• Title/Summary/Keyword: Silicon die

Search Result 89, Processing Time 0.023 seconds

Characteristic of Through Silicon Via's Seed Layer Deposition and Via Filling (실리콘 관통형 Via(TSV)의 Seed Layer 증착 및 Via Filling 특성)

  • Lee, Hyunju;Choi, Manho;Kwon, Se-Hun;Lee, Jae-Ho;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.550-554
    • /
    • 2013
  • As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidths and good power efficiency. 3D integration can be defined as a technology involving the stacking of multiple processed wafers containing integrated circuits on top of each other with vertical interconnects between the wafers. This type of 3D structure can improve performance levels, enable the integration of devices with incompatible process flows, and reduce form factors. Through silicon vias (TSVs), which directly connect stacked structures die-to-die, are an enabling technology for future 3D integrated systems. TSVs filled with copper using an electro-plating method are investigated in this study. DC and pulses are used as a current source for the electro-plating process as a means of via filling. A TiN barrier and Ru seed layers are deposited by plasma-enhanced atomic layer deposition (PEALD) with thicknesses of 10 and 30 nm, respectively. All samples electroplated by the DC current showed defects, even with additives. However, the samples electroplated by the pulse current showed defect-free super-filled via structures. The optimized condition for defect-free bottom-up super-filling was established by adjusting the additive concentrations in the basic plating solution of copper sulfate. The optimized concentrations of JGB and SPS were found to be 10 and 20 ppm, respectively.

Optimum Design of Bonding Pads for Prevention of Passivation Damage in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 파손을 막기 위한 본딩패드의 합리적 설계)

  • Lee, Seong-Min;Kim, Chong-Bum
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.69-73
    • /
    • 2008
  • This article shows that the susceptibility of the device pattern to thermal stress-induced damage has a strong dependence on its proximity to the device comer in semiconductor devices utilizing lead-on-chip (LOC) die attach technique. The result, as explained based on numerical calculation and experiment, indicateds that the stress-driven damage potential of the passivation layer is the highest at the device comer. Thus, the bonding pads, which are very susceptible to passivation damage, should be designed to be located along the central region rather than the peripheral region of the device.

  • PDF

Thermo-Mechanical Interaction of Flip Chip Package Constituents (플립칩 패키지 구성 요소의 열-기계적 특성 평가)

  • 박주혁;정재동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.183-190
    • /
    • 2003
  • Major device failures such as die cracking, interfacial delamination and warpage in flip chip packages are due to excessive heat and thermal gradients- There have been significant researches toward understanding the thermal performance of electronic packages, but the majority of these studies do not take into account the combined effects of thermo-mechanical interactions of the different package constituents. This paper investigates the thermo-mechanical performance of flip chip package constituents based on the finite element method with thermo-mechanically coupled elements. Delaminations with different lengths between the silicon die and underfill resin interfaces were introduced to simulate the defects induced during the assembly processes. The temperature gradient fields and the corresponding stress distributions were analyzed and the results were compared with isothermal case. Parametric studies have been conducted with varying thermal conductivities of the package components, substrate board configurations. Compared with the uniform temperature distribution model, the model considering the temperature gradients provided more accurate stress profiles in the solder interconnections and underfill fillet. The packages with prescribed delaminations resulted in significant changes in stress in the solder. From the parametric study, the coefficients of thermal expansion and the package configurations played significant roles in determining the stress level over the entire package, although they showed little influence on stresses profile within the individual components. These observations have been implemented to the multi-board layer chip scale packages (CSP), and its results are discussed.

A Study on the Mechanical Property of Sillicon Diamond-like-carbon Coating for Insulation of Electrically Assisted Forming Die Component (통전성형 금형 부품 절연을 위한 Si-DLC코팅 기계적 특성 연구)

  • Kim, Woo-young;Lee, Hyun-woo;Yang, Dae-ho;Hong, Sung-tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.656-662
    • /
    • 2015
  • In the present study, multi-layered Si DLC (Silicon Diamond-Like Carbon) coatings with HMDSO (Hexamethyldisiloxane) buffer layers are applied on SKD 11 substrates by PECVD (Plasma Enhanced Chemical Vapor Deposition) with different HMDSO gas flow rates, while the gas flow rate of $C_2H_2$ is fixed to enhance the electric resistivity of forming dies for electrically assisted forming. The HMDSO buffer layer is introduced to increase adhesion between the base metal and Si-DLC layers. The result of evaluation of electric resistivity and adhesion strength shows that the properties are affected by the flow rate of HMDSO, while the flow rate of 80 sccm results in the coating with the highest electric resistivity and adhesion strength among the selected flow rates.

Experimental investigation of Scalability of DDR DRAM packages

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.73-76
    • /
    • 2010
  • A two-facet approach was used to investigate the parametric performance of functional high-speed DDR3 (Double Data Rate) DRAM (Dynamic Random Access Memory) die placed in different types of BGA (Ball Grid Array) packages: wire-bonded BGA (FBGA, Fine Ball Grid Array), flip-chip (FCBGA) and lead-bonded $microBGA^{(R)}$. In the first section, packaged live DDR3 die were tested using automatic test equipment using high-resolution shmoo plots. It was found that the best timing and voltage margin was obtained using the lead-bonded microBGA, followed by the wire-bonded FBGA with the FCBGA exhibiting the worst performance of the three types tested. In particular the flip-chip packaged devices exhibited reduced operating voltage margin. In the second part of this work a test system was designed and constructed to mimic the electrical environment of the data bus in a PC's CPU-Memory subsystem that used a single DIMM (Dual In Line Memory Module) socket in point-to-point and point-to-two-point configurations. The emulation system was used to examine signal integrity for system-level operation at speeds in excess of 6 Gb/pin/sec in order to assess the frequency extensibility of the signal-carrying path of the microBGA considered for future high-speed DRAM packaging. The analyzed signal path was driven from either end of the data bus by a GaAs laser driver capable of operation beyond 10 GHz. Eye diagrams were measured using a high speed sampling oscilloscope with a pulse generator providing a pseudo-random bit sequence stimulus for the laser drivers. The memory controller was emulated using a circuit implemented on a BGA interposer employing the laser driver while the active DRAM was modeled using the same type of laser driver mounted to the DIMM module. A custom silicon loading die was designed and fabricated and placed into the microBGA packages that were attached to an instrumented DIMM module. It was found that 6.6 Gb/sec/pin operation appears feasible in both point to point and point to two point configurations when the input capacitance is limited to 2pF.

Effects of Secondary Forming Process on Mechanical Properties of $SiC_p$/Al Composites Fabricated by Squeeze Casting (용탕단조법에 의하여 제조한 $SiC_p$/Al 복합재료의 2차 성형공정이 기계적 성질에 미치는 영향)

  • Seo, Y.H;Kang, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3474-3490
    • /
    • 1996
  • A metal matrix composites(MMCs) for A16061 reinforced with silicon carbide particles is fabricated by melt-stirring method. The primary products of MMCs billets are prepared by volume fractions 5 vol% to 20 vol% and particle size $13\mu m$ to $22\mu m$.This paper will be made to examine the microstructure and mechanical properties of fabricated $SiC_p$/Al 6061 composite by melt-stirring and squeeze casting method. The MMC billets is extruded at $500^{\circ}C$ under the constant extrusion velocity $V_e$=2mm/min using curved shape die. Extrusion force, particle rearrangement, micro structure and mechanical properties of extruded composites will be investigated. The mechanical properties of primary billets manufactured by melt-stirring and squeeze casting method will be compared with extrusion specimen. The effect of volume fraction and size of the reinforcements will be studied. The increase in uniformity of particle dispersion is the major reason for an improvement in reliability due to hot extrusion with optimal shape die. Experimental Young's modulus and 0.2% offset yield strength for the extruded MMCs will be compared with theretical values calculated by the Eshelby method. A method will be proposed for the prediction of Young's modulus and yield strength in $SiC_p$ reinforced MMCs.

Slot-die Coating Method for Manufacturing Large-area Perovskite Solar Cell (대면적 페로브스카이트 태양전지 제작을 위한 슬롯-다이코팅 방법)

  • Oh, Ju-young;Ha, Jae-jun;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.918-925
    • /
    • 2021
  • The perovskite solar cell is a next-generation solar cell that replaces the existing silicon solar cell. It is a solar cell device using an organic-inorganic hybrid material having a perovskite structure as a photoactive layer. It has advantages for the process and has shown rapid efficiency improvement over the past decade. In the process of commercialization of such perovskite solar cells, research and development for a large-area coating method should be carried out. As one of the large-area perovskite solar cell large-area coating methods, the slot-die coating method was studied. By using a meniscus to pass over the substrate and coating the solution, the 3D printer was equipped with a meniscus so that it could be coated. Variables that act during coating include bed temperature, coating speed, N2 blowing interval, N2 blowing height, N2 blowing intensity, etc. By controlling these, the perovskite absorption layer was manufactured and the coating conditions for manufacturing large-area devices were optimized.

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

SiC Based Single Chip Programmable AC to DC Power Converter

  • Pratap, Rajendra;Agarwal, Vineeta;Ravindra, Kumar Singh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.697-705
    • /
    • 2014
  • A single chip Programmable AC to DC Power Converter, consisting of wide band gap SiC MOSFET and SiC diodes, has been proposed which converts high frequency ac voltage to a conditioned dc output voltage at user defined given power level. The converter has high conversion efficiency because of negligible reverse recovery current in SiC diode and SiC MOSFET. High frequency operation reduces the need of bigger size inductor. Lead inductors are enough to maintain current continuity. A complete electrical analysis, die area estimation and thermal analysis of the converter has been presented. It has been found that settling time and peak overshoot voltage across the device has reduced significantly when SiC devices are used with respect to Si devices. Reduction in peak overshoot also increases the converter efficiency. The total package substrate dimension of the converter circuit is only $5mm{\times}5mm$. Thermal analysis performed in the paper shows that these devices would be very useful for use as miniaturized power converters for load currents of up to 5-7 amp, keeping the package thermal conductivity limitation in mind. The converter is ideal for voltage requirements for sub-5 V level power supplies for high temperatures and space electronics systems.

A Study on JFET and FLR Optimization for the Design and Fabrication of 3.3kV SiC MOSFET (3.3kV SiC MOSFET 설계 및 제작을 위한 JFET 및 FLR 최적화 연구)

  • YeHwan Kang;Hyunwoo Lee;Sang-Mo Koo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2023
  • The potential performance benefits of Silicon Carbide(SiC) MOSFETs in high power, high frequency power switching applications have been well established over the past 20 years. In the past few years, SiC MOSFET offerings have been announced by suppliers as die, discrete, module and system level products. In high-voltage SiC vertical devices, major design concerns is the edge termination and cell pitch design Field Limiting Rings(FLR) based structures are commonly used in the edge termination approaches. This study presents a comprehensive analysis of the impact of variation of FLR and JFET region on the performance of a 3.3 kV SiC MOSFET during. The improvement in MOSFET reverse bias by optimizing the field ring design and its influence on the nominal operating performance is evaluated. And, manufacturability of the optimization of the JFET region of the SiC MOSFET was also examined by investigating full-map electrical characteristics.

  • PDF