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SINGULARITIES AND STRICTLY WANDERING DOMAINS

OF TRANSCENDENTAL SEMIGROUPS

Zhi Gang Huang and Tao Cheng

Abstract. In this paper, the dynamics on a transcendental entire semi-
group G is investigated. We show the possible values of any limit function
of G in strictly wandering domains and Fatou components, respectively.
Moreover, if G is of class B, for any z in a Fatou domain, there does not
exist a sequence {gk} of G such that gk(z) → ∞ as k → ∞.

1. Introduction and main results

In a series of papers, Hinkkanen and Martin extended the classical theory
of dynamics associated with the iteration of a single rational function to the
more general setting of semigroups of rational functions, see [8, 9]. In 1998,
Poon [11, 12] extended the study to transcendental semigroups and obtained
some basic results. The dynamics of transcendental semigroups actually has
some rather different properties than the dynamics of rational semigroups or
the iteration of a single function.

Suppose {fj : j = 1, 2, . . . ,m} is a family of transcendental entire functions.
We call the semigroup G = 〈f1, f2, . . . , fm〉 generated by {fj} under functional
composition a transcendental semigroup.

Define the Fatou set of the semigroup G by

F (G) = {z ∈ C : G is normal in some neighbourhood of z}

and the Julia set of G by J(G) = C \ F (G).
If G is generated by only one function f , then F (G) and J(G) are the Fatou

set and Julia set respectively in the classical iteration theory of Fatou and Julia.
We say that a set S is completely invariant under f if S is forward and

backward invariant under f . It is well known that the Fatou set and Julia set
of a single function f are both completely invariant. But F (G) and J(G) need
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not be completely invariant. In fact, F (G) is forward invariant and J(G) is
backward invariant.

Since F (G) is forward invariant, for any component U of F (G) and any
g ∈ G, we have g(U) ⊂ F (G). We use Ug to denote the component of F (G)
which contains g(U).

Definition 1. A component U of F (G) is called a wandering domain of G
provided that the set {Ug : ∀g ∈ G} is infinite. Otherwise, U is called a
non-wandering domain. Furthermore, we say that a component U of F (G) is
strictly wandering if Ug = Uh implies g = h.

For a single function f , the two definitions are the same. While for a semi-
group, they are generally different. A wandering domain of G may not be
wandering under the iteration of each element of G or may be a wandering
domain of just one generator of G, cf. [8, Section 5].

Denote by sing f−1 the set of singularities of f−1, that is, the set of critical
and asymptotic values of f . Let E be ∪∞

n=0f
n(sing f−1), E be the closure of

E, and E′ be the derived set of E, i.e., the set of finite limit points of E. Let
B denote the class consisting of meromorphic functions f such that sing f−1

is bounded, and let S denote the class of meromorphic functions f which have
only finitely many critical and asymptotic values. For a semigroup G, if all the
elements belong to S or B, we call G a semigroup of class S or B.

Theorem 1. Suppose G is a finitely generated transcendental semigroup. Then

any limit function of G on a strictly wandering domain U of F (G) is ∞ or lies

in (
⋃
φ∈G sing φ−1)′.

Theorem 2. Suppose G is a finitely generated transcendental semigroup and

U is a component of F (G). Let q be a constant limit function of G on U . Then

either q is ∞ or q ∈ (
⋃
φ∈G sing φ−1).

Remark 1. It is well known that all limit functions of {fn|U} are constant
if U is a wandering domain. Baker [1] proved that constant limit functions
in Fatou components F (f) (not necessarily wandering) are in E ∪ {∞} if f
is a nonlinear entire function. Furthermore, Bergweiler et al. [5] proved that
the constant limit functions in wandering domains are in E′ ∪ {∞}. It is
obvious that the results in [1, 5] are special cases of our theorems when m = 1.
Moreover, our method, which mainly depends on hyperbolic metric, is different
from the method in [1, 5]. There are also many papers on this subject for the
case of meromorphic functions (see [3, 14, 15]).

In fact, if f is an entire function in B, Eremenko and Lyubich [7] showed
that for each p > 0 and z ∈ F , the orbit {fpn(z)}∞n=0 does not tend to ∞.
Theorem 3 below extends the result to the case of transcendental semigroups.
Obviously, our theorem contains this result in [7].
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Theorem 3. Suppose G is a finitely generated transcendental semigroup of

class B. Then for all z ∈ F (G), there does not exist any sequence {gk} of G
such that gk(z) → ∞ as k → ∞.

As an application of Theorem 1 and Theorem 3, we can get a class of tran-
scendental semigroups which has no strictly wandering domains.

Theorem 4. Suppose G is a finitely generated transcendental semigroup of

class B. If there exists some fj (j ∈ {1, 2, . . . ,m}), which has no rationally

indifferent cycles, such that J(fj) = J(G) and J(G) ∩ (
⋃
ψ∈G sing (ψ−1))′ is

finite, then G has no strictly wandering domains.

2. Proof of Theorem 1 and Theorem 2

First, we recall the basic knowledge of the hyperbolic metric on a hyperbolic
domain. Let Ω be a hyperbolic domain in the complex plane C, that is, C \ Ω
contains at least two points. We denote the hyperbolic density of Ω by λΩ(z).
It is well known that the hyperbolic metric on the unit disk △ is given by the
density

λ△(z)|dz| =
|dz|

1− |z|2
.

Then the hyperbolic density λΩ(z) on Ω is determined by

λΩ(p(z))|p
′(z)| =

1

1− |z|2
, z ∈ △,

where p(z) is a holomorphic universal covering map of Ω from △. Let D(a, δ) =
{z : |z − a| < δ} and D∗(a, δ) = {z : |z − a| < δ} \ {a}. It is easy to see that

λD∗(0,δ)(z) =
1

2|z| log( δ|z| )
.

We need the following Schwarz-Pick Lemma which plays an important role
in our proof.

Lemma 1. Let U and Ω both be hyperbolic domains, and let f(z) be a holo-

morphic map on U such that f(U) ⊂ Ω. Then

λΩ(f(z))|f
′(z)| ≤ λU (z), ∀z ∈ U,

and the equality holds if and only if f is a covering map of Ω from U .

Suppose Ω is a hyperbolic and simply connected domain. For a point z0 ∈ Ω,
there exists a Riemann map φ : △ → Ω such that φ(0) = z0. By the Koebe 1

4

Theorem, {|z − z0| <
1
4 |φ

′(0)|} ⊆ Ω, and then

(1)
1

4
|φ′(0)| ≤ δΩ(z0),
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where δΩ(z) is the Euclidean distance from z to the boundary of Ω. By Lemma
1 and the inequality (1),

(2) λΩ(z0) = λΩ(φ(0)) ≥
1

4δΩ(z0)
.

So

(3) λΩ(z)δΩ(z) ≥
1

4
, z ∈ Ω.

Let U be a wandering domain ofG. By Definition 1, {Ug : ∀g ∈ G} is infinite.
Then there exists a sequence of elements {gj} of G such that gj(U) ⊂ Ugj and
Ugi 6= Ugj if i 6= j. The following lemma which is Theorem 6.1 in [11] can be
easily obtained.

Lemma 2. Let G be a transcendental semigroup. If U is a wandering domain

of G and {gj} is a sequence of functions as above, then any limit function of

{gj} on U must be constant and belongs to J(G).

Proof of Theorem 1. By Lemma 2, all limit functions of G on a strictly wan-
dering domain U are constant and belong to J(G). Suppose, on the contrary,
Theorem 1 does not hold. Thus, there exists a sequence {gk} of G such that
gk → a as k → ∞ where a is a finite constant number. Without loss of gen-
erality, we may assume a = 0 and 0 does not lie in (sing φ−1)′ for any φ ∈ G.
Now, we can take a sufficiently small ε > 0 such that N = D∗(0, ε) does not

meet sing φ−1 for any φ ∈ G. Select a disc D = D(z0, r) with D(z0, r) ⊂ U .
We have wk = gk(z0) → 0 as k → ∞. Let pk be the branch of g−1

k such that
pk(wk) = z0. Write uk = log(wk), noting that wk 6= 0. Then hk = pk(exp(t))
is analytic at t = uk, and hk(uk) = z0. It follows that hk can be continued
analytically to a single-valued function in H = {t : Ret < log ε}. By Montel’s
Theorem, {qk = hk(uk +(log ε−Reuk)v)} is a normal family in D(0, 1). Then

by Marty’s criterion, the spherical derivatives q#k (0) = |q′k(0)|/(1+ |qk(0)|2) are
bounded. So there exists a positive constant B such that

(4)
(log ε− Reuk)|wkp′k(wk)|

1 + |z0|2
≤ B.

It follows that

(5) |(gk)
′(z0)| ≥

|gk(z0)|(log ε− Reuk)

B(1 + |z0|2)
,

where

Reuk = log |wk| = log |pk(z0)|.

On the other hand, since gk → 0 (as k → ∞), we have Dk = gk(D) ⊂ N
for all sufficiently large k. For convenience, we can assume Dk = gk(D) ⊂ N
for all k. Since Dk ∩ sing g−1

k = ∅, gk|D is proper (that is, the inverse image of
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any compact set in Dk is compact in D). Noting that D is simply connected,
by the Riemann-Hurwitz formula, Dk is also simply connected. By Lemma 1,

(6) λDk
(gk(z0))|g

′
k(z0)| ≤ λD(z0).

Again by (3),

(7) λDk
(gk(z0))δDk

(gk(z0)) ≥
1

4
,

then

(8) λDk
(gk(z0)) ≥

1

4δDk
(gk(z0))

≥
1

4|gk(z0)|
.

So by (6) and (8),

(9)
|g′k(z0)|

4|gk(z0)|
≤ λD(z0).

Combining (5) and (9),

(10) 4|gk(z0)|λD(z0) ≥
|gk(z0)|(log ε− Reuk)

B(1 + |z0|2)
.

Since Reuk → −∞ as k → ∞, we obtain a contradiction. �

Proof of Theorem 2. Suppose that Theorem 2 does not hold. There exists a
disk neighborhood V of q which does not meet sing φ−1 for any φ ∈ G. Then
for any g ∈ G, we can take all branches of g−1 which are well defined on V .
Denote by Λ the family of transcendental entire functions where each element of
Λ is a branch of the inverse of an element of G. Since

⋃
φ∈G sing φ−1 contains

at least three points, it is easy to see that Λ is normal in V . Let {gj} be

a sequence with gj → q locally uniformly on a compact subset Ũ of U and

gj(Ũ ) ⊂ V for sufficiently large j. Take a curve γ ∈ Ũ containing at least two

points. We can take sufficiently large j and define a branch hj of g
−1
j which is

regular in V , such that it maps gj(γ) to γ. So {hj} is equicontinuous. On the
other hand, {gj(γ)} converges to q, and for any neighborhood W of q, there
exists j such that hj(W ) contains γ. Thus, we get a contradiction. �

3. Proof of Theorem 3 and Theorem 4

Lemma 3. Suppose f ∈ B and 0 /∈
⋃∞
s=1 f

−s(∞), then there exist a positive

constant R and a curve Γ connecting 0 and ∞ such that |f(z)| ≤ R on Γ and

for all z ∈ C \ {0} which are not poles of f ,

(11) |f ′(z)| ≥
|f(z)|

2π|z|
log

|f(z)|

R
.

Lemma 3 is a combination of [4, Lemma 8] and [17, Lemma 2].

Lemma 4. Let q be an irrationally neutral fixed point of a transcendental entire

function f . Then there is no point z ∈ C such that fn(z) → q (as n → ∞),
except when fn(z) = q for some n.
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Remark 2. Lemma 4 was proved by Perez-Marco [10] while Sullivan [13] got
the same result for a single rational function R. Let V be a component of F (f)
of a transcendental entire function f . Suppose that fnp|V → q where p is a
positive integer and q is a constant. It is well known that fnp|V can not tend
to a repelling periodic point. And q can not be a rationally neutral periodic
point of f if V is not the corresponding parabolic domain. Therefore according
to the classification theorem of periodic components, we have that q is not a
periodic point of f if and only if V is either (preimage of) a Baker domain or
a wandering domain, in this case, q ∈ J(f).

Next, Lemma 5 can be proved by the same method of [15, Theorem 3]; we
give a brief proof here for completeness.

Lemma 5. Let f be a transcendental entire function, and suppose a is not a

(pre)periodic point. If the set X of limit points of {fn(a)} is finite, then either

X = {∞} or X is a periodic cycle.

Proof. Suppose that X = {a1, a2, . . . , as} contains a finite element a1. Noting
that fk(a1) is also a limit point of {fn(a)} for any positive integer k. We
see that a1 is a (pre)periodic point and X contains a periodic cycle. Without
loss of generality, we assume {a1, a2, . . . , at}, t ≤ s, is a periodic cycle. Take
two positive numbers d and M such that D(aj , d)(j = 1, 2, . . . , s) are mutually
disjoint and lie inside D(0,M). There exists a positive integer N0 such that
for n ≥ N0,

fn(a) ∈
s⋃

j=1

D(aj , d) ∪ {z : |z| > M}.

Take a positive number r < d and a positive integer N1 > N0, such that for
any n > N1, we have

(12) fn(a) ∈
s⋃

j=1

D(aj , r) ∪ {z : |z| > M}

and

f(D(aj , r)) ⊂ D(f(aj), d)(j = 1, 2, . . . , s).

Assume that fnk(a) → a1(k → ∞). For k > N1, we have fnk(a) ∈ D(a1, r).
So

fnk+1(a) ∈ D(f(a1), d) = D(a2, d).

Since D(aj , d)(j = 1, 2, . . . , s) are mutually disjoint, by (6), we have fnk+1(a) ∈
D(a2, r). By induction, for n > nk,

fn(a) ∈
t⋃

j=1

D(aj , r).

Thus X is a periodic cycle. �
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Lemma 6. Let f and g be nonconstant entire functions. Then sing((f◦g)−1) ⊂
sing f−1 ∪ f(sing g−1).

Lemma 6 was proved by Bergweiler and Wang [6, Lemma 2].

Lemma 7. Suppose G is a finitely generated transcendental semigroup. Then

J(G) =
⋃

g∈G

J(g).

Lemma 7 comes from [11, Theorem 4.2]. We denote by indαγ the index of
a curve γ ⊂ C with respect to a point α. The following lemma was proved by
Baker [2, Theorem 3.1].

Lemma 8. Let f be a transcendental entire function, and let U be a multiply

connected component of the Fatou set F (f). We denote by γ a Jordan curve

that is not contractible in U . Then

1. fn → ∞ uniformly on compact subsets of U , and so the distance between

fn(γ) and 0 is large;
2. ind0f

n(γ) > 0 for sufficiently large n and ind0f
n(γ) → ∞ as n→ ∞.

Now we are in the position to prove Theorem 3 and Theorem 4.

Proof of Theorem 3. By Lemma 3, there exist R and curves Γj(1 ≤ j ≤ m)
connecting 0 and ∞ such that |fj(z)| ≤ R on Γj(1 ≤ j ≤ m) and for all
z ∈ C \ {0},

(13) |f ′
j(z)| ≥

|fj(z)|

2π|z|
log

|fj(z)|

R
, 1 ≤ j ≤ m.

Suppose there exist a point z0 ∈ F (G) and a sequence {gk} of G such that
gk → ∞ as k → ∞. Since {gk} is normal at z0, we can take a fixed positive
number R0 and a disk D = D(z0, R0) such that gk|D → ∞ as k → ∞. Denote
Dk = gk(D). Dk lies in the component Ugk which is a component of F (G).
Noting each fj ∈ B, from Lemma 6, it is easy to see that an element of G must
be in Class B.

We claim that every component must be simply connected. Suppose a
component V of F (G) is multiply-connected. We draw a simple closed Jor-
dan curve γ which is not homotopic to point there. By Lemma 7, we have

J(G) =
⋃
g∈G J(g). Therefore, there exists an h ∈ G such that J(h) intersects

the bounded interior surrounded by γ. Since γ ⊂ V ⊂ F (h), γ is not null-
homotopic with respect to F (h). Otherwise ∞ ∈ F (h), which is impossible,

and the component Ṽ of F (h) which contains V is multiply-connected. By

Lemma 8, hn tends to ∞ locally uniformly on Ṽ as n → ∞. But h is in class
B, so there is a contradiction. Thus Ugk is simply connected.

By Lemma 1, we have

λUgk
(gk(z0))|g

′
k(z0)| ≤

1

R0
.



350 ZHI GANG HUANG AND TAO CHENG

Since Ugk is simply connected, by (3), for sufficiently large k,

(14) |(gk)
′(z0)| ≤

4

R0
δUgk

(gk(z0)) ≤
4|gk(z0)|

R0
.

On the other hand, write gk = hkn ◦ hkn−1
◦ · · · ◦ hk1 , where hkj is chosen

from{f1, . . . , fm}. Note that n → ∞ when k → ∞. Write wp = hkp ◦ hkp−1
◦

· · · ◦ hk1(z0), p = 1, 2, . . . , n and w0 = z0. By (13), we have

|g′k(z0)|=
n−1∏

s=0

|h′ks+1
(ws)| ≥

n−1∏

s=0

|ws+1|

2π|ws|
log

|ws+1|

R
=

|gk(z0)|

|z0|

n−1∏

s=0

1

2π
log

|ws+1|

R
.

This inequality contradicts (14) since
∏n−1
s=0

1
2π log |ws+1|

R
→ ∞(k → ∞). This

completes the proof. �

Proof of Theorem 4. Suppose G has a strictly wandering domain U . By Theo-
rem 1, all the limit points of G lie in J(G)∩(

⋃
ψ∈G sing(ψ−1))′. Thus, the limit

set X of {fnj |U} contains finitely many elements. Let X = {a1, a2, . . . , at}. By
Theorem 3 and Lemma 5, X is a periodic cycle. Since a1 ∈ J(G) = J(fj) and
fj has no rationally indifferent cycles, a1 is a repelling periodic point or non-
Siegel point of fj. By Lemma 4 and Remark 2, we obtain a contradiction. �
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