Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.1.24

Effect of SiO2 Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor  

Lee, Se-Won (Department of Electronic Materials Engineering, Kwangwoon University)
Hwang, Yeong-Hyeon (Department of Electronic Materials Engineering, Kwangwoon University)
Cho, Won-Ju (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.1, 2012 , pp. 24-28 More about this Journal
Abstract
In this study, we fabricated an amorphous InGaZnO pseudo-MOS transistor (a-IGZO ${\Psi}$-MOSFET) with a stacked $Si_3N_4/SiO_2$ (NO) gate dielectric and evaluated reliability of the devices with various thicknesses of a $SiO_2$ buffer layer. The roles of a $SiO_2$ buffer layer are improving the interface states and preventing degradation caused by the injection of photo-created holes because of a small valance band offset of amorphous IGZO and $Si_3N_4$. Meanwhile, excellent electrical properties were obtained for a device with 10-nm-thick $SiO_2$ buffer layer of a NO stacked dielectric. The threshold voltage shift of a device, however, was drastically increased because of its thin $SiO_2$ buffer layer which highlighted bias and light-induced hole trapping into the $Si_3N_4$ layer. As a results, the pseudo-MOS transistor with a 20-nm-thick $SiO_2$ buffer layer exhibited improved electrical characteristics and device reliability; field effective mobility(${\mu}_{FE}$) of 12.3 $cm^2/V{\cdot}s$, subthreshold slope (SS) of 148 mV/dec, trap density ($N_t$) of $4.52{\times}1011\;cm^{-2}$, negative bias illumination stress (NBIS) ${\Delta}V_{th}$ of 1.23 V, and negative bias temperature illumination stress (NBTIS) ${\Delta}V_{th}$ of 2.06 V.
Keywords
IGZO; ${\Psi}$-MOSFET; NBIS; NBTIS; Buffer layer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Cristoloveanu and S. Williams, IEEE Electron Devices Lett., 13, 102 (1992).   DOI
2 K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, S. Yang, C. S. Hwang, S. H. K. Park, M. K. Ryu, S. Y. Lee, and J. K. Jeong, IEEE Electron Devices Lett., 31, 1404 (2010).   DOI
3 H. S. Shin, B. D. Ahn, Y. S. Rim, and H. J. Kim, J. KIEEME, 24, 473 (2011).   과학기술학회마을   DOI
4 J. H. Shin, J. S. Lee, C. S. Hwang, S. H. K. Park, W. S. Cheong, M. Ryu, C. W. Byun, J. I. Lee, and H. Y. Chu, ETRI J., 31, 62 (2009).   과학기술학회마을   DOI   ScienceOn
5 J. Y. Kwon, K. S. Son, J. S. Jung, K. H. Lee, J. S. Park, T. S. Kim, K. H. Ji, R. Choi, J. K. Jeong, B. Koo, and S. Lee, Electrochem. Solid State Lett., 13, H213 (2010).   DOI
6 J. Y. Kwon, K. S. Son, J. S. Jung, K. H. Lee, J. S. Park, T. S. Kim, K. H. Ji, R. Choi, J. K. Jeong, B. Koo, and S. Lee, J. Electrochem. Soc., 158, H433 (2011).   DOI
7 S. Yang, D. H. Cho, M. K. Ryu, S. H. K. Park, C. S. Hwang, J. Jang, and J. K. Jeong, Appl. Phys. Lett., 96, 213511 (2010).   DOI
8 J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, Adv. Mater., 21, 329 (2009).   DOI
9 J. Y. Kwon, J. S. Jung, K. S. Son, K. H. Lee, J. S. Park, T. S. Kim, J. S. Park, R. Choi, J. K. Jeong, B. Koo, and S. Y. Lee, Appl. Phys. Lett., 97, 183503 (2010).   DOI
10 J. S. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y. G. Mo, Appl. Phys. Lett., 95, 123502 (2009).   DOI
11 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004).   DOI   ScienceOn
12 Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, and C. O. Jeong, Appl. Phys. Lett., 95, 013507 (2009).   DOI
13 W. S. Kim, Y. K. Moon, K. T. Kim, S. Y. Shin, and J. W. Park. Thin Solid Films, 520, 578 (2011).   DOI