DOI QR코드

DOI QR Code

Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s

  • Hashemi, Adeleh (Department of Solid State Physics, University of Mazandaran) ;
  • Bahari, Ali (Department of Solid State Physics, University of Mazandaran)
  • Received : 2018.06.30
  • Accepted : 2018.09.27
  • Published : 2018.12.31

Abstract

The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of crosslinked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted $Si_{2s}$ spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.

Keywords

References

  1. K. Nakayama, T. Uemura, M. Uno, T. Okamoto, I. Osaka, K. Takimiya, J. Takeya, Curr. Appl. Phys. 12 (2012) S92. https://doi.org/10.1016/j.cap.2012.04.016
  2. D. Panigrahi, S. Kumar, A. Dhar, Polymer 130 (2017) 79. https://doi.org/10.1016/j.polymer.2017.09.065
  3. L. Pan, Z. Sun, Curr. Appl. Phys. 9 (2009) 1351. https://doi.org/10.1016/j.cap.2009.02.018
  4. A. Hashemi, A. Bahari, S. Ghasemi, Appl. Surf. Sci. 416 (2017) 234. https://doi.org/10.1016/j.apsusc.2017.04.154
  5. A. Hashemi, A. Bahari, Appl. Phys. A 123 (2017) 535. https://doi.org/10.1007/s00339-017-1152-6
  6. K. Ikegami, H. Ohnuki, M. Izumi, Curr. Appl. Phys. 6 (2006) 808. https://doi.org/10.1016/j.cap.2005.04.045
  7. L.S. Cardaso, J.C. Stefanelo, R.M. Faria, Synth. Met. 220 (2016) 286. https://doi.org/10.1016/j.synthmet.2016.06.023
  8. K. Takagi, T. Nagase, T. Kobyashi, H. Natio, Org. Electron. 32 (2016) 65. https://doi.org/10.1016/j.orgel.2016.02.011
  9. L. Li, W. Hu, L. Chi, H. Fuchs, J. Phys. Chem. B 114 (2010) 5315. https://doi.org/10.1021/jp100928d
  10. S. Jin, B.J. Jung, C.K. Song, J. Kwak, Curr. Appl. Phys. 14 (2014) 1809. https://doi.org/10.1016/j.cap.2014.10.019
  11. Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Compos. Sci. Technol. 147 (2017) 30. https://doi.org/10.1016/j.compscitech.2017.05.004
  12. W. Sun, H. Wu, X. Tan, M.R. Kessler, N. Bowler, Compos. Sci. Technol. 121 (2015) 34. https://doi.org/10.1016/j.compscitech.2015.10.022
  13. B. Arkles, Silane Coupling Agents: Connecting across Boundaries vol. 547, Gelest. Inc., 2011, pp. 1-9.
  14. M. Shahbazi, A. Bahari, S. Ghasemi, Org. Electron. 32 (2016) 100. https://doi.org/10.1016/j.orgel.2016.02.012
  15. A. Hashemi, A. Bahari, S. Ghasemi, J. Mater. Sci. Mater. Electron. 28 (2017) 13313. https://doi.org/10.1007/s10854-017-7167-0
  16. V.R. Reddy, A. Umapathi, L.D. Rao, Curr. Appl. Phys. 13 (2013) 1604. https://doi.org/10.1016/j.cap.2013.06.001
  17. Z. Bao, J. Locklin, Organic Field Effect Transistors, CRC Press, New york, 2007.
  18. M. Shahbazi, A. Bahari, S. Ghasemi, Synth. Met. 221 (2016) 332. https://doi.org/10.1016/j.synthmet.2016.09.007
  19. S. Faraji, T. Hashimoto, M.L. Turner, L.A. Majewski, Org. Electron. 17 (2015) 178. https://doi.org/10.1016/j.orgel.2014.12.010
  20. C.M. Keum, J.H. Bae, M.H. Kim, W. Choi, S.D. Lee, Org. Electron. 13 (2012) 778. https://doi.org/10.1016/j.orgel.2012.02.003
  21. M. Hayama, K-i. Yamamoto, F. Kohori, T. Uesaka, Y. Ueno, H. Sugaya, I. Itagaki, K. Sakai, Biomaterials 25 (2004) 119-128. https://doi.org/10.1016/S0142-9612(03)00484-8
  22. Ashland, PVP Polyvinlpyrrolidone Polymers, personalcare@ashland.com, 2014 Pc-12871.
  23. T. Watanabe, S. Hasegawa, N. Wakiyama, F. Usui, A. Kusai, T. Isobe, M. Senna, J. Solid State Chem. 164 (2002) 27. https://doi.org/10.1006/jssc.2001.9436
  24. A. Valles-Liuch, E. Costa, G.G. Ferrer, M.M. Pradas, M. Compose, Sci. Technol. 70 (2010) 1789.
  25. S. Saravanan, P.C. Ramamurthy, G. Madras, Compos. Sci. Technol. 96 (2014) 80. https://doi.org/10.1016/j.compscitech.2014.03.013
  26. R. Kamal, P. Chandravanshi, D.K. Choi, S.M. Bodade, Curr. Appl. Phys. 15 (2015) 648. https://doi.org/10.1016/j.cap.2015.02.017
  27. H. Tang, P. Wang, P. Zheng, X. Liu, Compos. Sci. Technol. 123 (2016) 134. https://doi.org/10.1016/j.compscitech.2015.12.015
  28. M.D. Morales-Acosta, C.G. Alvarado-Beltran, M.A. Quevedo-Lopez, B.E. Gnade, J. Non-Cryst. Solids 362 (2013) 124. https://doi.org/10.1016/j.jnoncrysol.2012.11.025
  29. B.-R. Wu, T.-H. Tsai, D.-S. Wuu, Appl. Surf. Sci. 354 (2015) 216. https://doi.org/10.1016/j.apsusc.2015.01.006
  30. A. Hashemi, A. Bahari, S. Ghasemi, J. Electron. Mater. 47 (2018) 3717. https://doi.org/10.1007/s11664-018-6231-8
  31. D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. Mater. Electron. 27 (2016) 12291. https://doi.org/10.1007/s10854-016-4985-4
  32. J. Wang, S. Liu, J. Wang, H. Hao, L. Zhao, J. Zhai, J. Alloys Compd. 726 (2017) 587. https://doi.org/10.1016/j.jallcom.2017.07.341
  33. T. Ideko, J. Oyama, P. Wightman, Surf. Interface Anal. 26 (1998) 39. https://doi.org/10.1002/(SICI)1096-9918(199801)26:1<39::AID-SIA346>3.0.CO;2-I
  34. R. Navamathavan, C.Y. Kim, A.S. Jung, J. Kor. Phys. Soc. 53 (2008) 351. https://doi.org/10.3938/jkps.53.351
  35. X. Wu, F. Fei, Z. Chen, W. Su, Z. Cui, Compos. Sci. Technol. 94 (2014) 117. https://doi.org/10.1016/j.compscitech.2014.01.024
  36. J.-H. Yim, Compos. Sci. Technol. 86 (2013) 45. https://doi.org/10.1016/j.compscitech.2013.06.023
  37. T.T. Dao, H. Murata, IEIEC Trans. Electron. E98-C (2015) 422. https://doi.org/10.1587/transele.E98.C.422
  38. A. Srivastava, R.K. Nahar b, C.K. Sarkar c, W.P. Singh d, Y. Malhotra, Microelectron. Reliab. 51 (2011) 751. https://doi.org/10.1016/j.microrel.2010.12.002
  39. R. Gholipur, A. Bahari, Mater. Res. Bull. 74 (2016) 70. https://doi.org/10.1016/j.materresbull.2015.10.015
  40. B. Soltani, M. Babaepour, A. Bahari, J. Mater. Sci. Mater. Electron. 28 (2017) 4378. https://doi.org/10.1007/s10854-016-6064-2
  41. Wei Ye, J. Deng, X. Wang, L. Cui, Appl. Surf. Sci. 390 (2016) 831-837. https://doi.org/10.1016/j.apsusc.2016.08.153
  42. C.G.A. Beltran, J.L.A. Sanchez, M.A. Lopez, R.R. Bon, Int. J. Electrochem. Sci. 10 (2015) 4068-4082.
  43. W. Huang, W. Shi, S. Han, J. Yu, AIP Adv. 3 (2013) 052122-052128. https://doi.org/10.1063/1.4807660
  44. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai, Nano Lett. 3 (2003) 193-198. https://doi.org/10.1021/nl0259232

Cited by

  1. Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage vol.125, pp.4, 2019, https://doi.org/10.1007/s00339-019-2547-3
  2. The evolution of MoS2 properties under oxygen plasma treatment and its application in MoS2 based devices vol.30, pp.19, 2018, https://doi.org/10.1007/s10854-019-02172-5
  3. Undoped and In3+-doped WO3 electrodes coated with Cu7Te4 nanocrystals and Bi2Te3 thin films: Investigation of morphological, structura vol.212, pp.None, 2018, https://doi.org/10.1016/j.ijleo.2020.164662