Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.07.104

Reduction of Source/Drain Series Resistance in Fin Channel MOSFETs Using Selective Oxidation Technique  

Cho, Young-Kyun (Division of Electrical, Electronic and Control Engineering, Kongju National University)
Publication Information
Journal of Convergence for Information Technology / v.11, no.7, 2021 , pp. 104-110 More about this Journal
Abstract
A novel selective oxidation process has been developed for low source/drain (S/D) series resistance of the fin channel metal oxide semiconductor field effect transistor (MOSFET). Using this technique, the selective oxidation fin-channel MOSFET (SoxFET) has the gate-all-around structure and gradually enhanced S/D extension regions. The SoxFET demonstrated over 70% reduction in S/D series resistance compared to the control device. Moreover, it was found that the SoxFET behaved better in performance, not only a higher drive current but also higher transconductances with suppressing subthreshold swing and drain induced barrier lowering (DIBL) characteristics, than the control device. The saturation current, threshold voltage, peak linear transconductance, peak saturation transconductance, subthreshold swing, and DIBL for the fabricated SoxFET are 305 ㎂/㎛, 0.33 V, 13.5 𝜇S, 76.4 𝜇S, 78 mV/dec, and 62 mV/V, respectively.
Keywords
Selective oxidation MOSFET; Fin channel MOSFET; Selective oxidation; Series resistance; Short channel effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Hergenrother et al. (1999). The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length. IEDM Tech. Dig., 75-78. DOI : 10.1109/IEDM.1999.823850   DOI
2 K. Asano, Y. K. Choi, T. J. King & C. Hu (2001). Patterning Sub-30-nm MOSFET Gate with I-Line Lithography. IEEE Trans. Electron Devices, 48(5), 1004-1006. DOI : 10.1109/16.918251   DOI
3 J. Kedzierski et al. (2003). Extension and source/drain design for high-performance FinFET devices, IEEE Trans. Electron Devices, 50(4), 952-958. DOI : 10.1109/TED.2003.811412   DOI
4 Y. K. Cho, T. M. Roh, J. K. Kwon & J. Kim (2007). Selective oxidation fin channel MOSFETs with low source/drain series resistance. Electronics Letters, 43(13), 734-735. DOI : 10.1109/NMDC.2006.4388796   DOI
5 A. M. Waite et al. (2005). Raised source/ drains for 50 nm MOSFETs using a silane/dichlorosilane mixture for selective epitaxy, Solid-State Electron, 49, 529-534. DOI : 10.1016/j.sse.2005.01.019   DOI
6 W. Wang, Z. Liu & T. Chiang (2019). A New Effective-Conducting-Path-Driven Subthreshold Behavior Model for Junctionless Dual-Material Omega-Gate Nano-MOSFETs. IEEE Transactions on Nanotechnology, 18, 904-910. DOI : 10.1109/TNANO.2019.2937824   DOI
7 H. Mertens et al. (2016). Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates. IEEE Symposium on VLSI Technology, 1-2. DOI : 10.1109/VLSIT.2016.7573416   DOI
8 S. Monfray et al. (2002). 50nm - Gate All Around (GAA) - Silicon On Nothing (SON) - Devices: A Simple Way to Co-integration of GAA Transistors within bulk MOSFET process. Symp. VLSI Tech. Dig., 108-109. DOI : 10.1109/VLSIT.2002.1015411   DOI
9 P. Cadareanu, J. Romero-Gonzalez, and P. -E. Gaillardon (2021). Parasitic Capacitance Analysis of Three-Independent-Gate Field-Effect Transistors. IEEE Journal of the Electron Devices Society, 9, 400-408. DOI : 10.1109/JEDS.2021.3070475   DOI
10 S. Nanda & R. S. Dhar (2021). Implementation and Characterization of 14 nm Trigate HOI n-FinFET using Strained Silicon channel with reduced area on chip. 6th International Conference for Convergence in Technology, 1-4. DOI : 10.1109/I2CT51068.2021.9417877   DOI
11 Y. K. Choi et al. (2001). Sub-20nm CMOS FinFET Technologies,IEDM Tech. Dig., 2-5. DOI : 10.1109/IEDM.2001.979526   DOI
12 J. Kedzierski, P. Xuan, E. Anderson, J. Bokor, T. J. King & C. Hu (2001). Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,. IEDM Tech. Dig., 57-61. DOI : 10.1109/IEDM.2000.904258   DOI
13 N. Lindert et al. (2001). Quasi-planar FinFETs with selectively grown germanium raised source/drain, Proc. IEEE Int. SOI Conf., 111-112. DOI : 10.1109/SOIC.2001.958011   DOI
14 H. J. Huang et al. (2000). Reduction of Source/Drain Series Resistance and Its Impact on Device Performance for PMOS Transistors with Raised Si1-xGex Source/Drain. IEEE Electron Device Lett., 21(9), 448-450. DOI : 10.1109/55.863107   DOI
15 Y. K. Choi et al. (2002). FinFET Process Renements for Improved Mobility and Gate Workfunction Engineering, IEDM Tech. Dig., 259-262. DOI : 10.1109/IEDM.2002.1175827   DOI
16 C. H. Park, M. H. Oh, H. S. Kang & H. K. Kang (2004). A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications. ETRI Journal, 26(6), 575-582. DOI : 10.4218/etrij.04.0104.0074   DOI
17 X. Huang et al. (1999). Sub 50-nm FinFET: PMOS, IEDM Tech. Dig., 67-70. DOI : 10.1109/IEDM.1999.823848   DOI
18 Y. Taur & T. H. Ning (1998). Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press.