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Abstract. The objective of the present paper is to study some new results on concircular

curvature tensor in a Kenmotsu manifold with respect to the semi-symmetric non-metric

connection.

1. Introduction

In 1969, S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension [14]. For such a manifold,
the sectional curvature of plane sections containing ξ is a constant, say c. He
showed that they can be divided into three classes: (1) homogeneous normal contact
Riemannian manifolds with c > 0, (2) global Riemannian products of a line or a
circle with a Kaehler manifold of constant holomorphic sectional curvature if c =
0 and (3) a warped product space R×f C if c > 0. It is known that the manifolds
of class (1) are characterized by admitting a Sasakian structure. K. Kenmotsu [12]
characterized the differential geometric properties of the manifolds of class (3); the
structure so obtained is now known as Kenmotsu structure. Kenmotsu manifolds
have been studied by various authors such as G. Pathak and U. C. De [13], J. B.
Jun, U. C. De and G. Pathak [11], A. Yildiz et al. [17] and many others.

In 1924, the idea of semi-symmetric linear connection on a differentiable mani-
fold was introduced by A. Friedmann and J. A. Schouten [8]. In 1930, E. Bartolotti
[2] gave a geometrical meaning of such a connection. In 1932, H. A. Hayden [10]
introduced semi-symmetric metric connection in Riemannian manifolds and this
was studied systematically by K. Yano [15]. The semi-symmetric non-metric con-
nection in a Riemannian manifold have been studied by N. S. Agashe and M. R.
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Chafle [1], U. C. De and S. C. Biswas [7], L. S. Das, M. Ahmad and A. Haseeb [6],
S. K. Chaubey and R. H. Ojha [5] and others. Recently, A. Haseeb, M. A. Khan
and M. D. Siddiqi studied an ε-Kenmotsu manifold with a semi-symmetric metric
connection and obtained some new noteworthy results on this manifold [9].

Let ∇ be a linear connection in an n-dimensional differentiable manifold M.
The torsion tensor T and the curvature tensor R of ∇ are given respectively by

T (X,Y ) = ∇XY −∇YX − [X,Y ],

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The connection ∇ is said to be symmetric if its torsion tensor T vanishes, otherwise
it is non-symmetric. The connection ∇ is said to be metric connection if there is
a Riemannian metric g in M such that ∇g = 0, otherwise it is non-metric. It is
well known that a linear connection is symmetric and metric if it is the Levi-Civita
connection.

A linear connection ∇ is said to be semi-symmetric connection if its torsion
tensor T is of the form

T (X,Y ) = η(Y )X − η(X)Y,

where η is a 1-form.

Semi-symmetric connections play an important role in the study of Riemannian
manifolds. There are various physical problems involving the semi-symmetric metric
connection. For example, if a man is moving on the surface of the earth always facing
one definite point, say Jaruselam or Mekka or the North pole, then this displacement
is semi-symmetric and metric [8].

Motivated by the above studies, in this paper we obtain some new results on
concircular curvature tensor in a Kenmotsu manifold with respect to the semi-
symmetric non-metric connection. The paper is organized as follows : In Section
2, we give a brief introduction of a Kenmotsu manifold and define semi-symmetric
non-metric connection. In Section 3, we find the curvature tensor, Ricci tensor and
scalar curvature in a Kenmotsu manifold with respect to the semi-symmetric non-
metric connection. Section 4 deals with the study of concircular curvature tensor in
a Kenmotsu manifold with respect to the semi-symmetric non-metric connection and
we establish the relation between concircular curvature tensors with respect to the
connections ∇ and ∇̄. In Section 5, we show that the Kenmotsu manifold satisfying
the condition C̄∗(ξ,X)S̄ = 0 is an η-Einstein manifold. Section 6 is devoted to the
study of concircularly flat and ξ-concircularly flat Kenmotsu manifolds with respect
to the connection ∇̄. In Section 7, we study concircularly symmetric Kenmotsu
manifolds with respect to the semi-symmetric non-metric connection.

2. Kenmotsu Manifolds

An n-dimensional smooth manifold (M, g) (n = 2m + 1 > 1) is said to be an
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almost contact metric manifold [3], if it admits a (1, 1) tensor field φ, a structure
vector field ξ, a 1-form η and the Riemannian metric g which satisfy

(2.1) φ2X = −X + η(X)ξ,

(2.2) g(X, ξ) = η(X), η(φX) = 0, φ(ξ) = 0, η(ξ) = 1,

(2.3) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for arbitrary vector fields X and Y on M .
An almost contact metric manifold M(φ, ξ, η, g) is said to be Kenmotsu manifold

if ([12])

(2.4) ∇Xξ = X − η(X)ξ,

(2.5) (∇Xφ)(Y ) = −g(X,φY )− η(Y )φX,

where ∇ denotes the Riemannian connection of g.
Also the following relations hold in a Kenmotsu manifold [12]:

(2.6) (∇Xη)Y = g(X,Y )− η(X)η(Y ),

(2.7) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.8) R(ξ,X)Y = −R(X, ξ)Y = η(Y )X − g(X,Y )ξ,

(2.9) η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X),

(2.10) S(X, ξ) = −(n− 1)η(X),

(2.11) S(ξ, ξ) = −(n− 1), i.e., Qξ = −(n− 1)ξ,

where g(QX,Y ) = S(X,Y ). It yields to

(2.12) S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ).

Example. We consider the three dimensional manifoldM = [(x, y, z) ∈ R3 | z 6= 0],
where (x, y, z) are the cartesian coordinates in R3. Choosing the vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z ∂

∂z
,
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which are linearly independent at each point of M. Let g be the Riemannian metric
define by

g(e1, e3) = g(e2, e3) = g(e2, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any vector field Z on TM . Let
φ be the (1, 1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. Then
by the linearity property of φ and g, we have

φ2Z = −Z + η(Z)e3, η(e3) = 1 and g(φZ, φW ) = g(Z,W )− η(Z)η(W )

for any vector fields Z,W on M .
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

The Riemannian connection ∇ with respect to the metric g is given by

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)−Zg(X,Y )+g([X,Y ], Z)−g([Y,Z], X)+g([Z,X], Y ).

From above equation which is known as Koszul’s formula, we have

∇e1e3 = e1, ∇e2e3 = e2, ∇e3e3 = 0,

∇e1e2 = 0, ∇e2e2 = −e3, ∇e3e2 = 0,

∇e1e1 = −e3, ∇e2e1 = 0, ∇e3e1 = 0.

Using the above relations, for any vector field X on M , we have

∇Xξ = X − η(X)ξ

for ξ ∈ e3. Hence the manifold M under consideration is a Kenmotsu manifold of
dimension three.

Definition 2.1([16]). A Kenmotsu manifoldM is said to be an η-Einstein manifold
if its Ricci tensor S of type (0,2) is of the form

(2.13) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth functions on M . If a = 0, then the manifold will be
called a special type of η-Einstein manifold.

Definition 2.2([4]). The concircular curvature tensor C∗ in a Kenmotsu manifold
M is defined by

(2.14) C∗(X,Y )Z = R(X,Y )Z − r

n(n− 1)
(g(Y,Z)X − g(X,Z)Y ),

where R and r are the Riemannian curvature tensor and the scalar curvature of the
manifold respectively.
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Definition 2.3. A Kenmotsu manifold M is said to be symmetric if

(2.15) (∇WR)(X,Y )Z = 0

for all vector fields X,Y, Z,W on M , where R is the curvature tensor with respect
to ∇.

Definition 2.4. A Kenmotsu manifold M is said to be concircularly symmetric if

(2.16) (∇WC∗)(X,Y )Z = 0

for all vector fields X,Y, Z,W on M , where C∗ is the concircular curvature tensor
defined by (2.14).

A linear connection ∇̄ in M is called semi-symmetric connection if its torsion
tensor

(2.17) T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ],

satisfies

(2.18) T (X,Y ) = η(Y )X − η(X)Y.

Further, a semi-symmetric connection is called semi-symmetric non-metric connec-
tion [1] if

(2.19)
(∇̄Xg)(Y,Z) = ∇̄Xg(Y,Z)− g(∇̄XY,Z)− g(Y, ∇̄XZ)

= −η(Y )g(X,Z)− η(Z)g(X,Y ).

Let M be an n-dimensional Kenmotsu manifold and ∇ be the Levi-Civita con-
nection on M , the semi-symmetric non-metric connection ∇̄ on M is given by

(2.20) ∇̄XY = ∇XY + η(Y )X.

3. Curvature Tensor on a Kenmotsu Manifold with respect to the Semi-

symmetric Non-metric Connection

The curvature tensor R̄ of semi-symmetric non-metric connection ∇̄ in M is
defined by

(3.1) R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z.

Using Equations (2.6) and (2.20) in (3.1), we get

(3.2) R̄(X,Y )Z = R(X,Y )Z + [g(X,Z)Y − g(Y, Z)X] + 2[η(Y )X − η(X)Y ]η(Z),

where
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z
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is the Riemannian curvature tensor of the connection ∇.
Contracting X in (3.2), we get

(3.3) S̄(Y,Z) = S(Y,Z)− (n− 1)g(Y, Z) + 2(n− 1)η(Y )η(Z),

where S̄ and S are the Ricci tensors of the connections ∇̄ and ∇, respectively on
M .

This gives

(3.4) Q̄Y = QY − (n− 1)Y + 2(n− 1)η(Y )ξ.

Contracting again Y and Z in (3.3), it follows that

(3.5) r̄ = r − n2 + 3n− 2,

where r̄ and r are the scalar curvatures of the connections ∇̄ and ∇, respectively
on M .

Lemma 3.1. Let M be an n-dimensional Kenmotsu manifold with respect to the
semi-symmetric non-metric connection. Then

(3.6) R̄(X,Y )ξ = 0,

(3.7) R̄(ξ,X)Y = 2[η(X)η(Y )ξ − g(X,Y )ξ],

(3.8) S̄(X, ξ) = 0,

(3.9) Q̄ξ = 0,

(3.10) S̄(φX, φY ) = S̄(X,Y ).

Proof. By taking Z = ξ in (3.2) and using (2.7) and (2.2), we get (3.6). (3.7)
follows from (3.2) and (2.8). By using (2.10) and (3.3) we have (3.8). From (2.11)
and (3.4), we get (3.9). (3.10) follows, by considering X = φX and Y = φY in (3.3)
and using (2.2), (2.3) and (2.12). 2

Thus we are in a position to prove the following theorem.

Theorem 3.2. In a Kenmotsu manifold with respect to the semi-symmetric non-
metric connection the curvature condition R̄(ξ, Y ).S̄ = 0 is satisfied.

Proof. In order to prove the theorem (3.2), we consider the following expression

(3.11) R̄(X,Y ).S̄ = S̄(R̄(X,Y )U, V ) + S̄(U, R̄(X,Y )V ).
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Taking X = ξ in (3.11), we have

(3.12) R̄(ξ, Y ).S̄ = S̄(R̄(ξ, Y )U, V ) + S̄(U, R̄(ξ, Y )V ).

Using (3.7), we obtain
(3.13)
R̄(ξ, Y ).S̄ = 2η(Y )η(U)S̄(ξ, V )−g(Y, U)S̄(ξ, V )+2η(Y )η(V )S̄(ξ, U)−g(Y, V )S̄(ξ, U).

By making use of (3.8) in (3.13), we get

(3.14) R̄(ξ, Y ).S̄ = 0.

This completes the proof. 2

4. Concircular Curvature Tensor on a Kenmotsu Manifold with respect
to the Semi-symmetric Non-metric Connection

Analogous to the Definition 2.2, the concircular curvature tensor C̄∗ on a Ken-
motsu manifold with respect to the semi-symmetric non-metric connection is given
by

(4.1) C̄∗(X,Y )Z = R̄(X,Y )Z − r̄

n(n− 1)
(g(Y, Z)X − g(X,Z)Y ),

where R̄ and r̄ are the curvature tensor and scalar curvature with respect to the
connection ∇̄, respectively.

By making use of (3.2) and (3.5) in the above equation, we obtain
(4.2)

C̄∗(X,Y )Z = C∗(X,Y )Z +
2

n
(g(X,Z)Y − g(Y, Z)X) + 2(η(Y )X − η(X)Y )η(Z),

where C∗(X,Y )Z is the concircular curvature tensor with respect to the connection
∇ and is given by (2.14). The equation (4.2) is the relation between the concircular
curvature tensors with respect to the connections ∇̄ and ∇.

Interchanging X and Y in (4.2), we have
(4.3)

C̄∗(Y,X)Z = C∗(Y,X)Z +
2

n
(g(Y,Z)X − g(X,Z)Y ) + 2(η(X)Y − η(Y )X)η(Z).

On adding (4.2) and (4.3) and using the fact that R(X,Y )Z + R(Y,X)Z = 0, we
get

(4.4) C̄∗(X,Y )Z + C̄∗(Y,X)Z = 0.

From (3.2), (4.1) and first Bianchi identity R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0
with respect to ∇, we obtain

(4.5) C̄∗(X,Y )Z + C̄∗(Y,Z)X + C̄∗(Z,X)Y = 0.
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Equation (4.4) (resp.,(4.5)) shows that in a Kenmotsu manifold with respect to the
semi-symmetric non-metric connection the concircular curvature tensor is skew-
symmetric (resp., cyclic).

Next, taking inner product of (4.1) with ξ , we have

(4.6) η(C̄∗(X,Y )Z) = η(R̄(X,Y )Z)− r̄

n(n− 1)
(g(Y,Z)η(X)− g(X,Z)η(Y )).

Using (3.2) and (3.5) in (4.6), we find

(4.7) η(C̄∗(X,Y )Z) = (2 +
r − n2 + 3n− 2

n(n− 1)
)[g(X,Z)η(Y )− g(Y,Z)η(X)].

5. Kenmotsu Manifolds with respect to the Semi-symmetric Non-metric

Connection Satisfying the Curvature Condition C̄∗(ξ,X).S̄ = 0

Now we consider a Kenmotsu manifold with respect to the semi-symmetric non-
metric connection ∇̄ satisfying the condition

(5.1) C̄∗(ξ,X).S̄ = 0.

Then we have

(5.2) S̄(C̄∗(ξ,X)Y, ξ) + S̄(Y, C̄∗(ξ,X)ξ) = 0.

By virtue of (2.2), (3.5), (3.7) and (4.1), we have

(5.3) C̄∗(ξ,X)Y = 2η(X)η(Y )ξ−2g(X,Y )ξ−r − n
2 + 3n− 2

n(n− 1)
(g(X,Y )ξ−η(Y )X),

(5.4) C̄∗(ξ,X)ξ =
r − n2 + 3n− 2

n(n− 1)
(X − η(X)ξ).

From (5.2), (5.3) and (5.4), we have

S̄[2η(X)η(Y )ξ − 2g(X,Y )ξ − r − n2 + 3n− 2

n(n− 1)
(g(X,Y )ξ − η(Y )X), ξ]

+S̄[Y,
r − n2 + 3n− 2

n(n− 1)
(X − η(X)ξ)] = 0,

which on using (3.8), reduces to

(5.5)
r − n2 + 3n− 2

n(n− 1)
S̄(X,Y ) = 0.
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By using (3.3), (5.5) takes the form

(5.6)
r − n2 + 3n− 2

n(n− 1)
(S(X,Y )− (n− 1)g(X,Y ) + 2(n− 1)η(X)η(Y )) = 0.

This implies that either the scalar curvature of M is r = n2 − 3n+ 2 or
S = (n− 1)g(X,Y )− 2(n− 1)η(X)η(Y ). The converse part is trivial.

Thus we can state the following theorem.

Theorem 5.1. The concircular curvature tensor with respect to the semi-symmetric
non-metric connection in a Kenmotsu manifold satisfies C̄∗(ξ,X).S̄ = 0 if and only
if either M has the scalar curvature n2 − 3n+ 2 or M is an η-Einstein manifold.

6. Concircularly flat and ξ-concircularly Flat Kenmotsu Manifolds with
respect to the Semi-symmetric Non-metric Connection

Firstly, we assume that the manifold M with respect to the semi-symmetric
non-metric connection is concircularly flat, that is, C̄∗(X,Y )Z = 0. Then from
(4.1), it follows that

(6.1) R̄(X,Y )Z =
r̄

n(n− 1)
(g(Y, Z)X − g(X,Z)Y ).

Taking inner product of the above equation with ξ, we have

(6.2) g(R̄(X,Y )Z, ξ) =
r̄

n(n− 1)
g((g(Y, Z)X − g(X,Z)Y ), ξ).

In view of (2.2), (2.9), (3.2) and (3.5), we get

(6.3) (g(Y,Z)η(X)− g(X,Z)η(Y ))
r + (n− 1)(n+ 2)

n(n− 1)
= 0.

This implies that either the scalar curvature of M is r = −(n− 1)(n+ 2) or

(6.4) g(Y,Z)η(X)− g(X,Z)η(Y ) = 0.

Putting Y = ξ in (6.4) and using (2.2), it follows that

(6.5) η(X)η(Z)− g(X,Z) = 0.

Taking X = QX in (6.5), and using (2.10), we get

(6.6) S(X,Z) = −(n− 1)η(X)η(Z).

Hence we can state the following theorem.
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Theorem 6.1. For a concircularly flat Kenmotsu manifold with respect to the
semi-symmetric non-metric, either the scalar curvature is −(n − 1)(n + 2) or the
manifold is a special type of η-Einstein manifold.

Secondly, we assume that the manifold M with respect to the semi-symmetric
non-metric connection is ξ-concircularly flat, that is, C̄∗(X,Y )ξ = 0. For this taking
Z = ξ in (6.1), we have

(6.7) R̄(X,Y )ξ =
r̄

n(n− 1)
(η(Y )X − η(X)Y ).

In view of (3.5) and (3.6), we have

(6.8) 0 =
r − n2 + 3n− 2

n(n− 1)
(η(Y )X − η(X)Y ).

Taking Y = ξ in (6.8) and using (2.2), we get

(6.9) 0 =
r − n2 + 3n− 2

n(n− 1)
(X − η(X)ξ).

Taking inner product of (6.9) with U , we have

(6.10) 0 =
r − n2 + 3n− 2

n(n− 1)
(g(X,U)− η(X)η(U)).

Now taking X = QX in (6.10), we have

(6.11) 0 =
r − n2 + 3n− 2

n(n− 1)
(g(QX,U)− η(QX)η(U)).

By making use (2.10) and the fact that S(X,U) = g(QX,U), we find

(6.12) 0 =
r − n2 + 3n− 2

n(n− 1)
(S(X,U) + (n− 1)η(X)η(U)).

This implies that either the scalar curvature of M is r = (n− 1)(n− 2) or

(6.13) S(X,U) = −(n− 1)η(X)η(Y ).

Hence we can state the following theorem.

Theorem 6.2. For a ξ-concircularly flat Kenmotsu manifold with respect to the
semi-symmetric non-metric, either the scalar curvature is (n − 1)(n − 2) or the
manifold is a special type of η-Einstein manifold.

Next, taking Z = ξ in (4.2) and using (2.2), we get

(6.14) C̄∗(X,Y )ξ = C∗(X,Y )ξ+
2

n
(g(X, ξ)Y −g(Y, ξ)X)+2(η(Y )X−η(X)Y )η(ξ).
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Making use of (2.2), it follows that

(6.15) C̄∗(X,Y )ξ = C∗(X,Y )ξ + 2(1− 1

n
)(η(Y )X − η(X)Y ).

Since η(X)Y − η(Y )X = R(X,Y )ξ 6= 0, in a Kenmotsu manifold, in general, then
we have the following theorem.

Theorem 6.3. ξ-concircularly flatness in Kenmotsu manifolds with respect to
the semi-symmetric non-metric connection and the Levi-Civita connection are not
equivalent.

7. Concircularly symmetric Kenmotsu manifolds with respect to the

semi-symmetric non-metric connection

Using (2.14), we can write

(7.1)
(∇̄W C̄∗)(X,Y )Z = (∇W C̄∗)(X,Y )Z + η(C̄∗(X,Y )Z)W

−[η(X)C̄∗(W,Y )Z + η(Y )C̄∗(X,W )Z + η(Z)C̄∗(X,Y )W ].

Now differentiating (4.2) with respect to W , we have

(7.2)
(∇W C̄∗)(X,Y )Z = (∇WC∗)(X,Y )Z + 2[(∇W η)(Y )X − (∇W η)(X)Y ]η(Z)

+ 2[η(Y )X − η(X)Y ](∇W η)Z.

Making use of (2.6) in (7.2), we obtain

(7.3)

(∇W C̄∗)(X,Y )Z = (∇WC∗)(X,Y )Z − 2[η(X)g(W,Z)Y

+ η(Z)g(W,X)Y − η(Y )g(W,Z)X − η(Z)g(W,Y )X]

+ 4η(W )η(Y )η(Z)X − 4η(W )η(X)η(Z)Y.

From (7.1) and (7.3), we get
(7.4)

(∇̄W C̄∗)(X,Y )Z = (∇WC∗)(X,Y )Z − 2[η(X)g(W,Z)Y + η(Z)g(W,X)Y

− η(Y )g(W,Z)X − η(Z)g(W,Y )X] + 4η(W )η(Y )η(Z)X

− 4η(W )η(X)η(Z)Y + η(C̄∗(X,Y )Z)W − [η(X)C̄∗(W,Y )Z

+ η(Y )C̄∗(X,W )Z + η(Z)C̄∗(X,Y )W ].
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In view of (4.1) and (4.7), (7.4) takes the form
(7.5)
(∇̄W C̄∗)(X,Y )Z =(∇WC∗)(X,Y )Z − 2[η(X)g(W,Z)Y + η(Z)g(W,X)Y − η(Y )g(W,Z)X

− η(Z)g(W,Y )X] + 4η(W )η(Y )η(Z)X − 4η(W )η(X)η(Z)Y

+ (2 +
r − n2 + 3n+ 2

n(n− 1)
)[g(X,Z)η(Y )− g(Y, Z)η(X)]W

− η(X)[C∗(W,Y )Z +
2

n
(g(W,Z)Y − g(Y, Z)W ) + 2(η(Y )W − η(W )Y )η(Z)]

− η(Y )[C∗(X,W )Z +
2

n
(g(X,Z)W − g(W,Z)X) + 2(η(W )X − η(X)W )η(Z)]

− η(Z)[C∗(X,Y )W +
2

n
(g(X,W )Y − g(Y,W )X) + 2(η(Y )X − η(X)Y )η(W )].

Now differentiating (2.14) with respect to W , we get

(7.6) (∇WC∗)(X,Y )Z = (∇WR)(X,Y )Z − ∇W r

n(n− 1)
(g(Y,Z)X − g(X,Z)Y ).

From (7.5) and (7.6), we obtain
(7.7)

(∇̄W C̄∗)(X,Y )Z = (∇WR)(X,Y )Z −
∇W r

n(n− 1)
(g(Y, Z)X − g(X,Z)Y )− 2[η(X)g(W,Z)Y

+ η(Z)g(W,X)Y − η(Y )g(W,Z)X − η(Z)g(W,Y )X] + 4η(W )η(Y )η(Z)X

− 4η(W )η(X)η(Z)Y + (2 +
r − n2 + 3n+ 2

n(n− 1)
)[g(X,Z)η(Y )− g(Y, Z)η(X)]W

− η(X)[C∗(W,Y )Z +
2

n
(g(W,Z)Y − g(Y, Z)W ) + 2(η(Y )W − η(W )Y )η(Z)]

− η(Y )[C∗(X,W )Z +
2

n
(g(X,Z)W − g(W,Z)X) + 2(η(W )X − η(X)W )η(Z)]

− η(Z)[C∗(X,Y )W +
2

n
(g(X,W )Y − g(Y,W )X) + 2(η(Y )X − η(X)Y )η(W )]

from which we have
(7.8)

(∇̄W C̄∗)(X,Y )Z = (∇WR)(X,Y )Z −
∇W r

n(n− 1)
(g(Y, Z)X − g(X,Z)Y ) + F (X,Y, Z,W ),

where
(7.9)
F (X,Y, Z,W ) = −2[η(X)g(W,Z)Y + η(Z)g(W,X)Y − η(Y )g(W,Z)X − η(Z)g(W,Y )X]

+ 4η(W )η(Y )η(Z)X − 4η(W )η(X)η(Z)Y

+ (2 +
r − n2 + 3n+ 2

n(n− 1)
)[g(X,Z)η(Y )− g(Y, Z)η(X)]W

− η(X)[C∗(W,Y )Z +
2

n
(g(W,Z)Y − g(Y, Z)W ) + 2(η(Y )W − η(W )Y )η(Z)]

− η(Y )[C∗(X,W )Z +
2

n
(g(X,Z)W − g(W,Z)X) + 2(η(W )X − η(X)W )η(Z)]

− η(Z)[C∗(X,Y )W +
2

n
(g(X,W )Y − g(Y,W )X) + 2(η(Y )X − η(X)Y )η(W )].
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If the scalar curvature r is constant and F (X,Y, Z,W ) = 0, then (7.8) reduces to

(7.10) (∇̄W C̄∗)(X,Y )Z = (∇WR)(X,Y )Z.

Hence we can state the following theorem.

Theorem 7.1. A Kenmotsu manifold is concircularly symmetric with respect to
the semi-symmetric non-metric connection ∇̄ if and only if it is symmetric with
respect to Riemannian connection ∇, provided the scalar curvature r is constant
and F (X,Y, Z,W ) = 0.

Acknowledgement. The author wishes to express his sincere thanks and grati-
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