• Title/Summary/Keyword: Subthreshold

Search Result 467, Processing Time 0.023 seconds

A Subthreshold Slope and Low-frequency Noise Characteristics in Charge Trap Flash Memories with Gate-All-Around and Planar Structure

  • Lee, Myoung-Sun;Joe, Sung-Min;Yun, Jang-Gn;Shin, Hyung-Cheol;Park, Byung-Gook;Park, Sang-Sik;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • The causes of showing different subthreshold slopes (SS) in programmed and erased states for two different charge trap flash (CTF) memory devices, SONOS type flash memory with gate-all-around (GAA) structure and TANOS type NAND flash memory with planar structure were investigated. To analyze the difference in SSs, TCAD simulation and low-frequency noise (LFN) measurement were fulfilled. The device simulation was performed to compare SSs considering the gate electric field effect to the channel and to check the localized trapped charge distribution effect in nitride layer while the comparison of noise power spectrum was carried out to inspect the generation of interface traps ($N_{IT}$). When each cell in the measured two memory devices is erased, the normalized LFN power is increased by one order of magnitude, which is attributed to the generation of $N_{IT}$ originated by the movement of hydrogen species ($h^*$) from the interface. As a result, the SS is degraded for the GAA SONOS memory device when erased where the $N_{IT}$ generation is a prominent factor. However, the TANOS memory cell is relatively immune to the SS degradation effect induced by the generated $N_{IT}$.

Influence of Ratio of Top and Bottom Oxide Thickness on Subthreshold Swing for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에서 상단과 하단 산화막 두께비가 문턱전압이하 스윙에 미치는 영향)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.571-576
    • /
    • 2016
  • Asymmetric double gate(DG) MOSFET has the different top and bottom gate oxides thicknesses. It is analyzed the deviation of subthreshold swing(SS) and conduction path for the ratio of top and bottom gate oxide thickness of asymmetric DGMOSFET. SS varied along with conduction path, and conduction path varied with top and bottom gate oxide thickness. The asymmetric DGMOSFET became valuable device to reduce the short channel effects like degradation of SS. SSs were obtained from analytical potential distribution by Poisson's equation, and it was analyzed how the ratio of top and bottom oxide thickness influenced on conduction path and SS. SSs and conduction path were greatly influenced by the ratio of top and bottom gate oxide thickness. Bottom gate voltage cause significant influence on SS, and SS are changed with a range of 200 mV/dec for $0<t_{ox2}/t_{ox1}<5$ under bottom voltage of 0.7 V.

Design of an Ultra Low Power CMOS 2.4 GHz LNA (초 저전력 CMOS 2.4 GHz 저잡음 증폭기 설계)

  • Jang, Yo-Han;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1045-1049
    • /
    • 2010
  • In this paper, we proposed an ultra-low power low noise amplifier(LNA) using a TSMC 0.18 ${\mu}m$ RF CMOS process. To satisfy the low power consumption with high gain, a current-reused technique is utilized. In addition, a low bias voltage in the subthreshold region is utilized to achieve ultra low power characteristic. The designed LNA has the voltage gain of 13.8 dB and noise figure(NF) of 3.4 dB at 2.4 GHz. The total power consumption of the designed LNA is only 0.63 mW from 0.9 V supply voltage and chip occupies $1.1\;mm{\times}0.8\;mm$ area.

Analysis of Tunneling Transition by Characteristics of Gate Oxide for Nano Structure FinFET (나노구조 FinFET에서 게이트산화막의 특성에 따른 터널링의 변화분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1599-1604
    • /
    • 2008
  • In this paper, it has been analyzed how transport characteristics is influenced on gate oxide properties in the subthreshold region as nano structure FinFET is fabricated. The analytical model is used to derive transport model, and Possion equation is used to obtain analytical model. The thermionic emission and tunneling current to have an influence on subthreshold current conduction are analyzed for nano-structure FinFET, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. As a result, transport model presented in this paper is good agreement with two dimensional simulation model, and this study shows that the transport characteristics have been changed by gate oxide properties. As gate length becomes smaller, funneling characteristics, one of the most important transport mechanism, have been analyzed.

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique (선택적 산화 방식을 이용한 핀 채널 MOSFET의 소스/드레인 저항 감소 기법)

  • Cho, Young-Kyun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.104-110
    • /
    • 2021
  • A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.

Effects of Annealing Gas and Pressure Conditions on the Electrical Characteristics of Tunneling FET (가스 및 압력조건에 따른 Annealing이 Tunneling FET의 전기적 특성에 미치는 영향)

  • Song, Hyun-Dong;Song, Hyeong-Sub;Babu, Eadi Sunil;Choi, Hyun-Woong;Lee, Hi-Deok
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.704-709
    • /
    • 2019
  • In this paper, the electrical characteristics of tunneling field effect transistor(TFET) was studied for different annealing conditions. The TFET samples annealed using hydrogen forming gas(4 %) and Deuterium($D_2$) forming gas(4 %). All the measurements were conducted in noise shielded environment. The results show that subthreshold slope(SS) decreased by 33 mV/dec after annealing process compared to before annealing. Under various temperature range, the noise is improved by average of 31.2 % for 10 atm Deuterium gas at $V_G=3V$ condition. It is also noticed that, post metal annealing with $D_2$ gas reduces the noise by average of 30.7 % at $I_D=100nA$ condition.

Design of Subthreshold SRAM Array utilizing Advanced Memory Cell (개선된 메모리 셀을 활용한 문턱전압 이하 스태틱 램 어레이 설계)

  • Kim, Taehoon;Chung, Yeonbae
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.954-961
    • /
    • 2019
  • This paper suggests an advanced 8T SRAM which can operate properly in subthreshold voltage regime. The memory cell consists of symmetric 8 transistors, in which the latch storing data is controlled by a column-wise assistline. During the read, the data storage nodes are temporarily decoupled from the read path, thus eliminating the read disturbance. Additionally, the cell keeps the noise-vulnerable 'low' node close to the ground, thereby improving the dummy-read stability. In the write, the boosted wordline facilitates to change the contents of the memory bit. At 0.4 V supply, the advanced 8T cell achieves 65% higher dummy-read stability and 3.7 times better write-ability compared to the commercialized 8T cell. The proposed cell and circuit techniques have been verified in a 16-kbit SRAM array designed with an industrial 180-nm low-power CMOS process.

Analysis of On-Off Voltage △Von-off in Sub-10 nm Junctionless Cylindrical Surrounding Gate MOSFET (10 nm 이하 무접합 원통형 MOSFET의 온-오프전압△Von-off에 대한 분석)

  • Jung, Hak-kee
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • We investigated on-off voltage ${\Delta}V_{on-off}$ of sub-10 nm JLCSG (Junctionless Cylindrical Surrounding Gate) MOSFET. The gate voltage was defined as ON voltage for the subthreshold current of $10^{-7}A$ and OFF voltage for the subthreshold current of $10^{-12}A$, and the difference between ON and OFF voltage was obtained. Since the tunneling current was not negligible at 10 nm or less, we observe the change of ${\Delta}V_{on-off}$ depending on the presence or absence of the tunneling current. For this purpose, the potential distribution in the channel was calculated using the Poisson equation and the tunneling current was calculated using the WKB approximation. As a result, it was found that ${\Delta}V_{on-off}$ was increased due to the tunneling current in JLCSG MOSFETs below 10 nm. Especially, it increased rapidly with channel lengths less than 8 nm and increased with increasing channel radius and oxide thickness.

Comparative Investigation on 4 types of Tunnel Field Effect Transistors(TFETs) (터널링 전계효과 트랜지스터 4종류 특성 비교)

  • Shim, Un-Seong;Ahn, TaeJun;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.869-875
    • /
    • 2017
  • Using TCAD simulation, performances of tunnel field-effect transistors (TFETs) was investigated. Drain current-gate voltage types of TFET structure such as single-gate TFET (SG-TFET), double-gate TFET (DG-TFET), L-shaped TFET (L-TFET), and Pocket-TFET (P-TFET) are simulated, and then as dielectric constant of gate oxide and channel length are varied their subthreshold swing (SS) and on-current ($I_{on}$) are compared. On-currents and subthreshold swings of the L-TFET and P-TFET structures with high electric constant and line tunneling were 10 times and 20 mV/dec more than those of the SG-TFET and DG-TFET using point tunneling, respectively. Especially, it is shown that hump effect which dominant current element changes from point tunneling to line tunneling, is disappeared in P-TFET with high-k gate oxide such as $HfO_2$. The analysis of 4 types of TFET structure provides guidelines for the design of new types of TFET structure which concentrate on line tunneling by minimizing point tunneling.