• Title/Summary/Keyword: Semigroup

Search Result 381, Processing Time 0.032 seconds

Interval-valued Fuzzy Quasi-ideals in a Semigroups

  • Kim, Sang-Mok;Hur, Kul;Cheong, Min-Seok;Chae, Gab-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.215-225
    • /
    • 2012
  • We initiate the study of interval-valued fuzzy quasi-ideal of a semigroup. In Section 2, we list some basic definitions in the later sections. In Section 3, we investigate interval-valued fuzzy subsemigroups and in Section 4, we define interval-valued fuzzy quasi-ideals and establish some of their basic properties. In Section 5, we obtain characterizations of regular and intraregular semigroups using the machinery developed in the preceding sections.

SOLUTIONS AND STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS ON AN AMENABLE GROUP WITH AN INVOLUTIVE AUTOMORPHISM

  • Ajebbar, Omar;Elqorachi, Elhoucien
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.55-82
    • /
    • 2019
  • Given ${\sigma}:G{\rightarrow}G$ an involutive automorphism of a semigroup G, we study the solutions and stability of the following functional equations $$f(x{\sigma}(y))=f(x)g(y)+g(x)f(y),\;x,y{\in}G,\\f(x{\sigma}(y))=f(x)f(y)-g(x)g(y),\;x,y{\in}G$$ and $$f(x{\sigma}(y))=f(x)g(y)-g(x)f(y),\;x,y{\in}G$$, from the theory of trigonometric functional equations. (1) We determine the solutions when G is a semigroup generated by its squares. (2) We obtain the stability results for these equations, when G is an amenable group.

MODULE AMENABILITY OF BANACH ALGEBRAS AND SEMIGROUP ALGEBRAS

  • Khoshhal, M.;Bagha, D. Ebrahimi;Rahpeyma, O. Pourbahri
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.357-368
    • /
    • 2019
  • We define the concepts of the first and the second module dual of a Banach space X. And also bring a new concept of module amenability for a Banach algebra ${\mathcal{A}}$. For inverse semigroup S, we will give a new action for ${\ell}^1(S)$ as a Banach ${\ell}^1(E_S)$-module and show that if S is amenable then ${\ell}^1(S)$ is ${\ell}^1(E_S)$-module amenable.

SINGULARITIES AND STRICTLY WANDERING DOMAINS OF TRANSCENDENTAL SEMIGROUPS

  • Huang, Zhi Gang;Cheng, Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.343-351
    • /
    • 2013
  • In this paper, the dynamics on a transcendental entire semigroup G is investigated. We show the possible values of any limit function of G in strictly wandering domains and Fatou components, respectively. Moreover, if G is of class $\mathfrak{B}$, for any $z$ in a Fatou domain, there does not exist a sequence $\{g_k\}$ of G such that $g_k(z){\rightarrow}{\infty}$ as $k{\rightarrow}{\infty}$.

ON THE LEFT REGULAR po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.149-154
    • /
    • 1998
  • We consider the ordered ${\Gamma}$-semigroups in which $x{\gamma}x(x{\in}M,{\gamma}{\in}{\Gamma})$ are left elements. We show that this $po-{\Gamma}$-semigroup is left regular if and only if M is a union of left simple sub-${\Gamma}$-semigroups of M.

  • PDF

ε-FUZZY CONGRUENCES ON SEMIGROUPS

  • Chon, In-Heung
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.461-468
    • /
    • 2008
  • We define an $\epsilon$-fuzzy congruence, which is a weakened fuzzy congruence, find the $\epsilon$-fuzzy congruence generated by the union of two $\epsilon$-fuzzy congruences on a semigroup, and characterize the $\epsilon$-fuzzy congruences generated by fuzzy relations on semigroups. We also show that the collection of all $\epsilon$-fuzzy congruences on a semigroup is a complete lattice and that the collection of $\epsilon$-fuzzy congruences under some conditions is a modular lattice.

Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup

  • Cheong, Min-Seok;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • We apply the concept of interval-valued fuzzy sets to theory of semigroups. We give some properties of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and intervalvalued fuzzy bi-ideals.

THICKLY SYNDETIC SENSITIVITY OF SEMIGROUP ACTIONS

  • Wang, Huoyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1125-1135
    • /
    • 2018
  • We show that for an M-action on a compact Hausdorff uniform space, if it has at least two disjoint compact invariant subsets, then it is thickly syndetically sensitive. Additionally, we point out that for a P-M-action of a discrete abelian group on a compact Hausdorff uniform space, the multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity.

Weierstrass semigroups at inflection points

  • Kim, Seon-Jeong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.753-759
    • /
    • 1995
  • Let C be a smooth complex algebraic curve of genus g. For a divisor D on C, dim D means the dimension of the complete linear series $\mid$D$\mid$ containing D, which is the same as the projective dimension of the vector space of meromorphic functions f on C with divisor of poles $(f)_\infty \leq D$.

  • PDF