• Title/Summary/Keyword: Sub-threshold transistor

Search Result 55, Processing Time 0.026 seconds

An Organic Electrophosphorescent Device Driven by All-Organic Thin-Film Transistor using Polymeric Gate Insulator

  • Pyo, S.W.;Shim, J.H.;Kim, Y.K.
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we demonstrate that the organic electrophosphorescent device is driven by the organic thin film transistor with spin-coated photoacryl gate insulator. It was found that electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure showed the non-saturated slope in the saturation region and the sub-threshold nonlinearity in the triode region, where we obtained the maximum power luminance that was about 90 $cd/m^2$. Field effect mobility, threshold voltage, and on-off current ratio in 0.45 ${\mu}m$ thick gate dielectric layer were 0.17 $cm^2/Vs$, -7 V, and $10^6$ , respectively. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and cured at 150${\sqsubset}$for 1hr. It was also found that field effect mobility, threshold voltage, on-off current ratio, and sub-threshold slope with 0.45 ${\mu}m$ thick gate dielectric films were 0.134 $cm^2/Vs$, -7 V, and $10^6$ A/A, and 1 V/decade, respectively.

Effect of SiO2 Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor (SiO2 완충층 두께에 따른 비정질 InGaZnO Pseudo-MOS Field Effect Transistor의 신뢰성 평가)

  • Lee, Se-Won;Hwang, Yeong-Hyeon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • In this study, we fabricated an amorphous InGaZnO pseudo-MOS transistor (a-IGZO ${\Psi}$-MOSFET) with a stacked $Si_3N_4/SiO_2$ (NO) gate dielectric and evaluated reliability of the devices with various thicknesses of a $SiO_2$ buffer layer. The roles of a $SiO_2$ buffer layer are improving the interface states and preventing degradation caused by the injection of photo-created holes because of a small valance band offset of amorphous IGZO and $Si_3N_4$. Meanwhile, excellent electrical properties were obtained for a device with 10-nm-thick $SiO_2$ buffer layer of a NO stacked dielectric. The threshold voltage shift of a device, however, was drastically increased because of its thin $SiO_2$ buffer layer which highlighted bias and light-induced hole trapping into the $Si_3N_4$ layer. As a results, the pseudo-MOS transistor with a 20-nm-thick $SiO_2$ buffer layer exhibited improved electrical characteristics and device reliability; field effective mobility(${\mu}_{FE}$) of 12.3 $cm^2/V{\cdot}s$, subthreshold slope (SS) of 148 mV/dec, trap density ($N_t$) of $4.52{\times}1011\;cm^{-2}$, negative bias illumination stress (NBIS) ${\Delta}V_{th}$ of 1.23 V, and negative bias temperature illumination stress (NBTIS) ${\Delta}V_{th}$ of 2.06 V.

VT-Modulation of Planar Tunnel Field-Effect Transistors with Ground-Plane under Ultrathin Body and Bottom Oxide

  • Sun, Min-Chul;Kim, Hyun Woo;Kim, Hyungjin;Kim, Sang Wan;Kim, Garam;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.139-145
    • /
    • 2014
  • Control of threshold voltage ($V_T$) by ground-plane (GP) technique for planar tunnel field-effect transistor (TFET) is studied for the first time using TCAD simulation method. Although GP technique appears to be similarly useful for the TFET as for the metal-oxide-semiconductor field-effect transistor (MOSFET), some unique behaviors such as the small controllability under weak ground doping and dependence on the dopant polarity are also observed. For $V_T$-modulation larger than 100 mV, heavy ground doping over $1{\times}10^{20}cm^{-3}$ or back biasing scheme is preferred in case of TFETs. Polarity dependence is explained with a mechanism similar to the punch-through of MOSFETs. In spite of some minor differences, this result shows that both MOSFETs and TFETs can share common $V_T$-control scheme when these devices are co-integrated.

The Change of I-V Characteristics by Gate Voltage Stress on Few Atomic Layered MoS2 Field Effect Transistors (수 원자층 두께의 MoS2 채널을 가진 전계효과 트랜지스터의 게이트 전압 스트레스에 의한 I-V 특성 변화)

  • Lee, Hyung Gyoo;Lee, Gisung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.135-140
    • /
    • 2018
  • Atomically thin $MoS_2$ single crystals have a two-dimensional structure and exhibit semiconductor properties, and have therefore recently been utilized in electronic devices and circuits. In this study, we have fabricated a field effect transistor (FET), using a CVD-grown, 3 nm-thin, $MoS_2$ single-crystal as a transistor channel after transfer onto a $SiO_2/Si$ substrate. The $MoS_2$ FETs displayed n-channel characteristics with an electron mobility of $0.05cm^2/V-sec$, and a current on/off ratio of $I_{ON}/I_{OFF}{\simeq}5{\times}10^4$. Application of bottom-gate voltage stresses, however, increased the interface charges on $MoS_2/SiO_2$, incurred the threshold voltage change, and degraded the device performance in further measurements. Exposure of the channel to UV radiation further degraded the device properties.

Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s

  • Hashemi, Adeleh;Bahari, Ali
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1546-1552
    • /
    • 2018
  • The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of crosslinked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted $Si_{2s}$ spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.

A study of Recess Channel Array Transistor with asymmetry channel for high performance and low voltage Mobile 90nm DRAMs (고성능 저전압 모바일향 90nm DRAM을 위한 비대칭 채널구조를 갖는 Recess Channel Array Transistor의 제작 및 특성)

  • Kim, S.B.;Lee, J.W.;Park, Y.K.;Shin, S.H.;Lee, E.C.;Lee, D.J.;Bae, D.I.;Lee, S.H.;Roh, B.H.;Chung, T.Y.;Kim, G.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.163-166
    • /
    • 2004
  • 모바일향 90nm DRAM을 개발하기 위하여 비대칭 채널 구조를 갖는 Recess Channel Array Transistor (RCAT)로 cell transistor를 구현하였다. DRAM cell transistor에서 junction leakage current 증가는 DRAM retention time 열화에 심각한 영향을 미치는 요인으로 알려져 있으며, DRAM의 minimum feature size가 점점 감소함에 따라 short channel effect의 영향으로 junction leakage current는 더욱 더 증가하게 된다. 본 실험에서는 short channel effect의 영향에 의한 junction leakage current를 감소시키기 위하여 Recess Channel Array Transistor를 도입하였고, cell transistor의 채널 영역을 비대칭으로 형성하여 data retention time을 증가시켰다. 비대칭 채널 구조을 이용하여 Recess Channel Array Transistor를 구현한 결과, sub-threshold 특성과 문턱전압, Body effect, 그리고, GIDL 특성에는 큰 유의차가 보이지 않았고, I-V특성인 드레인 포화전류(IDS)는 대칭 채널 구조인 transistor 대비 24.8% 정도 증가하였다. 그리고, data retention time은 2배 정도 증가하였다. 본 실험에서 얻은 결과는 향후 저전압 DRAM 개발과 응용에 상당한 기여를 할 것으로 기대된다.

  • PDF

A study on Improvement of sub 0.1$\mu\textrm{m}$VLSI CMOS device Ultra Thin Gate Oxide Quality Using Novel STI Structure (STI를 이용한 서브 0.1$\mu\textrm{m}$VLSI CMOS 소자에서의 초박막게이트산화막의 박막개선에 관한 연구)

  • 엄금용;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.729-734
    • /
    • 2000
  • Recently, Very Large Scale Integrated (VLSI) circuit & deep-submicron bulk Complementary Metal Oxide Semiconductor(CMOS) devices require gate electrode materials such as metal-silicide, Titanium-silicide for gate oxides. Many previous authors have researched the improvement sub-micron gate oxide quality. However, few have reported on the electrical quality and reliability on the ultra thin gate oxide. In this paper, at first, I recommand a novel shallow trench isolation structure to suppress the corner metal-oxide semiconductor field-effect transistor(MOSFET) inherent to shallow trench isolation for sub 0.1${\mu}{\textrm}{m}$ gate oxide. Different from using normal LOCOS technology deep-submicron CMOS devices using novel Shallow Trench Isolation(STI) technology have a unique"inverse narrow-channel effects"-when the channel width of the devices is scaled down, their threshold voltage is shrunk instead of increased as for the contribution of the channel edge current to the total channel current as the channel width is reduced. Secondly, Titanium silicide process clarified that fluorine contamination caused by the gate sidewall etching inhibits the silicidation reaction and accelerates agglomeration. To overcome these problems, a novel Two-step Deposited silicide(TDS) process has been developed. The key point of this process is the deposition and subsequent removal of titanium before silicidation. Based on the research, It is found that novel STI structure by the SEM, in addition to thermally stable silicide process was achieved. We also obtained the decrease threshold voltage value of the channel edge. resulting in the better improvement of the narrow channel effect. low sheet resistance and stress, and high threshold voltage. Besides, sheet resistance and stress value, rms(root mean square) by AFM were observed. On the electrical characteristics, low leakage current and trap density at the Si/SiO$_2$were confirmed by the high threshold voltage sub 0.1${\mu}{\textrm}{m}$ gate oxide.

  • PDF

Optimal Energetic-Trap Distribution of Nano-Scaled Charge Trap Nitride for Wider Vth Window in 3D NAND Flash Using a Machine-Learning Method

  • Kihoon Nam;Chanyang Park;Jun-Sik Yoon;Hyeok Yun;Hyundong Jang;Kyeongrae Cho;Ho-Jung Kang;Min-Sang Park;Jaesung Sim;Hyun-Chul Choi;Rock-Hyun Baek
    • Nanomaterials
    • /
    • v.12 no.11
    • /
    • pp.1808-1817
    • /
    • 2022
  • A machine-learning (ML) technique was used to optimize the energetic-trap distributions of nano-scaled charge trap nitride (CTN) in 3D NAND Flash to widen the threshold voltage (Vth) window, which is crucial for NAND operation. The energetic-trap distribution is a critical material property of the CTN that affects the Vth window between the erase and program Vth. An artificial neural network (ANN) was used to model the relationship between the energetic-trap distributions as an input parameter and the Vth window as an output parameter. A well-trained ANN was used with the gradient-descent method to determine the specific inputs that maximize the outputs. The trap densities (NTD and NTA) and their standard deviations (σTD and σTA) were found to most strongly impact the Vth window. As they increased, the Vth window increased because of the availability of a larger number of trap sites. Finally, when the ML-optimized energetic-trap distributions were simulated, the Vth window increased by 49% compared with the experimental value under the same bias condition. Therefore, the developed ML technique can be applied to optimize cell transistor processes by determining the material properties of the CTN in 3D NAND Flash.

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor (유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성)

  • Dong Hyun Kim;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

Effects of Various Deposition Rates of Al2O3 Gate Insulator on the Properties of Organic Thin Film Transistor (알루미늄 옥사이드 절연층의 증착율이 유기박막 트랜지스터의 특성에 미치는 영향)

  • Choi, Kyung-Min;Hyung, Gun-Woo;Kim, Young-Kwan;Choi, Eou-Sik;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1063-1066
    • /
    • 2009
  • In this study, we fabricated pentacene organic thin film trasistors(OTFTs) which used aluminum oxide as the gate insulator. Aluminum oxide for OTFTs was deposited on glass substrate with a different deposition rate by E-beam evaporation. In case of the deposition rate of $0.1\;{\AA}$, the fabricated aluminum oxide gate insulating OTFT showed a threshold voltage of -1.36 V, an on/off current ratio of $1.9{\times}10^3$ and field effect mobility $0.023\;cm^2/V_s$.