Browse > Article
http://dx.doi.org/10.5573/JSTS.2014.14.2.139

VT-Modulation of Planar Tunnel Field-Effect Transistors with Ground-Plane under Ultrathin Body and Bottom Oxide  

Sun, Min-Chul (Process Integration Team (S. LSI), Semiconductor Business Group, Samsung Electronics Co. Ltd.)
Kim, Hyun Woo (Inter-university Semiconductor Research Center and Dept. of Electrical Engineering and Computer Science, Seoul National University)
Kim, Hyungjin (Inter-university Semiconductor Research Center and Dept. of Electrical Engineering and Computer Science, Seoul National University)
Kim, Sang Wan (Inter-university Semiconductor Research Center and Dept. of Electrical Engineering and Computer Science, Seoul National University)
Kim, Garam (Inter-university Semiconductor Research Center and Dept. of Electrical Engineering and Computer Science, Seoul National University)
Lee, Jong-Ho (Inter-university Semiconductor Research Center and Dept. of Electrical Engineering and Computer Science, Seoul National University)
Shin, Hyungcheol (Inter-university Semiconductor Research Center and Dept. of Electrical Engineering and Computer Science, Seoul National University)
Park, Byung-Gook (Inter-university Semiconductor Research Center and Dept. of Electrical Engineering and Computer Science, Seoul National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.14, no.2, 2014 , pp. 139-145 More about this Journal
Abstract
Control of threshold voltage ($V_T$) by ground-plane (GP) technique for planar tunnel field-effect transistor (TFET) is studied for the first time using TCAD simulation method. Although GP technique appears to be similarly useful for the TFET as for the metal-oxide-semiconductor field-effect transistor (MOSFET), some unique behaviors such as the small controllability under weak ground doping and dependence on the dopant polarity are also observed. For $V_T$-modulation larger than 100 mV, heavy ground doping over $1{\times}10^{20}cm^{-3}$ or back biasing scheme is preferred in case of TFETs. Polarity dependence is explained with a mechanism similar to the punch-through of MOSFETs. In spite of some minor differences, this result shows that both MOSFETs and TFETs can share common $V_T$-control scheme when these devices are co-integrated.
Keywords
Threshold voltage; Tunnel field-effect Transistor (TFET); ground-plane; ultrathin body and bottom oxide (UTBB); TCAD simulation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Cho, M.-C. Sun, G. Kim, T. I. Kamins, B.-G. Park, and J. S. Harris, Jr., "Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology," J. Semiconductor Technology and Science, vol.11, pp.182-189, Sep. 2011.   과학기술학회마을   DOI
2 A. C. Seabaugh and Q. Zhang, "Low-Voltage Tunnel Transistors for Beyond CMOS Logic," Proceedings of IEEE, vol.98, pp.2095-2110, Dec. 2010.   DOI   ScienceOn
3 J.-S. Jang and W. Y. Choi, "Ambipolarity Factor of Tunneling Field-Effect Transistors (TFETs)," J. Semiconductor Technology and Science, vol.11, pp.272-277, Dec. 2011.   과학기술학회마을   DOI
4 M. J. Jang and W. Y. Choi, "Dependency of Tunneling Field-Effect Transistor (TFET) Characteristics on Operation Regions," J. Semiconductor Technology and Science, vol.11, pp.287-294, Dec. 2011.   과학기술학회마을   DOI
5 V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, "Reducing Power in High-performance Microprocessors," in Proc. ACM/IEEE Design Automation Conference, 1998, pp.732-737.
6 L. Wei, K. Roy, and V. K. De, "Low voltage low power CMOS design techniques for deep submicron ICs," in Proc. Intl. Conference on VLSI Design, 2000, pp.24-29.
7 H. Kim, M.-C. Sun, H. W. Kim, S. W. Kim, G. Kim, J.-H. Lee, H. Shin, and B.-G. Park, "Threshold Voltage Control of Tunnel Field-Effect Transistors Using $V_T$-control Doping Region," in Proc. Asia-Pacific Workshop on Fundamental and Application of Advanced Semiconductor Devices, 2011, pp.90-92.
8 W. Xiong, and J.P. Colinge, "Self-aligned implanted ground-plane fully depleted SOI MOSFET," Electron. Lett. vol.35, pp.2059-2060 Nov. 1999.   DOI
9 ATLAS User's manual, Device simulation Software, Ver. 5.13.24.C, SILVACO International, Santa Clara, CA.
10 K. Cheng, A. Khakifirooz, P. Kulkarni, S. Kanakasabapathy, S. Schmitz, A. Reznicek, T. Adam, Y. Zhu, J. Li, J. Faltermeier, T. Furukawa, L. F. Edge, B. Haran, S.-C. Seo, P. Jamison, J. Holt, X. Li, R. Loesing, Z. Zhu, R. Johnson, A. Upham, T. Levin, M. Smalley, J. Herman, M. Di, J. Wang, D. Sadana, P. Kozlowski, H. Bu, B. Doris, and J. O'Neill, "Fully depleted extremely thin SOI technology fabricated by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain," in Proc. VLSI Tech. Symp., 2009, pp.212-213.
11 M.-C. Sun, S. W. Kim, G. Kim, H. W. Kim, J.-H. Lee, H. Shin, and B.-G. Park, "Scalable embedded Ge-junction vertical-channel tunneling field-effect transistor for low-voltage operation," in Proc. IEEE Nanotechnology Materials and Devices Conference, 2010, pp.286-290.
12 O. Weber, F. Andrieu, J. Mazurier, M. Casse, X. Garros, C. Leroux, F. Martin, P. Perreau, C. Fenouillet-Beranger, S. Barnola, R. Gassilloud, C. Arvet, O. Thomas, J.-P. Noel, O. Rozeau, M.-A. Jaud, T. Poiroux, D. Lafond, A. Toffoli, F. Allain, C. Tabone, L. Tosti, L. Brevard, P. Lehnen, U. Weber, P.K. Baumann, O. Boissiere, W. Schwarzenbach, K. Bourdelle, B.-Y Nguyen, F. Breuf, T. Skotnicki, and O. Faynot, "Work-function engineering in gate first technology for multi-$V_T$ dual-gate FDSOI CMOS on UTBOX," in IEEE Intl. Electron Devices Meeting Tech. Digest, 2010, pp.58-61.