Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.09.014

Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s  

Hashemi, Adeleh (Department of Solid State Physics, University of Mazandaran)
Bahari, Ali (Department of Solid State Physics, University of Mazandaran)
Abstract
The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of crosslinked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted $Si_{2s}$ spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.
Keywords
Nano-composite gate dielectric; Surface roughness; Field-effect-transistor; Deconvoluted XPS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nakayama, T. Uemura, M. Uno, T. Okamoto, I. Osaka, K. Takimiya, J. Takeya, Curr. Appl. Phys. 12 (2012) S92.   DOI
2 D. Panigrahi, S. Kumar, A. Dhar, Polymer 130 (2017) 79.   DOI
3 L. Pan, Z. Sun, Curr. Appl. Phys. 9 (2009) 1351.   DOI
4 A. Hashemi, A. Bahari, S. Ghasemi, Appl. Surf. Sci. 416 (2017) 234.   DOI
5 K. Ikegami, H. Ohnuki, M. Izumi, Curr. Appl. Phys. 6 (2006) 808.   DOI
6 S. Jin, B.J. Jung, C.K. Song, J. Kwak, Curr. Appl. Phys. 14 (2014) 1809.   DOI
7 L.S. Cardaso, J.C. Stefanelo, R.M. Faria, Synth. Met. 220 (2016) 286.   DOI
8 K. Takagi, T. Nagase, T. Kobyashi, H. Natio, Org. Electron. 32 (2016) 65.   DOI
9 L. Li, W. Hu, L. Chi, H. Fuchs, J. Phys. Chem. B 114 (2010) 5315.   DOI
10 Z. Pan, L. Yao, J. Zhai, B. Shen, H. Wang, Compos. Sci. Technol. 147 (2017) 30.   DOI
11 W. Sun, H. Wu, X. Tan, M.R. Kessler, N. Bowler, Compos. Sci. Technol. 121 (2015) 34.   DOI
12 B. Arkles, Silane Coupling Agents: Connecting across Boundaries vol. 547, Gelest. Inc., 2011, pp. 1-9.
13 M. Shahbazi, A. Bahari, S. Ghasemi, Org. Electron. 32 (2016) 100.   DOI
14 A. Hashemi, A. Bahari, Appl. Phys. A 123 (2017) 535.   DOI
15 A. Hashemi, A. Bahari, S. Ghasemi, J. Mater. Sci. Mater. Electron. 28 (2017) 13313.   DOI
16 V.R. Reddy, A. Umapathi, L.D. Rao, Curr. Appl. Phys. 13 (2013) 1604.   DOI
17 Z. Bao, J. Locklin, Organic Field Effect Transistors, CRC Press, New york, 2007.
18 M. Shahbazi, A. Bahari, S. Ghasemi, Synth. Met. 221 (2016) 332.   DOI
19 S. Faraji, T. Hashimoto, M.L. Turner, L.A. Majewski, Org. Electron. 17 (2015) 178.   DOI
20 C.M. Keum, J.H. Bae, M.H. Kim, W. Choi, S.D. Lee, Org. Electron. 13 (2012) 778.   DOI
21 A. Valles-Liuch, E. Costa, G.G. Ferrer, M.M. Pradas, M. Compose, Sci. Technol. 70 (2010) 1789.
22 M. Hayama, K-i. Yamamoto, F. Kohori, T. Uesaka, Y. Ueno, H. Sugaya, I. Itagaki, K. Sakai, Biomaterials 25 (2004) 119-128.   DOI
23 Ashland, PVP Polyvinlpyrrolidone Polymers, personalcare@ashland.com, 2014 Pc-12871.
24 T. Watanabe, S. Hasegawa, N. Wakiyama, F. Usui, A. Kusai, T. Isobe, M. Senna, J. Solid State Chem. 164 (2002) 27.   DOI
25 S. Saravanan, P.C. Ramamurthy, G. Madras, Compos. Sci. Technol. 96 (2014) 80.   DOI
26 R. Kamal, P. Chandravanshi, D.K. Choi, S.M. Bodade, Curr. Appl. Phys. 15 (2015) 648.   DOI
27 H. Tang, P. Wang, P. Zheng, X. Liu, Compos. Sci. Technol. 123 (2016) 134.   DOI
28 M.D. Morales-Acosta, C.G. Alvarado-Beltran, M.A. Quevedo-Lopez, B.E. Gnade, J. Non-Cryst. Solids 362 (2013) 124.   DOI
29 B.-R. Wu, T.-H. Tsai, D.-S. Wuu, Appl. Surf. Sci. 354 (2015) 216.   DOI
30 A. Hashemi, A. Bahari, S. Ghasemi, J. Electron. Mater. 47 (2018) 3717.   DOI
31 D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. Mater. Electron. 27 (2016) 12291.   DOI
32 J. Wang, S. Liu, J. Wang, H. Hao, L. Zhao, J. Zhai, J. Alloys Compd. 726 (2017) 587.   DOI
33 T. Ideko, J. Oyama, P. Wightman, Surf. Interface Anal. 26 (1998) 39.   DOI
34 R. Navamathavan, C.Y. Kim, A.S. Jung, J. Kor. Phys. Soc. 53 (2008) 351.   DOI
35 B. Soltani, M. Babaepour, A. Bahari, J. Mater. Sci. Mater. Electron. 28 (2017) 4378.   DOI
36 T.T. Dao, H. Murata, IEIEC Trans. Electron. E98-C (2015) 422.   DOI
37 A. Srivastava, R.K. Nahar b, C.K. Sarkar c, W.P. Singh d, Y. Malhotra, Microelectron. Reliab. 51 (2011) 751.   DOI
38 R. Gholipur, A. Bahari, Mater. Res. Bull. 74 (2016) 70.   DOI
39 Wei Ye, J. Deng, X. Wang, L. Cui, Appl. Surf. Sci. 390 (2016) 831-837.   DOI
40 C.G.A. Beltran, J.L.A. Sanchez, M.A. Lopez, R.R. Bon, Int. J. Electrochem. Sci. 10 (2015) 4068-4082.
41 W. Huang, W. Shi, S. Han, J. Yu, AIP Adv. 3 (2013) 052122-052128.   DOI
42 W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai, Nano Lett. 3 (2003) 193-198.   DOI
43 J.-H. Yim, Compos. Sci. Technol. 86 (2013) 45.   DOI
44 X. Wu, F. Fei, Z. Chen, W. Su, Z. Cui, Compos. Sci. Technol. 94 (2014) 117.   DOI