Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.3.135

The Change of I-V Characteristics by Gate Voltage Stress on Few Atomic Layered MoS2 Field Effect Transistors  

Lee, Hyung Gyoo (School of Electrical Engineering, Chungbuk National University)
Lee, Gisung (National Nanofab Center)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.3, 2018 , pp. 135-140 More about this Journal
Abstract
Atomically thin $MoS_2$ single crystals have a two-dimensional structure and exhibit semiconductor properties, and have therefore recently been utilized in electronic devices and circuits. In this study, we have fabricated a field effect transistor (FET), using a CVD-grown, 3 nm-thin, $MoS_2$ single-crystal as a transistor channel after transfer onto a $SiO_2/Si$ substrate. The $MoS_2$ FETs displayed n-channel characteristics with an electron mobility of $0.05cm^2/V-sec$, and a current on/off ratio of $I_{ON}/I_{OFF}{\simeq}5{\times}10^4$. Application of bottom-gate voltage stresses, however, increased the interface charges on $MoS_2/SiO_2$, incurred the threshold voltage change, and degraded the device performance in further measurements. Exposure of the channel to UV radiation further degraded the device properties.
Keywords
$MoS_2$; FET; Few atomic layer channel; Gate voltage stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. K. Ban, W. H. Park, B. M. Jong, and J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 417 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.7.417]
2 T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Nat. Commun., 3, 887 (2012). [DOI: https://doi.org/10.1038/ncomms1882]   DOI
3 J. Li and M. Ostling, Electronics, 4, 1033 (2015). [DOI: https://doi.org/10.3390/electronics4041033]   DOI
4 J. Kang, W. Liu, and K. Banerjee, Appl. Phys. Lett., 104, 093106 (2014). [DOI: https://doi.org/10.1063/1.4866340]   DOI
5 K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T. Y. Kim, W. K. Hong, S. Hong, and T. Lee, ACS Nano, 7, 7751 (2013). [DOI: https://doi.org/10.1021/nn402348r]   DOI
6 Y. Y. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M. M. Furchi, T. Mueller, and T. Grasser, 2D Mater., 3, 035004 (2016). [DOI: https://doi.org/10.1088/2053-1583/3/3/035004]   DOI
7 Y. Park, H. W. Baac, J. Heo, and G. Yoo, Appl. Phys. Lett., 108, 083102 (2016). [DOI: https://doi.org/10.1063/1.4942406]   DOI
8 K. J. Baek, Y. S. Kim, and K. Y. Na, Trans. Electr. Electron. Mater., 16, 254 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.5.254]   DOI
9 W. Long, H. Ou, J. M. Kuo, and K. K. Chin, IEEE Trans. Electron Dev., 46, 865 (1999). [DOI: https://doi.org/10.1109/16.760391]   DOI
10 L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair, Y. Lin, Y. Zhang, M. H. Chuang, Y. H. Lee, D. Antoniadis, J. Kong, A. Chandrakasan, and T. Palacios, Nano Lett., 16, 6349 (2016). [DOI: https://doi.org/10.1021/acs.nanolett.6b02739]   DOI
11 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics, 4, 611 (2010). [DOI: https://doi.org/10.1038/nphoton.2010.186]   DOI
12 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett., 105, 136805 (2010). [DOI: https://doi.org/10.1103/PhysRevLett.105.136805]   DOI