor T of a space-time having a divergence free \mathcal{W}^* -curvature tensor is of Codazzi type. A space-time having a traceless \mathcal{W}^* -curvature tensor is Einstein. A \mathcal{W}^* -curvature flat space-time is Einstein. Perfect fluid space-times which admits \mathcal{W}^* -curvature tensor are considered.

1. Introduction

In [12, 13, 14, 15, 16], the authors introduced some curvature tensors similar to the projective curvature tensor of [9]. They investigated their geometrical properties and physical significance. These tensors have been recently studied in different ambient spaces [1, 4, 5, 18, 17, 20, 11]. However, we have noticed that little attention has been paid to the W_3^* -curvature tensor. This tensor is a (0,4) tensor defined as

$$\mathcal{W}_{3}^{\star}\left(U,V,Z,T\right)=R\left(U,V,Z,T\right)-\frac{1}{n-1}\left[g\left(V,Z\right)\operatorname{Ric}\left(U,T\right)-g\left(V,T\right)\operatorname{Ric}\left(U,Z\right)\right],$$

Received June 10, 2019; revised November 13, 2019; accepted November 25, 2019. 2010 Mathematics Subject Classification: primary 53C25, 53C50, secondary 53C80, 53B20. Key words and phrases: Einstein's field equation, perfect fluid space-times, energy-momentum tensor, semi-symmetric curvature tensor.

^{*} Corresponding Author.

where $R(U, V, Z, T) = g(R((U, V)Z, T), R(U, V)Z = \nabla_U \nabla_V - \nabla_U \nabla_V - \nabla_{[U, V]}Z$ is the Riemann curvature tensor, ∇ is the Levi-Civita connection, and Ric(U, V) is the Ricci tensor. For simplicity, we will denote \mathcal{W}_3^* by \mathcal{W}^* ; in local coordinates, it is

(1.1)
$$W_{ijkl}^{\star} = R_{ijkl} - \frac{1}{n-1} \left[g_{jk} R_{il} - g_{jl} R_{ik} \right].$$

The W^* -curvature tensor has neither symmetry nor cyclic properties.

A semi-Riemannian manifold M is semi-symmetric [19] if

$$R(\zeta, \xi) \cdot R = 0$$

where $R(\zeta, \xi)$ acts as a derivation on R. M is Ricci semi-symmetric [8] if

$$R(\zeta, \xi) \cdot \text{Ric} = 0,$$

where $R(\zeta, \xi)$ acts as a derivation on Ric. A semi-symmetric manifold is known to be Ricci semi-symmetric as well. The converse does not generally hold. Along the same line of the above definitions we say that M has a semi-symmetric \mathcal{W}^* -curvature tensor if

$$R(\zeta, \xi) \cdot \mathcal{W}^* = 0,$$

where $R(\zeta, \xi)$ acts as a derivation on \mathcal{W}^* .

This study was designed to fill the above mentioned gap. The relativistic significance of the \mathcal{W}^\star -curvature tensor is investigated. First, it is shown that space-times with semi-symmetric $\mathcal{W}^\star_{jk} = g^{il}\mathcal{W}^\star_{ijkl}$ tensor have Ricci semi-symmetric tensor and consequently the energy-momentum tensor is semi-symmetric. The divergence of the \mathcal{W}^\star -curvature tensor is considered and it is proved that the energy-momentum tensor T of a space-time M is of Codazzi type if M has a divergence free \mathcal{W}^\star -curvature tensor. If M admits a parallel \mathcal{W}^\star -curvature tensor, then T is a parallel. Finally, a \mathcal{W}^\star -flat perfect fluid space-time performs as a cosmological constant. A dust fluid \mathcal{W}^\star -flat space-time satisfies Einstein's field equation is a vacuum space.

2. W^* -semi-symmetric Space-times

A 4-dimensional relativistic space-time M is said to have a semi-symmetric \mathcal{W}^{\star} -curvature tensor if

$$R\left(\zeta,\xi\right)\cdot\mathcal{W}^{\star}=0,$$

where $R(\zeta,\xi)$ acts as a derivation on the tensor \mathcal{W}^* . In local coordinates, one gets

$$(\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) \mathcal{W}_{ijkl}^{\star} = (\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) R_{ijkl} - \frac{1}{3} [g_{jk} (\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) R_{il} - g_{jl} (\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) R_{ik}.$$

$$(2.1)$$

Contracting both sides with g^{il} yields

(2.2)
$$(\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) \mathcal{W}_{jk}^{\star} = \frac{4}{3} (\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) R_{jk},$$

where $\mathcal{W}_{ik}^{\star} = g^{il}\mathcal{W}_{ijkl}^{\star}$. Thus we have the following theorem.

Theorem 2.1. M is Ricci semi-symmetric if and only if $W_{jk}^{\star} = g^{il}W_{ijkl}^{\star}$ is semi-symmetric.

The following result is a direct consequence of this theorem.

Corollary 2.2. M is Ricci semi-symmetric if the W^* -curvature is semi-symmetric.

A space-time manifold is $conformally\ semi-symmetric$ if the conformal curvature tensor ${\mathcal C}$ is semi-symmetric.

Theorem 2.3. Assume that M is a space-time admitting a semi-symmetric $W_{jk}^{\star} = g^{il}W_{ijkl}^{\star}$. Then, M is conformally semi-symmetric if and only if it is semi-symmetric i.e. $\nabla_{[\mu}\nabla_{\nu]}R_{ijkl} = 0 \Leftrightarrow \nabla_{[\mu}\nabla_{\nu]}C_{ijkl} = 0$.

The Einstein's field equation is

$$(2.3) R_{ij} - \frac{1}{2}g_{ij}R + g_{ij}\Lambda = kT_{ij},$$

where Λ, R, k are the cosmological constant, the scalar curvature, and the gravitational constant. Then

$$(2.4) \qquad (\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) R_{ij} = k (\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) T_{ij},$$

i.e., M is Ricci semi-symmetric if and only if the energy-momentum tensor is semi-symmetric.

Theorem 2.4. The energy-momentum tensor of a space-time M is semi-symmetric if and only if $W_{ik}^{\star} = g^{il}W_{ijkl}^{\star}$ is semi-symmetric.

Remark 2.5. A space-time M with semi-symmetric energy-momentum tensor has been studied by De and Velimirovic in [2].

It is clear that $\nabla_{\mu} \mathcal{W}_{ijkl}^{\star} = 0$ implies $(\nabla_{\mu} \nabla_{\nu} - \nabla_{\nu} \nabla_{\mu}) \mathcal{W}_{ijkl}^{\star} = 0$. Thus the following result rises.

Corollary 2.6. Let M be a space-time having a covariantly constant W^* -curvature tensor. Then M is conformally semi-symmetric and the energy-momentum tensor is semi-symmetric.

A space-time is called *Ricci recurrent* if the Ricci curvature tensor satisfies

$$(2.5) \nabla_{\mu} R_{ij} = b_{\mu} R_{ij},$$

where b is called the associated recurrence 1—form. Assume that the Ricci tensor is recurrent, then

$$(\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu}) R_{ij} = \nabla_{\mu} (\nabla_{\nu}R_{ij}) - \nabla_{\nu} (\nabla_{\mu}R_{ij})$$

$$= \nabla_{\mu} (b_{\nu}R_{ij}) - \nabla_{\nu} (b_{\mu}R_{ij})$$

$$= (\nabla_{\mu}b_{\nu}) R_{ij} + b_{\nu}\nabla_{\mu}R_{ij} - (\nabla_{\nu}b_{\mu}) R_{ij} - b_{\mu}\nabla_{\nu}R_{ij}$$

$$= [\nabla_{\mu}b_{\nu} - \nabla_{\nu}b_{\mu}] R_{ij}.$$

$$(2.6)$$

Corollary 2.7. The following conditions on a space-time M are equivalent

- (1) The Ricci tensor is recurrent with closed recurrence one form,
- (2) T is semi-symmetric, and
- (3) $W_{jk}^{\star} = g^{il}W_{ijkl}^{\star}$ is semi-symmetric.

3. Space-times admitting Divergence Free W^* -curvature Tensor

The tensor $\mathcal{W}^{\star h}_{jkl}$ of type (1,3) is given by

$$\begin{split} \mathcal{W}_{jkl}^{\star h} &= g^{hi} \mathcal{W}_{ijkl}^{\star} \\ &= R_{jkl}^h - \frac{1}{3} [g_{jk} R_l^h - g_{jl} R_k^h]. \end{split}$$

Consequently, one defines its divergence as

$$\nabla_h \mathcal{W}_{jkl}^{\star h} = \nabla_h R_{jkl}^h - \frac{1}{3} [g_{jk} \nabla_h R_l^h - g_{jl} \nabla_h R_k^h]$$

$$= \nabla_h R_{jkl}^h - \frac{1}{3} [g_{jk} \nabla_l R - g_{jl} \nabla_k R].$$
(3.1)

It is well known that the contraction of the second Bianchi identity gives

$$\nabla_h R_{jkl}^h = \nabla_l R_{jk} - \nabla_k R_{jl}.$$

Thus, equation (3.1) becomes

(3.2)
$$\nabla_h \mathcal{W}_{jkl}^{\star h} = \nabla_l R_{jk} - \nabla_k R_{jl} - \frac{1}{3} [g_{jk} \nabla_l R - g_{jl} \nabla_k R].$$

If the W^* -curvature tensor is divergence free, then equation (3.2) turns into

$$0 = \nabla_l R_{jk} - \nabla_k R_{jl} - \frac{1}{3} [g_{jk} \nabla_l R - g_{jl} \nabla_k R].$$

Multiplying by g^{jk} we have

$$(3.3) \nabla_l R = 0.$$

Thus, the tensor R_{ij} is a Codazzi tensor and R is constant. Conversely, assume that the Ricci tensor is a Codazzi tensor. Then

$$\nabla_h \mathcal{W}_{jkl}^{\star h} = -\frac{1}{3} [g_{jk} \nabla_l R - g_{jl} \nabla_k R]$$
$$0 = \nabla_l R_{jk} - \nabla_k R_{jl}$$

However, the last equation implies that $\nabla_l R = 0$. Consequently, the \mathcal{W}^* -curvature tensor has zero divergence.

Theorem 3.1. The W^* -curvature tensor has zero divergence if and only if the Ricci tensor is a Codazzi tensor. In both cases, the scalar curvature is constant.

The divergence of the Weyl curvature C tensor is given by

$$\nabla_h \mathcal{C}^h_{ijk} = \frac{n-3}{n-2} \left[\nabla_k R_{ij} - \nabla_j R_{ik} \right] + \frac{1}{2 \left(n-1 \right)} [g_{ij} \nabla_k R - g_{ik} \nabla_j R].$$

Remark 3.2. Since divergence free of W^* -curvature tensor implies that R_{ij} is a Codazzi tensor, the conformal curvature tensor has zero divergence.

Equation (2.3) yields

$$\nabla_l R_{ij} - \frac{1}{2} g_{ij} \nabla_l R = k \nabla_l T_{ij}.$$

The above theorem now implies the following result.

Corollary 3.3. The energy-momentum tensor is a Codazzi tensor if and only if the W^* -curvature tensor has zero divergence. In both cases, the scalar curvature is constant.

Einstein's field equation infers

$$(3.4) k(\nabla_{l}T_{ij} - \nabla_{i}T_{jl}) = \nabla_{l}\left(R_{ij} - \frac{1}{2}g_{ij}R\right) - \nabla_{i}\left(R_{lj} - \frac{1}{2}g_{lj}R\right)$$
$$= \nabla_{l}R_{ij} - \nabla_{i}R_{lj} - \frac{1}{2}\left(g_{ij}\nabla_{l}R - g_{lj}\nabla_{i}R\right)$$
$$= \nabla_{h}\mathcal{W}_{jil}^{\star h} - \frac{1}{6}\left(g_{ij}\nabla_{l}R - g_{lj}\nabla_{i}R\right).$$

Now, it is noted that the above theorem may be proved using this identity.

4. W^* -symmetric Space-times

A space-time M is called \mathcal{W}^{\star} -symmetric if

$$\nabla_m \mathcal{W}_{ijkl}^{\star} = 0.$$

Applying the covariant derivative on the both sides of equation (1.1), one gets

(4.1)
$$\nabla_m \mathcal{W}_{ijkl}^{\star} = \nabla_m R_{ijkl} - \frac{1}{n-1} \left[g_{jk} \nabla_m R_{il} - g_{jl} \nabla_m R_{ik} \right].$$

If M is a W^* -symmetric space-time, then

$$\nabla_m R_{ijkl} = \frac{1}{3} [g_{jk} \nabla_m R_{il} - g_{jl} \nabla_m R_{ik}].$$

Multiplying the both sides by g^{il} , we get

$$\nabla_m R_{jk} = \frac{1}{3} [g_{jk} \nabla_m R - \nabla_m R_{jk}],$$

and hence

(4.2)
$$\nabla_m R_{jk} = \frac{1}{4} g_{jk} \nabla_m R.$$

Now, the following theorem rises.

Theorem 4.1. Assume that M is a W^* -symmetric space-time, then M is a Ricci symmetric if the scalar curvature is constant.

The second Bianchi identity for W^{\star} -curvature tensor is

$$(4.3) \qquad \nabla_{m} \mathcal{W}_{ijkl}^{\star} + \nabla_{k} \mathcal{W}_{ijlm}^{\star} + \nabla_{l} \mathcal{W}_{ijmk}^{\star}$$

$$= -\frac{1}{3} \left[g_{jk} (\nabla_{m} R_{il} - \nabla_{l} R_{im}) + g_{jl} (\nabla_{k} R_{im} - \nabla_{m} R_{ik}) \right]$$

$$-\frac{1}{3} g_{jm} (\nabla_{l} R_{ik} - \nabla_{k} R_{il}).$$

If the Ricci tensor satisfies $\nabla_m R_{il} = \nabla_l R_{im}$, then

(4.4)
$$\nabla_m \mathcal{W}_{ijkl}^{\star} + \nabla_k \mathcal{W}_{ijlm}^{\star} + \nabla_l \mathcal{W}_{ijmk}^{\star} = 0.$$

Conversely, if the above equation holds, then equation (4.3) implies

$$(4.5) \quad g_{jk}(\nabla_m R_{il} - \nabla_l R_{im}) + g_{jl}(\nabla_k R_{im} - \nabla_m R_{ik}) + g_{jm}(\nabla_l R_{ik} - \nabla_k R_{il}) = 0.$$

Multiplying the both sides with g^{ik} , then we have

$$(4.6) \nabla_m R_{il} = \nabla_l R_{im},$$

which means that the Ricci tensor is of Codazzi type.

Theorem 4.2. The Ricci tensor satisfies $\nabla_m R_{il} = \nabla_l R_{im}$ if and only if the W^* -curvature tensor satisfies equation (4.4).

For a purely electro-magnetic distribution, Equation (2.3) reduces to

$$(4.7) R_{ij} = kT_{ij}.$$

Its contraction with g^{ij} gives

$$(4.8) R = -kT.$$

In this case, it is T = R = 0. Thus equation (4.2) yields $\nabla_m T_{jk} = 0$.

Theorem 4.3. The energy-momentum tensor of a W^* -symmetric space-time obeying Einstein's field equation for a purely electro-magnetic distribution is locally symmetric.

5. W^* -flat Space-times

Now, we consider W^* -flat space-times. Multiplying both sides of equation (1.1) by g^{il} yields

$$W_{jk}^{\star} = g^{il} W_{ijkl}^{\star}$$
$$= \frac{4}{3} \left(R_{jk} - \frac{R}{4} g_{jk} \right).$$

Thus, a \mathcal{W}_{jk}^{\star} -curvature flat space-time is Einstein, i.e.,

$$(5.1) R_{jk} = \frac{R}{4}g_{jk}.$$

Now, equation (1.1) becomes

$$\mathcal{W}_{ijkl}^{\star} = R_{ijkl} - \frac{R}{12} [g_{ik}g_{jl} - g_{jl}g_{jk}].$$

Theorem 5.1. A space-time manifold M is Einstein if and only if $W_{jk}^{\star} = 0$. Moreover, a W^* -flat space-time has a constant curvature.

A vector field ξ is said to be a conformal vector field if

$$\mathcal{L}_{\mathcal{E}}g = 2\phi g,$$

where \mathcal{L}_{ξ} denotes the Lie derivative along the flow lines of ξ and ϕ is a scalar. ξ is called *Killing* if $\phi = 0$. Let T_{ij} be the energy-momentum tensor defined on M. ξ is said to be a matter inheritance collineation if

$$\mathcal{L}_{\xi}T = 2\phi T.$$

The tensor T_{ij} is said to have a symmetry inheritance property along the flow lines of ξ . ξ is called a *matter collineation* if $\phi = 0$. A Killing vector field ξ is a matter collineation. However, a matter collineation is not generally Killing.

Theorem 5.2. Assume that M is a W^* -flat space-time. Then, ξ is conformal if and only if $\mathcal{L}_{\xi}T = 2\phi T$.

Proof. Using equations (5.1) and (2.3), we have

(5.2)
$$\left(\Lambda - \frac{R}{4}\right)g_{ij} = kT_{ij}.$$

Then

(5.3)
$$\left(\Lambda - \frac{R}{4}\right) \mathcal{L}_{\xi} g = k \mathcal{L}_{\xi} T.$$

Assume that ξ is conformal. The above two equations lead to

$$2\phi \left(\Lambda - \frac{R}{4}\right)g = k\mathcal{L}_{\xi}T$$
$$2\phi T = \mathcal{L}_{\xi}T.$$

Conversely, suppose that the energy-momentum tensor has a symmetry inheritance property along ξ . It is easy to show that ξ is a conformal vector field.

Corollary 5.3. Assume that M is a W^* -flat space-time. Then, M admits a matter collineation ξ if and only if ξ is Killing.

Equations (5.1) and (2.3) imply

(5.4)
$$\left(\Lambda - \frac{R}{4}\right)g_{ij} = kT_{ij}.$$

Taking the covariant derivative of 5.4 we get

(5.5)
$$\nabla_l T_{ij} = \frac{1}{k} \nabla_l \left(\Lambda - \frac{R}{4} \right) g_{ij}.$$

Since a W^* -curvature flat space-time has $\nabla_l R = 0$, $\nabla_l T_{ij} = 0$.

Theorem 5.4. The energy-momentum tensor of a W^* -flat space-time is covariantly constant.

Let M be a space-time and $W_{klm}^{*i} = g^{ij}W_{jklm}^{*}$ be a (1,3) curvature tensor. According to [3], there exists a unique traceless tensor \mathcal{B}_{klm}^{i} and three unique (0,2) tensors \mathcal{C}_{kl} , \mathcal{D}_{kl} , \mathcal{E}_{kl} such that

$$\mathcal{W}_{klm}^{*i} = \mathcal{B}_{klm}^{i} + \delta_{k}^{i}\mathcal{C}_{lm} + \delta_{l}^{i}\mathcal{D}_{km} + \delta_{m}^{i}\mathcal{E}_{kl}.$$

All of these tensors are given by

$$C_{ml} = \frac{1}{33} \left[10 \mathcal{W}_{tml}^{*t} - 2 \left(\mathcal{W}_{mtl}^{*t} + \mathcal{W}_{lmt}^{*t} \right) \right] = 0,$$

$$\mathcal{D}_{km} = \frac{1}{33} \left[-2 \left(\mathcal{W}_{tkm}^{*t} + \mathcal{W}_{mkt}^{*t} \right) + 10 \mathcal{W}_{ktm}^{*t} \right]$$
$$= \frac{1}{9} [R_{km} - \frac{g_{km}}{4} R],$$

and

$$\mathcal{E}_{kl} = \frac{1}{33} \left[10 \mathcal{W}_{klt}^{*t} - 2 \left(\mathcal{W}_{tlk}^{*t} + \mathcal{W}_{ltk}^{*t} \right) \right]$$
$$= \frac{-1}{9} \left[R_{kl} - \frac{g_{kl}}{4} R \right].$$

Assume that the W^* -curvature tensor is traceless. Then

$$\mathfrak{C}_{kl} = \mathfrak{D}_{kl} = \mathfrak{E}_{kl} = 0,$$

and consequently

$$R_{ml} = \frac{g_{ml}}{4}R.$$

Theorem 5.5. Assume that M is a space-time admitting a traceless W^* -curvature tensor. Then, M is an Einstein space-time.

For a perfect fluid space-time with the energy density μ and isotropic pressure p, we have

$$(5.6) T_{ij} = (\mu + p) u_i u_j + p q_{ij},$$

where u_i is the velocity of the fluid flow with $g_{ij}u^j = u_i$ and $u_iu^i = -1$ [10, 6, 7]. In [2, Theorem 2.2], a characterization of such space-times is given. This result leads us to the following.

Theorem 5.6. Assume that the perfect fluid space-time M is W^* -semi-symmetric. Then, M is regarded as inflation and this fluid acts as a cosmological constant. Moreover, the perfect fluid represents the quintessence barrier.

Using Equations (5.2), we have

(5.7)
$$\left(\Lambda - kp - \frac{R}{4}\right)g_{ij} = k\left(\mu + p\right)u_iu_j.$$

Multiplying the both sides by g^{ij} we get

$$(5.8) R = 4\Lambda + k\left(\mu - 3p\right).$$

For $\mathcal{W}^{\star}-$ curvature flat space-times, the scalar curvature is constant and consequently

Again, a contraction of equation (5.7) with u^i leads to

$$(5.10) R = 4(k\mu + \Lambda).$$

The comparison between (5.8) and (5.10) gives

i.e., the perfect fluid performs as a cosmological constant. Then equation (5.6) implies

$$(5.12) T_{ij} = pg_{ij}.$$

For a W*-flat space-time, the scalar curvature is constant. Thus $\mu = \text{constant}$ and consequently p = constant. Therefore, the covariant derivative of equation (5.12) implies $\nabla_l T_{ij} = 0$.

Theorem 5.7. Let M be a perfect fluid W^* -flat space-time obeying equation (2.3), then the μ and p are constants and $\mu + p = 0$ i.e. the perfect fluid performs as a cosmological constant. Moreover, $\nabla_l T_{ij} = 0$.

The following results are two direct consequences of being W^{\star} -curvature flat.

Corollary 5.8. A W^* -flat space-time M obeying equation (4.7) is a Euclidean space.

Corollary 5.9. Let M be a dust fluid W^* -flat space-time satisfying equation (2.3) (i.e. $T_{ij} = \mu u_i u_j$). Then M is a vacuum space-time (i.e. $T_{ij} = 0$).

References

- [1] Z. Ahsan and M. Ali, Curvature tensor for the spacetime of general relativity, Int. J. Geom. Methods Mod. Phys., 14(5)(2017), 1750078, 13 pp.
- [2] U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys., **54(6)**(2015), 1779–1783.
- [3] D. Krupka, The trace decomposition of tensors of type (1,2) and (1,3), New Developments in Differential Geometry, 243-253, Math. Appl. **350**, Kluwer Acad. Publ., Dordrecht, 1996.
- [4] S. Mallick and U. C. De, Space-times admitting W_2 -curvature tensor, Int. J. Geom. Methods Mod. Phys., $\mathbf{11(4)}(2014)$, 1450030, 8 pp.
- [5] S. Mallick, Y. J. Suh and U. C. De, A spacetime with pseudo-projective curvature tensor, J. Math. Phys., **57**(2016), 062501, 10 pp.
- [6] C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys., 9(1)(2012), 1250004, 21 pp.

- [7] C. A. Mantica and Y. J. Suh, Pseudo Z Symmetric Space-times, J. Math. Phys., 55(2014), 042502, 12 pp.
- [8] V. A. Mirzoyan, Ricci semisymmetric submanifolds (Russian), Itogi Nauki i Tekhniki: Problemy Geometrii 23, pp. 29–66, VINITI, Moscow, 1991.
- [9] R. S. Mishra, Structures on differentiable manifold and their applications, Chandrama Prakasana, Allahabad, 1984.
- [10] B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.
- [11] F. Ozen Zengin, On Riemannian manifolds admitting W₂-curvature tensor, Miskolc Math. Notes, 12(2011), 289–296.
- [12] G. P. Pokhariyal and R. S. Mishra, Curvature tensor and their relativistic significance, Yokohama Math. J., 18(1970), 105–108.
- [13] G. P. Pokhariyal and R. S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Math. J., 19(1971), 97–103.
- [14] G. P. Pokhariyal, Curvature tensor and their relativistic significance III, Yokohama Math. J., 20(1972), 115–119.
- [15] G. P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math. Math. Sci., 5(1982), 133–139.
- [16] G. P. Pokhariyal, Curvature tensors on A-Einstein Sasakian manifolds, Balkan J. Geom. Appl., 6(2001), 45–50.
- [17] R. K. Sach and W. Hu, General relativity for mathematician, Springer Verlag, New York, 1977.
- [18] S. Shenawy and Bulent Unal, The W₂-curvature tensor on warped product manifolds and applications, Int. J. Geom. Methods Mod. Phys., 13(7)(2016), 1650099, 14 pp.
- [19] Z. I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$ I, J. Diff. Geom., 17(1982), 531–582.
- [20] A. Taleshian and A. A. Hosseinzadeh, On W_2 -curvature tensor of N(k)-quasi-Einstein manifolds, J. Math. Comput. Sci., $\mathbf{1}(\mathbf{1})(2010)$, 28–32.