• Title/Summary/Keyword: Subthreshold swing voltage

Search Result 120, Processing Time 0.029 seconds

Design on Optimum Control of Subthreshold Current for Double Gate MOSFET (DGMOSFET에서 최적의 서브문턱전류제어를 위한 설계)

  • Jung, Hak-Kee;Na, Young-Il;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.887-890
    • /
    • 2005
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin updoped Si channel for SCEs control, are being validated for sub-20nm scaling, A channel effects such as the subthreshold swing(SS), and the threshold voltage roll-off(${\Delta}V_{th}$). The propsed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.

  • PDF

Comparison of Current-Voltage Characteristics of Nanosheet FET and FinFET (Nanosheet FET와 FinFET의 전류-전압 특성 비교)

  • Ahn, Eun Seo;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.560-561
    • /
    • 2022
  • In this paper, current-voltage characteristics of various types of Nanosheet FET (NSFET) and FinFET are simulated with 3D device simulator. The threshold voltage and subthreshold swing extracted from the simulated current-voltage characteristics of NSFET and FinFET were compared. Both of threshold voltage and drain current of NSFET are higher than those of FinFET. The subthreshold voltage swing (SS) of NSFET is steeper than that of FinFET.

  • PDF

Temperature-dependent DC Characteristics of Homojunction InGaAs vertical Fin TFETs (동종 접합 InGaAs 수직형 Fin TFET의 온도 의존 DC 특성에 대한 연구)

  • Baek, Ji-Min;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.275-278
    • /
    • 2020
  • In this study, we evaluated the temperature-dependent characteristics of homojunction InGaAs vertical Fin-shaped Tunnel Field-Effect Transistors (Fin TFETs), which were fabricated using a novel nano-fin patterning technique in which the Au electroplating and the high-temperature InGaAs dry-etching processes were combined. The fabricated homojunction InGaAs vertical Fin TFETs, with a fin width and gate length of 60 nm and 100 nm, respectively, exhibited excellent device characteristics, such as a minimum subthreshold swing of 80 mV/decade for drain voltage (VDS) = 0.3 V at 300 K. We also analyzed the temperature-dependent characteristics of the fabricated TFETs and confirmed that the on-state characteristics were insensitive to temperature variations. From 77 K to 300 K, the subthreshold swing at gate voltage (VGS) = threshold voltage (VT), and it was constant at 115 mV/decade, thereby indicating that the conduction mechanism through band-to-band tunneling influenced the on-state characteristics of the devices.

Analysis of Subthreshold Swing for Oxide Thickness and Doping Distribution in DGMOSFET (산화막두께 및 도핑분포에 대한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2217-2222
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The relationship of subthreshold swing and oxide thickness has been investigated according to variables of doping distribution using Gaussian function, i.e. projected range and standard projected deviation, The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model for the change of oxide thickness. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60 mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the relationship of subthreshold swing and oxide thickness have been analyzed according to the shape of doping distribution.

Analysis of Subthreshold Swing Mechanism by Device Parameter of Asymmetric Double Gate MOSFET (소자 파라미터에 따른 비대칭 DGMOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.156-162
    • /
    • 2015
  • This paper has analyzed how conduction path and electron concentration for the device parameters such as oxide thickness, channel doping, and top and bottom gate voltage influence on subthreshold swing of asymmetric double gate MOSFET. Compared with symmetric and asymmetric double gate MOSFET, asymmetric double gate MOSFET has the advantage that the factors to be able to control the short channel effects increase since top and bottom gate oxide thickness and voltages can be set differently. Therefore the conduction path and electron concentration for top and bottom gate oxide thickness and voltages are investigated, and it is found the optimum conditions that the degradation of subthreshold swing, severe short channel effects, can reduce. To obtain the analytical subthreshold swing, the analytical potential distribution is derived from Possion's equation. As a result, conduction path and electron concentration are greatly changed for device parameters, and subthreshold swing is influenced by conduction path and electron concentration of top and bottom.

Investigation on the Doping Effects on L-shaped Tunneling Field Effect transistors(L-shaped TFETs) (도핑효과에 의한 L-shaped 터널링 전계효과 트랜지스터의 영향에 대한 연구)

  • Shim, Un-Seong;Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.450-452
    • /
    • 2016
  • The effect of channel doping on L-shaped Tunneling Field-Effect Transistors (TFETs) have been investigated by 2D TCAD simulation. When the source doping is over $10^{20}cm^{-3}$, the subthreshold swing (SS) is abruptly decreased, and when drain doping concentration is below $10^{18}cm^{-3}$, the leakage current in the negative voltage is reduced.

  • PDF

Anomalous Phenomena on Subthreshold Characteristics of SOI MOSFET Back Gate Voltage

  • Lee, Seung-Min;Lee, Mike-Myung-Ok
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.553-556
    • /
    • 1998
  • The 1-D numerical model and its extraction methodology are suggested and these simulation results for the S-swing as a function of back-gate voltage are well matched with the measured. S-swing characteristics are analyzed using PD-SOI devices with enough deeper regions up to substrates. The PD-SOI device doesn't have to be short channel to see the anomalous subthreshold phenomena based on the back gate bias. This results recommend to operate better SOI device performances by controlling the back gate voltages. So SOI performances will be much optimistic with proper control of the back-gate voltage for the already- proven- high- performance (APHP) SOI VLSIs.

  • PDF

Analysis of Subthreshold Swing for Doping Distribution Function of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 MOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1143-1148
    • /
    • 2014
  • This paper has analyzed the change of subthreshold swing for doping distribution function of asymmetric double gate(DG) MOSFET. The basic factors to determine the characteristics of DGMOSFET are dimensions of channel, i.e. channel length and channel thickness, and doping distribution function. The doping distributions are determined by ion implantation used for channel doping, and follow Gaussian distribution function. Gaussian function has been used as carrier distribution in solving the Poisson's equation. Since the Gaussian function is exactly not symmetric for top and bottome gates, the subthreshold swings are greatly changed for channel length and thickness, and the voltages of top and bottom gates for asymmetric double gate MOSFET. The deviation of subthreshold swings has been investigated for parameters of Gaussian distribution function such as projected range and standard projected deviation in this paper. As a result, we know the subthreshold swing is greatly changed for doping profiles and bias voltage.

Comparison of Current-Voltage Characteristics by Doping Concentrations of Nanosheet FET and FinFET (Nanosheet FET와 FinFET의 도핑 농도에 따른 전류-전압 특성 비교)

  • Ahn, Eun Seo;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.121-122
    • /
    • 2022
  • In this paper, the device performance with the structure of Nanosheet FET (NSFET) and FinFET is simulated through a three-dimensional device simulator. Current-voltage characteristics of NSFET and FinFET were simulated with respect to channel doping concentrations, and the performance such as threshold voltage and subthreshold swing extracted from the current-voltage characteristics was compared. NSFET flows more drain current and has a higher threshold voltage in current-voltage characteristics depending on channel doping concentration than that of FinFET. The subthreshold voltage swing (SS) of NSFET is steeper than that of FinFET

  • PDF

Analysis of Subthreshold Swing for Double Gate MOSFET Using Gaussian Function (가우스함수를 이용한 DGMOSFET의 문턱전압이하 스윙분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.681-684
    • /
    • 2011
  • In this paper, the relationship of potential and charge distribution in channel for double gate(DG) MOSFET has been derived from Poisson's equation using Gaussian function. The subthreshold swing has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and subthreshold swing has been obtained from this model. The subthreshold swing has been defined as the derivative of gate voltage to drain current and is theoretically minimum of 60mS/dec, and very important factor in digital application. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the subthreshold swings have been analyzed according to the shape of Gaussian function.

  • PDF