• Title/Summary/Keyword: Subthreshold Region

Search Result 73, Processing Time 0.02 seconds

Improved Nonlinear Subthreshold Region Model For HEMTs (개선된 HEMT 비선형 서브임계전압 영역모델)

  • Kim, Yeong-Min
    • ETRI Journal
    • /
    • v.11 no.4
    • /
    • pp.98-104
    • /
    • 1989
  • Closed form solution of nonlinear 2-DEG concentration formula is proposed. This allows us to model continuous 2-DEG charge concentration as the function of gate voltage covering subthreshold region of the I-V curves. Comparisons of the Ids-Vgs characteristics and transconductance with the measured data were performed to show the accuracy of the proposed model. This way we have completely closed form I-V characteristics in subthreshold, triode and saturation region incorporating accurate charge control mechanism for HEMTs.

  • PDF

Analysis of Anomalous Subthreshold Characteristics in Ligtly-Doped Asymmetric Double-Gate MOSFETs (Asymmetric Double-Gate MOSFET의 Subthreshold 특성 분석)

  • 이혜림;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.379-383
    • /
    • 2003
  • The subthreshold characteristics of Double-Gate MOSFETs are analyzed for various Tsi. In the lightly-doped asymmetric device, it is found that the subthreshold current dramatically increases as the Tsi increases and this phenomenon is due to the linear distribution of potential in the channel region with low depletion-charge. Further, we derived an analytical equation which can explain this phenomenon and verified the accuracy of analytical equation by comparing with the result of device simulation.

Analysis of Short Channel Effects Using Analytical Transport Model For Double Gate MOSFET

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • The analytical transport model in subthreshold regime for double gate MOSFET has been presented to analyze the short channel effects such as subthreshold swing, threshold voltage roll-off and drain induced barrier lowering. The present approach includes the quantum tunneling of carriers through the source-drain barrier. Poisson equation is used for modeling thermionic emission current, and Wentzel-Kramers-Brillouin approximations are applied for modeling quantum tunneling current. This model has been used to investigate the subthreshold operations of double gate MOSFET having the gate length of the nanometer range with ultra thin gate oxide and channel thickness under sub-20nm. Compared with results of two dimensional numerical simulations, the results in this study show good agreements with those for subthreshold swing and threshold voltage roll-off. Note the short channel effects degrade due to quantum tunneling, especially in the gate length of below 10nm, and DGMOSFETs have to be very strictly designed in the regime of below 10nm gate length since quantum tunneling becomes the main transport mechanism in the subthreshold region.

Anomalous Subthreshold Characteristics of Shallow Trench-Isolated Submicron NMOSFET with Capped p-TEOS/SiN

  • Lee, Hyung J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.18-20
    • /
    • 2002
  • In sub-l/4 ${\mu}{\textrm}{m}$ NMOSFET with STI (Shallow Trench Isolation), the anomalous hump phenomenon of subthreshold region, due to capped p-TEOS/SiN induced defect, is reported. The hump effect was significantly observed as channel length is reduced, which is completely different from previous reports. Channel boron dopant redistribution due to the defect should be considered to improve hump characteristics besides considerations of STI comer and recess. 130

Analysis of Transport Characteristics for FinFET Using Three Dimension Poisson's Equation

  • Jung, Hak-Kee;Han, Ji-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.361-365
    • /
    • 2009
  • This paper has been presented the transport characteristics of FinFET using the analytical potential model based on the Poisson's equation in subthreshold and threshold region. The threshold voltage is the most important factor of device design since threshold voltage decides ON/OFF of transistor. We have investigated the variations of threshold voltage and drain induced barrier lowing according to the variation of geometry such as the length, width and thickness of channel. The analytical potential model derived from the three dimensional Poisson's equation has been used since the channel electrostatics under threshold and subthreshold region is governed by the Poisson's equation. The appropriate boundary conditions for source/drain and gates has been also used to solve analytically the three dimensional Poisson's equation. Since the model is validated by comparing with the three dimensional numerical simulation, the subthreshold current is derived from this potential model. The threshold voltage is obtained from calculating the front gate bias when the drain current is $10^{-6}A$.

Analysis of Subthreshold Swing for Channel Doping of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 채널도핑에 따른 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.651-656
    • /
    • 2014
  • This paper analyzed the change of subthreshold swing for channel doping of asymmetric double gate(DG) MOSFET. The subthreshold swing is the factor to describe the decreasing rate of off current in the subthreshold region, and plays a very important role in application of digital circuits. Poisson's equation was used to analyze the subthreshold swing for asymmetric DGMOSFET. Asymmetric DGMOSFET could be fabricated with the different top and bottom gate oxide thickness and bias voltage unlike symmetric DGMOSFET. It is investigated in this paper how the doping in channel, gate oxide thickness and gate bias voltages for asymmetric DGMOSFET influenced on subthreshold swing. Gaussian function had been used as doping distribution in solving the Poisson's equation, and the change of subthreshold swing was observed for projected range and standard projected deviation used as parameters of Gaussian distribution. Resultly, the subthreshold swing was greatly changed for doping concentration and profiles, and gate oxide thickness and bias voltage had a big impact on subthreshold swing.

The Shift of Threshold Voltage and Subthreshold Current Curve in LDD MOSFET Degraded Under Different DC Stress-Biases (DC 스트레스에 의해 노쇠화된 LDD MOSFET에서 문턱 전압과 Subthreshold 전류곡선의 변화)

  • Lee, Myung-Buk;Lee, Jung-Il;Kang, Kwang-Nham
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.46-51
    • /
    • 1989
  • The degradation phenomena induced by hot-carrier injection was studied from the shift of threshold voltage and subthreshold current curve in LDD NMOSFET degraded under different DC stress-biases. Threshold voltage shift ${Delta}V_{tex}$ defined in saturation region was separated into contri butions due to trapped oxide charge $V_{ot}$ and interface traps ${Delta}V_{it}$ generated from midgap to threshold voltage. Under th positive stress electric field (TEX>$V_g>V_d$) condition, the shift of threshold voltage was attributed to the electrons traped ar gate oxide but subthreshold swing was not negative stress electric field ($V_g) condition, holes seems to be injected positive charges so threshold voltage and subthreshold swing were increased.

  • PDF

Dependence of Subthreshold Current for Channel Structure and Doping Distribution of Double Gate MOSFET (DGMOSFET의 채널구조 및 도핑분포에 따른 문턱전압이하 전류의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, dependence of subthreshold current has been analyzed for doping distribution and channel structure of double gate(DG) MOSFET. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. Since DGMOSFETs have reduced short channel effects with improvement of current controllability by gate voltages, subthreshold characteristics have been enhanced. The control of current in subthreshold region is very important factor related with power consumption for ultra large scaled integration. The deviation of threshold voltage has been qualitatively analyzed using the changes of subthreshold current for gate voltages. Subthreshold current has been influenced by doping distribution and channel dimension. In this study, the influence of channel length and thickness on current has been analyzed according to intensity and distribution of doping.

Analysis of subthreshold region transport characteristics according to channel thickness for DGMOSFET (DGMOSFET의 채널두께에 따른 문턱전압이하영역에서의 전송특성분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Lee, Jong-In;Jeong, Dong-Soo;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.737-739
    • /
    • 2010
  • In this paper, the subthreshold characteristics have been alanyzed using MicroTec4.0 for double gate MOSFET(DGMOSFET). The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high-integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. The oxide thickness and channel thickness in DG MOSFET determines threshold voltage and extensively influences on Ss(Subthreshold swing). We have investigated the threshold voltage and Ss(Subthreshold swing) characteristics according to variation of channel thickness from 1nm to 3nm in this study.

  • PDF

Anomalous Subthreshold Characteristics for Charge Trapping NVSM at memory states. (기억상태에 있는 전하트랩형 비휘발성 반도체 기억소자의 하위문턱이상전류특성)

  • 김병철;김주연;서광열;이상배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.13-16
    • /
    • 1998
  • An anomalous current characteristics which show the superposition of a low current level and high current level at the subthreshold region when SONOSFETs are in memory states were investigated. We have assumed this phenomena were resulted from the effect of parasitic transistors by LOCOS isolation and were modeled to a parallel equivalent circuit of one memory transistor and two parasitic transistors. Theoretical curves are well fitted in measured log I$_{D}$-V$_{G}$ curves independent of channel width of memory devices. The difference between low current level and high current level is apparently decreased with decrease of channel width of devices because parasitic devices dominantly contribute to the current conduction with decrease of channel width of memory devices. As a result, we concluded that the LOCOS isolation has to selectively adopt in the design of process for charge-trap type NVSM.VSM.

  • PDF