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Abstract

We initiate the study of interval-valued fuzzy quasi-ideal of a semigroup. In Section 2, we list some basic definitions in
the later sections. In Section 3, we investigate interval-valued fuzzy subsemigroups and in Section 4, we define interval-
valued fuzzy quasi-ideals and establish some of their basic properties. In Section 5, we obtain characterizations of regular
and intraregular semigroups using the machinery developed in the preceding sections.
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1. Introduction

The theory of fuzzy sets proposed by Zadeh [11] in 1965
has achieved a great success in various fields. Since then,
Ahsan and Latif [1] investigated fuzzy quasi-ideals in a
semigroup. With the research of fuzzy sets, in 1975, Zadeh
[12] introduced the notion of interval-valued fuzzy sets as
a generalization of fuzzy sets. After then, Biswas [3] ap-
plied it to group theory, Mondal and Samanto [9] to topol-
ogy. Recently, Kang and Hur [6] studied interval-valued
fuzzy subgroups and subrings and Choi et al [5] intro-
duced the concept of interval-valued smooth topological
spaces and investigated some of its properties. In particular,
Cheong and Hur [4] studied interval-valued fuzzy general-
ized bi-ideals of a semigroup, and Lee et al [8] investigated
interval-valued fuzzy ideals and bi-ideals in a semigroup.

In this paper, we initiate the study of interval-valued
fuzzy quasi-ideal of a semigroup. In Section 2, we list
some basic definitions in the later sections. In Section 3,
we investigate interval-valued fuzzy subsemigroups and in
Section 4, we define interval-valued fuzzy quasi-ideals and
establish some of their basic properties. In Section 5, we
obtain characterizations of regular and intraregular semi-
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groups using the machinery developed in the preceding
sections.

2. Preliminaries

We will list some concepts and one result needed in the
later sections.
Throughout this paper, we will denote the unit interval [0,1]
as I and for an ordinary subset of a set X , we will denote
the characteristic function of A as χA.
Let D(I) be the set of all closed subintervals of the unit
interval I = [0, 1]. The elements of D(I) are gener-
ally denoted by capital letters M,N, · · ·, and note that
M = [ML,MU ], where ML and MU are the lower and
the upper end points respectively. Especially, we denoted ,
0̃ = [0, 0], 1̃ = [1, 1], and a=[a, a] for every a ∈ (0, 1). We
also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU =
NU ),

(ii) (∀M,N ∈ D(I)) (M ≤ N ⇔ ML ≤ NL,MU ≤
NU ).
For every M ∈ D(I), the complement of M , denoted by
M c, is defined by M c = 1−M = [1−MU , 1−ML].

Definition 2.1. [12]. A mapping A : X → D(I) is called
an interval -valued fuzzy set (in short, IVS) inX , denoted
by A = [AL, AU ], if AL, AU ∈ IX such that AL ≤ AU ,
i.e., AL(x) ≤ AU (x) for each x ∈ X , where AL(x) [resp.
AU (x) ] is called the lower [resp. upper ] end point of x
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to A. For any [a, b] ∈ D(I), the interval-valued fuzzy
set A in X defined by A(x) = [AL(x), AU (x)] = [a, b]

for each x ∈ X is denoted by ˜[a, b] and if a = b, then
the IVS ˜[a, b] is denoted by simply ã. In particular, 0̃
and 1̃ denote the interval -valued fuzzy empty set and the
interval -valued fuzzy whole set in X , respectively. We
will denote the set of all IVSs in X as D(I)X . It is clear
that set A = [AL, AU ] ∈ D(I)X for each A ∈ IX .

Definition 2.2. [9, 12]. Let A,B ∈ D(I)X and let
{Aα}α∈Γ ⊂ D(I)X . Then:

(a) A ⊂ B iff AL ≤ BL and AU ≤ BU .
(b) A = B iff A ⊂ B and B ⊂ A.
(c) Ac = [1−AU , 1−AL].
(d) A ∪B = [AL ∨BL, AU ∨BU ].
(d)′

⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(e) A ∩B = [AL ∧BL, AU ∧BU ].
(e)′

⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

3. Interval-valued fuzzy subsemigroups

Definition 3.1. [6]. Let (X, ·) be a groupoid and letA,B ∈
D(I)X . Then the interval -valued fuzzy product of A and
B, denoted by A ◦ B, is an IVS in X defined as follows :
For each x ∈ X ,

(A ◦B)(x) =

{
[a, b], if yz = x;
[0, 0] , otherwise.

where a =
∨
yz=x

(AL(y) ∧ BL(z)), b =
∨
yz=x

(AU (y) ∧

BU (z)). It is clear that for any A,B,C ∈ D(I)X , if B ⊂
C, then A ◦B ⊂ A ◦ C and B ◦A ⊂ C ◦A.

Result 3.A. [6, P roposition 3.3]. Let (S, ·) be a groupoid.
(a) If “ · ” is associative[resp. commutative], then so is ◦ in
D(I)S .
(b) If “ · ” has an identity e ∈ S, then e1 ∈ IV Fp(X) is an
identity of ◦ in D(I)S .

Proposition 3.2. Let S be a groupoid and let A,B,C ∈
D(I)S . Then

(a) A ◦ (B ∪ C) = (A ◦ B) ∪ (A ◦ C), (B ∪ C) ◦ A =
(B ◦A) ∪ (C ◦A).

(b) A ◦ (B ∩ C) ⊂ (A ◦ B) ∩ (A ◦ C), (B ∩ C) ◦ A ⊂
(B ◦A) ∩ (C ◦A).

Proof. (a) Let x ∈ S. Suppose x is not expressible as
x = yz. Then clearly (A ◦ (B ∪C))(x) = 0̃ = ((A ◦B)∪
(A ◦ C))(x). Suppose x is expressible as x = yz. Then

(A ◦ (B ∪ C))L(x) =
∨
x=yz

(AL(y) ∧ (B ∪ C)L(z)

=
∨
x=yz

(AL(y) ∧ (BL(z) ∨ CL(z))

=
∨
x=yz

((AL(y) ∧BL(z)) ∨ (AL(y) ∧ CL(z)))

=
∨
x=yz

(AL(y) ∧BL(z)) ∨
∨
x=yz

(AL(y) ∧ CL(z))

= (A ◦B)L(x) ∨ (A ◦ C)L(x)
= ((A ◦B) ∪ (A ◦ C))L(x).

Thus A ◦ (B ∪ C) = (A ◦ B) ∪ (A ◦ C). By the similar
arguments, we have (B ∪ C) ◦A = (B ◦A) ∪ (C ◦A).

(b) Let x ∈ S. Suppose x is not expressible as x = yz.
Then clearly (A◦(B∩C))(x) = 0̃ = ((A◦B)∩(A◦C))(x).
Suppose x is expressible as x = yz. Then

(A ◦ (B ∩ C))L(x) =
∨
x=yz

(AL(y) ∧ (B ∩ C)L(z))

=
∨
x=yz

(AL(y) ∧ (BL(z) ∧ CL(z)))

=
∨
x=yz

((AL(y) ∧BL(z)) ∧ (AL(y) ∧ CL(z)))

≤
∨
x=yz

(AL(y) ∧BL(z)) ∧
∨
x=yz

(AL(y) ∧ CL(z))

= (A ◦B)L(x) ∧ (A ◦ C)L(x)
= ((A ◦B) ∩ (A ◦ C))L(x).

Similarly, we have that (A ◦ (B ∩ C))U (x) ≤ ((A ◦ B) ∩
(A◦C))U (x). ThusA◦(B∩C) ⊂ (A◦B)∩(A◦C). By the
similar arguments, we have (B∩C)◦A ⊂ (B◦A)∩(C◦A).
This completes the proof.

Let S be a semigroup. By a subsemigroup of S we
mean a non-empty subset of A such that A2 ⊂ A and
by a left [resp. right ] ideal of S we mean a non-empty
subset A of S such that SA ⊂ A [resp. AS ⊂ A]. By
two-sided ideal or simply ideal we mean a subset A of S
which is both a left and a right ideal of S. We will denote
the set of all left ideals[resp. right ideals and ideals] of S
as LI(S)[resp. RI(S) and I(S)].

Definition 3.3. [8]. Let S be a semigroup and let 0̃ 6= A ∈
D(I)S . Then A is called an:

(i) interval -valued fuzzy semigroup(in short, IV SG)
of S ifAL(xy) ≥ AL(x)∧AL(y) andAU (xy) ≥ AU (x)∧
AU (y) for any x, y ∈ S.

(ii) interval -valued fuzzy left ideal (in short, IV LI) of
S if AL(xy) ≥ AL(y) and AU (xy) ≥ AU (y) for any
x, y ∈ S.

(iii) interval -valued fuzzy right ideal (in short, IV RI)
of S if AL(xy) ≥ AL(x) and AU (xy) ≥ AU (x) for any
x, y ∈ S.

(iv) interval -valued fuzzy(two-sided) ideal (in short,
IV I) of S if it is both an IVLI and an IVRI of S.
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We will denote the set of all IVSGs [resp.IVLIs,
IVRIs and IVIs] of S as IVSG(S) [resp.IVLI(S), IVRI(S)
and IVI(S)]. It is clear that A ∈ IVI(S) if and only if
AL(xy) ≥ AL(x)∧AL(y) andAU (xy) ≥ AU (x)∧AU (y)
for any x, y ∈ S, and if A ∈ IVLI(S)[resp. IVRI(S) and
IVI(S)], then A ∈ IVSG(S).

The following is the immediate result of Definitions 3.1
and 3.3(i).

Proposition 3.4. Let S be a semigroup and let 0̃ 6= A ∈
D(I)S . Then A ∈ IVSG(S) if and only if A ◦A ⊂ A.

Result 3.B. [3, P roposition 3.4]. Let A be a non-empty
subset of a semigroup S.
(a) A is a subsemigroup of S if and only if [χA, χA] ∈
IVSG(S).
(b) A ∈ LI(S)[resp. RI(S) and I(S)] if and only if
[χA, χA] ∈ IVLI(S) [resp. IVRI(S) and IVI(S)].

Result 3.C. [4, Lemmas 2.3 and 2.4]. Let S be a semi-
group and let 0̃ 6= A ∈ D(I)S . Then A ∈ IVLI(S)[resp.
IVRI(S)] if and only if 1̃ ◦A ⊂ A[resp. A ◦ 1̃ ⊂ A].

Proposition 3.5. Let S be a semigroup and let A,B,C ∈
D(I)S . IfA ⊂ B, thenA◦C ⊂ B ◦C and C ◦A ⊂ C ◦B.

Proof. Let x ∈ S. Suppose x is not expressible as x = yz.
Then clearly (A ◦ C)(x) = 0̃ = (B ◦ C)(x). Suppose x is
expressible as x = yz. Then

(A ◦ C)L(x) =
∨
x=yz

(AL(y) ∧ CL(z))

≤
∨
x=yz

(BL(y) ∧ CL(z))

(Since A ⊂ B)

= (B ◦ C)L(x).

Similarly, we have that (A◦C)U (x) ≤ (B◦C)U (x). Hence
A◦C ⊂ B◦C. By the similar arguments, we haveC ◦A ⊂
C ◦B. This completes the proof.

Proposition 3.6. Let S be a semigroup and 0̃ 6= A ∈
D(I)S . Then 1̃ ◦A ∈ IVLI(S)[resp. A ◦ 1̃ ∈ IVRI(S)].

Proof. 1̃◦(1̃◦A) = (1̃◦ 1̃)◦A ⊂ 1̃◦A, by Results 3.A and
Proposition 3.5, respectively. Hence, by Result 3.C, 1̃◦A ∈
IVLI(S). Similarly, we can see that A ◦ 1̃ ∈ IVRI(S). This
completes the proof.

Proposition 3.7. Let S be a semigroup and 0̃ 6= A ∈
D(I)S . Then A ∪ (1̃ ◦ A) ∈ IVLI(S)[resp. A ∪ (A ◦ 1̃) ∈
IVRI(S)].

Proof.

1̃ ◦ (A ∪ (1̃ ◦A))
= (1̃ ◦A) ∪ (1̃ ◦ (1̃ ◦A))

(By Proposition 3.2 (a))

= (1̃ ◦A) ∪ (1̃ ◦ 1̃ ◦A) ⊂ (1̃ ◦A) ∪ (1̃ ◦A)
(By Result 3.A )

= 1̃ ◦A ⊂ A ∪ (1̃ ◦A).

Hence, by Result 3. C, A ∪ (1̃ ◦ A) ∈ IVLI(S). By the
similar arguments, we can see that A ∪ (A ◦ 1̃) ∈ IVRI(S).
This completes the proof.

Proposition 3.8. Let S be a semigroup and let 0̃ 6= A ∈
D(I)S . If A ∈ IVRI(S)[resp. IVLI(S)], then A∪ (1̃ ◦A) ∈
IVLI(S)[resp. A ∪ (A ◦ 1̃) is an IVI of S.

Proof. Suppose A ∈ IVRI(S).

(A ∪ (1̃ ◦A)) ◦ 1̃

= (A ◦ 1̃) ∪ ((1̃ ◦A)) ◦ 1̃
(By Proposition 3.2 (a))

= (A ◦ 1̃) ∪ (1̃ ◦ (A ◦ 1̃))
(By Result 3.A)

⊂ (A ∪ (1̃ ◦A)
(By Result 3.C and Proposition 3.5)

Thus, by Result 3.C, A ∪ (1̃ ◦ A) ∈ IVRI(S). From Propo-
sition 3.7, it is clear that (A ∪ (1̃ ◦ A)) ∈ IVLI(S). So
(A ∪ (1̃ ◦ A)) ∈ IVI(S). Similarly, we can see that if A ∈
IVLI(S), then (A ∪ (A ◦ 1̃)) ∈ IVI(S). This completes the
proof.

4. Interval-valued fuzzy quasi-ideals

A nonempty subset A of a semigroup S is called a
quasi -ideal of S(See [10]) if AS ∩ SA ⊂ A. We will
denote the set of all quasi-ideals of S as QI(S).

Definition 4.1. Let S be a semigroup and let 0̃ 6= A ∈
D(I)S . Then A is called an interval -valued fuzzy quasi -
ideal (in short, IV QI) of S if (1̃ ◦A) ∩ (A ◦ 1̃) ⊂ A.

We will denote the set of all IVQIs of S as IVQI(S).

Example 4.1. Let S = {a, b, c} be any semigroup with the
following multiplication table:
We define a mapping A : S → D(I) as follows:
A(a) = [0.1, 0.8], A(b) = [0.1, 0.8], A(c) = [0.3, 0.6].

Then we can see that A ∈ IVQI(S).

Theorem 4.2. Let A be a nonempty subset of a semigroup
S. Then A ∈ QI(S) if and only if [χA, χA] ∈ IVQI(S).
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a b c

a a a a

b a b b

c a a b

Proof. (⇒): Suppose A ∈ QI(S) and let x ∈ S. Suppose
x ∈ A. Then clearly

χA(x) = 1 ≥ ((1̃ ◦ [χA, χA]) ∩ ([χA, χA] ◦ 1̃))L(x).

Thus (1̃ ◦ [χA, χA])∩ ([χA, χA] ◦ 1̃) ⊂ [χA, χA]. Suppose
x /∈ A. Then either x is expressible as x = yz or not.

Case (i): Suppose x is not expressible as x = yz. Then

((1̃ ◦ [χA, χA]) ∩ ([χA, χA] ◦ 1̃))(x) = 0̃ = [χA, χA](x).

Case (ii): Suppose x is expressible as x = yz. Since
x /∈ A, either y ∈ A or z /∈ A. If y ∈ A and z /∈ A, then
there cannot be another expression of the form x = ab,
where a /∈ A and b ∈ A (Assume that there exist a /∈ A
and b ∈ A such that x = ab. Then x ∈ SA ∩ AS ⊂
A. Thus x ∈ A. This contradicts the fact that x /∈ A).
Thus either (1̃ ◦ [χA, χA])(x) = 0̃ or ([χA, χA] ◦ 1̃)(x) =
0̃. So (1̃ ◦ [χA, χA]) ∩ ([χA, χA] ◦ 1̃))(x) = 0̃. Then
(1̃ ◦ [χA, χA]) ∩ ([χA, χA] ◦ 1̃) ⊂ [χA, χA]. Hence, in all,
[χA, χA] ∈ IVQI(S).

(⇐): Suppose the necessary condition holds. Let x ∈
SA ∩ AS. Then x ∈ SA and x ∈ AS. Thus there exist
a, a′ ∈ A and s, s′ ∈ S such that x = sa and x = a′s′. So

((1̃ ◦ [χA, χA]) ∩ ([χA, χA] ◦ 1̃))L(x)
= (1̃ ◦ [χA, χA])L(x) ∧ ([χA, χA] ◦ 1̃)L(x)
=
∨
x=yz

(1̃L(y) ∧ χA(z)) ∧
∨
x=pq

(χA(p) ∧ χS(q))

≥ (χS(s) ∧ χA(a)) ∧ (χA(a
′) ∧ 1̃L(s′))

(Since x = sa and x = a′s′)

= 1.

Similarly, we have that ((1̃ ◦ [χA, χA]) ∩ ([χA, χA] ◦
1̃))U (x) ≥ 1. Then, by the hypothesis, χA(x) ≥ 1. Thus
x ∈ A. So SA ∩ AS ⊂ A. Hence A ∈ QI(S). This com-
pletes the proof.

Definition 4.3. [1] A nonempty fuzzy setA of a semigroup
S is called a fuzzy quasi -ideal of S if (χS◦A)∧(A◦χS) ≤
A, where χS is the whole fuzzy set defined by χS(x) = 1
for each x ∈ S.

Remark 4.3 Let S be a semigroup.
(a) If A is a fuzzy quasi-ideal of S, then [A,A] ∈ IVQI(S).
(b) IfA ∈ IVQI(S), thenAL andAU are fuzzy quasi-ideals
of S.

Proposition 4.4. Let S be a semigroup. Then IVQI(S) ⊂
IVSG(S).

Proof. Let A ∈ IVQI(S). Since A ⊂ 1̃, by Proposition 3.5,
A ◦A ⊂ 1̃ ◦A and A ◦A ⊂ A ◦ 1̃. Then A ◦A ⊂ [1̃ ◦A]∩
[A ◦ 1̃]. Since A ∈ IVQI(S), (1̃ ◦ A) ∩ (A ◦ 1̃) ⊂ A. Thus
A ◦A ⊂ A. Hence, by Proposition 3.4, A ∈ IVSG(S).

Proposition 4.5. Let S be a semigroup. Then IVLI(S) ⊂
IVQI(S) and IVRI(S) ⊂ IVQI(S).

Proof. Let A ∈ IVLI(S). Then, by Result 3.C, 1̃ ◦ A ⊂ A.
Thus (1̃ ◦A) ∩ [A ◦ 1̃] ⊂ 1̃ ◦A ⊂ A. Hence A ∈ IVQI(S).
Similarly, we can see that IVRI(S) ⊂ IVQI(S).

Proposition 4.6. Let S be a semigroup, let A ∈ IVLI(S)
and let B ∈ IVRI(S). Then A ∩B ∈ IVQI(S).

Proof. Let A ∈ IVLI(S) and let B ∈ IVRI(S). Then, by
Result 3.C, A ◦ 1̃ ⊂ A and 1̃ ◦B ⊂ B. Thus

(1̃ ◦ (A ∩B)) ∩ ((A ∩B) ◦ 1̃)
⊂ ((1̃ ◦A) ∩ (1̃ ◦B)) ∩ ((A ◦ 1̃) ∩ (B ◦ 1̃))

( By Proposition 3.2 (b), 3.5 and Result 3.C)
⊂ ((1̃ ◦A) ∩B) ∩ (A ◦ ∩(B ◦ 1̃))
= ((1̃ ◦A) ∩ (B ◦ 1̃)) ∩ (A ∩B)

⊂ A ∩B.

Hence A ∩B ∈ IVQI(S).

The following is the immediate result of Propositions 3.5
and 4.6.

Corollary 4.6 Let S be a semigroup and let 0̃ 6= A ∈
D(I)S . Then (A ∪ (1̃ ◦A)) ∩ (A ∪ (A ◦ 1̃)) ∈ IVQI(S).

Proposition 4.7. Let S be a semigroup and let A ∈
IVQI(S). Then

A = (A ∪ (1̃ ◦A)) ∩ (A ∪ (A ◦ 1̃)).

Proof. It is clear that (A ∪ (1̃ ◦ A)) ∈ IVLI(S) and
(A ∪ (A ◦ 1̃)) ∈ IVRI(S), from Proposition 3.7. Also from
Proposition 4.6, it is clear that (A∪(1̃◦A))∩(A∪(A◦1̃)) ∈
IVQI(S). Then it is sufficient to show that the equality
holds.

A ⊂ (A ∪ (1̃ ◦A)) ∩ (A ∪ (A ◦ 1̃))
(Since A ⊂ A ∪ (1̃ ◦A) and A ⊂ A ∪ (A ◦ 1̃))

= ((A ∪ (1̃ ◦A)) ∩A) ∪ ((A ∪ (1̃ ◦A)) ∩ (A ◦ 1̃))
(By Proposition 3.2)

⊂ A ∪ ((A ∪ (1̃ ◦A)) ∩ (A ◦ 1̃))
(Since (A ∪ (1̃ ◦A)) ∩A ⊂ A)

= A ∪ (A ∩ (A ◦ 1̃)) ∪ ((1̃ ◦A) ∩ (A ◦ 1̃))
(By Proposition 3.2)

⊂ A ∪ (A ∩ (A ◦ 1̃)) ∪A
(Since (1̃ ◦A) ∩ (A ◦ 1̃) ⊂ A)
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⊂ A ∪A ∪A
(Since A ∩ (A ◦ 1̃) ⊂ A)

= A.

Hence, the equality holds.

The following is the immediate result of Propositions 4.6
and 4.7.

Theorem 4.8. Let S be a semigroup and let 0̃ 6= A ∈
D(I)S . Then A ∈ IVQI(S) if and only if there exist B ∈
IVRI(S) and C ∈ IVLI(S) such that A = B ∩ C.

Proposition 4.9. Let S be a semigroup and let {Aα}α∈Γ ⊂
IVQI(S). Then either

⋂
α∈Γ

Aα = 0̃ or
⋂
α∈Γ

Aα ∈ IVQI(S).

Proof. Let {Aα}α∈Γ ⊂ IVQI(S) and let A =
⋂
α∈Γ

Aα.

Suppose A 6= 0̃. Then

(1̃ ◦A)∩ (A ◦ 1̃) = (1̃ ◦
⋂
α∈Γ

Aα) ∩ (
⋂
α∈Γ

Aα ◦ 1̃)

⊂
⋂
α∈Γ

(1̃ ◦Aα) ∩ (
⋂
α∈Γ

(Aα ◦ 1̃))

⊂
⋂
α∈Γ

((1̃ ◦Aα) ∩ (Aα ◦ 1̃))

⊂
⋂
α∈Γ

Aα

= A.

Hence A =
⋂
α∈ΓAα ∈ IVQI(S).

A nonempty subset A of a semigroup S is called a bi-
ideal [7] of S if A2 ⊂ A and ASA ⊂ A. We will denote
the set of all bi-ideals of S as BI(S).

Definition 4.10. [8]. Let S be a semigroup and let 0̃ 6=
A ∈ D(I)S . Then A is called an interval-valued fuzzy
bi-ideal (in short, IV BI) of S if it satisfies the following
conditions: for any x, y, z ∈ S.
(a) AL(xy) ≥ AL(x)∧AL(y) and AU (xy) ≥ AU (x)∧

AU (y)

(b) AL(xyz) ≥ AL(x) ∧ AL(z) and AU (xyz) ≥
AU (x) ∧AU (z).

We will denote the set of all IVBIs of S as IVBI(S).

Result 4.A. [8, Theorem 2.8]. LetA be a nonempty subset
of a semigroup. Then A ∈ BI(S) if and only if [χA, χA] ∈
IVBI(S).

Theorem 4.11. Let S be a semigroup and let 0̃ 6= A ∈
D(I)S . Then A ∈ IVBI(S) if and only if A ◦ A ⊂ A and
A ◦ 1̃ ◦A ⊂ A.

Proof. (⇒) : Suppose A ∈ IVBI(S). From Proposition 3.4,
A ◦ A ⊂ A. Let x ∈ S. Suppose x is not expressible
as x = yz. Then clearly (A ◦ 1̃ ◦ A)(x) = 0̃. Thus A ◦
1̃ ◦ A ⊂ A. Suppose x is expressible as x = yz. Then
(A ◦ 1̃ ◦A)(x) 6= 0̃. Thus

(A ◦ 1̃ ◦A)L(x) =
∨
x=yz

(AL(y) ∧ (1̃ ◦A)L(z)) > 0

and

(A ◦ 1̃ ◦A)U (x) =
∨
x=yz

(AU (y) ∧ (1̃ ◦A)U (z)) > 0.

So (1̃ ◦A)L(z) > 0 and (1̃ ◦A)U (z) > 0. Then there exist
p, q ∈ S with z = pq such that

(1̃ ◦A)L(z) =
∨
z=pq

(1̃L(p) ∧AL(q)) =
∨
z=pq

AL(q)

and

(1̃ ◦A)U (z) =
∨
z=pq

(1̃U (p) ∧AU (q)) =
∨
z=pq

AU (q).

Since A ∈ IVBI(S),

AL(x) = AL(ypq) ≥ AL(y) ∧AL(q)

and
AU (x) = AU (ypq) ≥ AU (y) ∧AU (q).

Then

AL(x) ≥
∨
x=yz

(AL(y)∧ (
∨
z=pq

AL(q))) = (A ◦ 1̃ ◦A)L(x)

and

AU (x) ≤
∨
x=yz

(AU (y)∧(
∨
z=pq

AU (q))) = (A◦1̃◦A)U (x).

Hence, in all, A ◦ 1̃ ◦A ⊂ A.
(⇐) : Suppose the necessary condition holds. Since

A ◦ A ⊂ A, it is clear that the following hold:
AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥ AU (x) ∧
AU (y) for any x, y ∈ S. Let x, y, z ∈ S and let p = xyz.
Then

AL(xyz) = AL(p) ≥ (A ◦ 1̃ ◦A)L(p)
(By the hypothesis)

=
∨
p=st

(AL(s) ∧ (1̃ ◦A)L(t))

≥ AL(x) ∧ (1̃ ◦A)L(yz) (Since p = x(yz))

= AL(x) ∧ (
∨

yz=ab

(1̃L(a) ∧AL(b)))

≥ AL(x) ∧ 1̃L(y) ∧AL(z)
= AL(x) ∧AL(z).

Similarly, we have that AU (xyz) ≥ AU (x) ∧ AU (z).
Hence, A ∈ IVBI(S). This completes the proof.
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Proposition 4.12. Let S be a semigroup. Then IVQI(S) ⊂
IVBI(S).

Proof. Let A ∈ IVQI(S). Then, by Proposition 4.4, A ∈
IVSG(S). Thus AL(xy) ≥ AL(x)∧AL(y) and AU (xy) ≥
AU (x) ∧ AU (y) for any x, y ∈ S. So, by Proposition 3.4,
A ◦A ⊂ A. It is clear that A ◦ 1̃ ⊂ 1̃ and 1̃ ◦A ⊂ 1̃. Then,
by Proposition 3.5, A◦ 1̃◦A ⊂ 1̃◦A andA◦ 1̃◦A ⊂ A◦ 1̃.
ThusA◦1̃◦A ⊂ [1̃◦A]∩[A◦1̃] ⊂ A (Since A ∈ IVQI(S)).
Hence, by Theorem 4.11, A ∈ IVBI(S).

The converse inclusion of Proposition 4.12 is not
generally true.

Example 4.2. Let S = {a, b, c, d} be the semigroup with
the following multiplication table:

a b c d

a a a a a

b a a a a

c a a a b

d a a b c

We define a mapping A : S → D(I) as follows:

A(a) = [1, 1], A(b) = [0.3, 0.6], A(c) = [0.2, 0.7]

and
A(d) = [0.5, 0.5].

Then we can see that A /∈ IVQI(S) but A ∈ IVBI(S).
The product of two quasi-ideals need not be a quasi-

ideal. So the interval-valued fuzzy product of two IVQIs
need not be an IVQI.

Proposition 4.13. Let S be a semigroup, let A ∈ IVQI(S)
and let 0̃ 6= B ∈ D(I)S . Then A ◦B,B ◦A ∈ IVBI(S).

Proof. Let A ∈ IVQI(S) and let 0̃ 6= B ∈ D(I)S . Thus,
by Proposition 4.12,A ∈ IVBI(S). Then, by Theorem 4.11,
A ◦ 1̃ ◦A ⊂ A and A ◦A ⊂ A. So

(A ◦ B) ◦ (A ◦B) ⊂ (A ◦ 1̃) ◦ (A ◦B)

( Since A ◦B ⊂ A ◦ 1̃)
= (A ◦ 1̃ ◦A) ◦B

( By Result 4.A)

⊂ A ◦B.
(Since A ◦ 1̃ ◦A ⊂ A)

On the other hand,

(A ◦B) ◦ 1̃ ◦ (A ◦B)

⊂ (A ◦ 1̃) ◦ 1̃ ◦ (A ◦B)

(Since A ◦B ⊂ A ◦ 1̃)

= A ◦ (1̃ ◦ 1̃) ◦ (A ◦B)

(By Result 3.A)

⊂ A ◦ 1̃ ◦ (A ◦B)

= (A ◦ 1̃ ◦A) ◦B
(By Result 3.A)

⊂ A ◦B. (Since A ◦ 1̃ ◦A ⊂ A)

Hence, by Theorem 4.11, A ◦ B ∈ IVBI(S). Similarly,
we can see that B ◦ A ∈ IVBI(S). This completes the
proof.

The following is the immediate result of Proposi-
tion 4.13.

Corollary 4.13 Let S be a semigroup and let A,B ∈
IVQI(S). Then A ◦B ∈ IVBI(S).

5. Regular semigroups

A semigroup S is said to be regular if for each a ∈ S
there exists x ∈ S such that a = axa.

Theorem 5.1. Let S be a semigroup. Then the following
are equivalent :

(a) S is regular.
(b) For each A ∈ IVRI(S) and each B ∈ IVLI(S), A ◦

B = A ∩B.
(c) For each A ∈ IVRI(S) and each B ∈ IVLI(S),

(1) A2 = A ◦A = A.
(2) B2 = B ◦B = B.
(3) A ◦B ∈ IVQI(S).

(d) (IVQI(S), ◦) is a regular semigroup.
(e) Every IVQI A of S has the form A = A ◦ 1̃ ◦A.

Proof. (a)⇒(b) : Suppose S is regular. Let A ∈IVRI(S)
and letB ∈IVLI(S). Then, by Result 3.C,A◦B ⊂ A◦ 1̃ ⊂
A and A ◦B ⊂ 1̃ ◦B ⊂ B. Thus A ◦B ⊂ A ∩B.

Now let a ∈ S. Since S is regular, there exists an x ∈ S
such that a = axa. Then

(A ◦B)L(a) =
∨
a=yz

[AL(y) ∧BL(z)] ≥ AL(ax) ∧BL(a)

(Since a = axa)

≥ AL(a) ∧BL(a) (Since A ∈ IVRI(S))
= (A ∩B)L(a)

Similarly, we have that

(A ◦B)U (a) ≥ (A ∩B)U (a)

Thus A ◦B ⊃ A ∩B. Hence A ◦B = A ∩B.
(b)⇒(c) : Suppose the condition (b) holds.
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(1) Let A ∈ IVRI(S). Then, by Proposition 3.8, A∪ (1̃ ◦
A) ∈ IVI(S). By the hypothesis,

A = A ∩ (A ∪ (1̃ ◦A)) = A ◦ (A ∪ (1̃ ◦A))
= (A ◦A) ∪ (A ◦ (1̃ ◦A))

(By Proposition 3.2 (a) )
= (A ◦A) ∪ ((A ◦ 1̃) ◦A) (By Result 3.A)

⊂ (A ◦A) ∪ (A ◦A) (Since A ∈ IVRI(S))
= (A ◦A).

So A ⊂ A ◦ A. On the other hand, A ◦ A ⊂ A ◦ 1̃ ⊂ A.
Hence A ◦A = A.

(2) Let B ∈ IVLI(S). Then, by the similar arguments of
the proof of (1), we can see that B ◦B = B.

(3) Let A ∈ IVRI(S) and let B ∈ IVLI(S). Then, by the
hypothesis, A ◦B = A ∩B. By Proposition 4.6, A ∩B ∈
IVQI(S). Hence A ◦B ∈ IVQI(S).

(c)⇒(d): Suppose the condition (c) holds. Let A ∈
IVQI(S). Then, by Proposition 3.7, A∪ (1̃ ◦A) ∈ IVLI(S).
Thus

A ⊂ A ∪ (1̃ ◦A)
= (A ∪ (1̃ ◦A)) ◦ (A ∪ (1̃ ◦A))

( By the condition (c) (2))
= ((A ∪ (1̃ ◦A) ◦A) ∪ ((A ∪ (1̃ ◦A)) ◦ (1̃ ◦A))

( By Proposition 3.2(a))
= ((A ◦A) ∪ {(1̃ ◦A) ◦A}) ∪ ((A ◦ (1̃ ◦A)) ∪ (1̃ ◦A)2

(By Proposition 3.2(a))
= ((A ◦A) ∪ {1̃ ◦ (A ◦A)}) ∪ ((A ◦ (1̃ ◦A)) ∪ (1̃ ◦A)2)

(By Result 3. A)

⊂ ((1̃ ◦A) ∪ (1̃ ◦A)) ∪ ((1̃ ◦ (1̃ ◦A)) ∪ (1̃ ◦A)2

(Since A ◦A ⊂ A and A ⊂ 1̃)

= ((1̃ ◦A) ∪ (1̃ ◦A)) ∪ ((1̃ ◦ (1̃ ◦A)) ∪ (1̃ ◦A)
(By the condition (c) (2))

⊂ (1̃ ◦A) ∪ (1̃ ◦A) ∪ (1̃ ◦A)
(Since 1̃ ◦A ∈ IVLI(S))

= 1̃ ◦A.

So A ⊂ 1̃ ◦ A. By the similar arguments, we can see that
A ⊂ A◦1̃. ThenA ⊂ (1̃◦A)∩(A◦1̃). SinceA ∈ IVQI(S),
(1̃ ◦A) ∩ (A ◦ 1̃) ⊂ A. So

A = (1̃ ◦A) ∩ (A ◦ 1̃). (5.1)

Let C ∈ IVRI(S) and let D ∈ IVLI(S). Then, by the condi-
tion (c)(3), C ◦D ∈ IVQI(S). Thus, by (5.1),

C ◦D = (1̃ ◦ (C ◦D)) ∩ ((C ◦D) ◦ 1̃). (5.2)

Now let A,B ∈ IVQI(S). Then, by Proposition 3.6,
1̃ ◦ A ◦B ∈ IVLI(S) and A ◦B ◦ 1̃ ∈ IVRI(S). By Propo-

sition 4.5, 1̃ ◦A ◦B, A ◦B ◦ 1̃ ∈ IVQI(S). Thus

1̃ ◦ A ◦B = (1̃ ◦ (1̃ ◦A ◦B)) ∩ ((1̃ ◦A ◦B) ◦ 1̃)
(By (5.1))

= (1̃ ◦A ◦B) ◦ (1̃ ◦A ◦B)

(By (5.2))
= ((1̃ ◦A ◦B) ◦ 1̃) ◦ (1̃ ◦ (1̃ ◦A ◦B))

= (1̃ ◦A ◦B) ◦ (1̃ ◦ 1̃) ◦ (1̃ ◦A ◦B)

= (1̃ ◦A ◦B) ◦ 1̃ ◦ (1̃ ◦A ◦B).

(By the condition (c)(2))

So 1̃ ◦A ◦B = (1̃ ◦A ◦B) ◦ 1̃ ◦ (1̃ ◦A ◦B). Similarly, we
have that

A ◦B ◦ 1̃ = (A ◦B ◦ 1̃) ◦ 1̃ ◦ (A ◦B ◦ 1̃).

Then

(1̃ ◦ A ◦B) ∩ (A ◦B ◦ 1̃)
= ((1̃ ◦A ◦B) ◦ 1̃ ◦ (1̃ ◦A ◦B)) ∩ ((A ◦B ◦ 1̃)
◦1̃ ◦ (A ◦B ◦ 1̃))

= (1̃ ◦ (A ◦B ◦ 1̃) ◦ (1̃ ◦A ◦B)) ∩ ((A ◦B ◦ 1̃)
◦(1̃ ◦A ◦B) ◦ 1̃))

= (A ◦B ◦ 1̃) ◦ (1̃ ◦A ◦B) ⊂ (A ◦B ◦ 1̃) ◦ 1̃ ◦ (1̃ ◦B)

( By (5.2) and A ⊂ 1̃)

= (A ◦B ◦ 1̃) ◦ (1̃ ◦ 1̃) ◦B
= (A ◦B ◦ 1̃) ◦ 1̃ ◦B

( Since 1̃ ◦ 1̃ = 1̃)

= (A ◦B) ◦ (1̃ ◦ 1̃) ◦B
= A ◦ (B ◦ 1̃ ◦B)

⊂ A ◦B.
( Since B ◦ 1̃ ◦B ⊂ B)

So A ◦B ∈ IVQI(S). Since ” ◦ ” is associative , (IVQI(S),
◦) is a semigroup. Let A ∈ IVQI(S). Then

A = (A ◦ 1̃) ∩ (1̃ ◦A) (By (5.1))
= (A ◦ 1̃) ◦ (1̃ ◦A) (By the condition (3))
= A ◦ 1̃ ◦A.

It is clear that 1̃ ∈ IVQI(S). So A is a regular element of
IVQI(S). Hence (IVQI(S),◦) is a regular semigroup.

(d)⇒(e): Suppose the condition (d) holds. Let A ∈
IVQI(S). Then, by the hypothesis, there exists B ∈
IVQI(S) such that A = ABA. Thus

A = ABA = A ◦ 1̃ ◦A
(Since B ⊂ 1̃)

⊂ (A ◦ 1̃) ∩ (1̃ ◦A)
⊂ A.
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Hence A = A ◦ 1̃ ◦A.
(e)⇒(a) : Suppose the condition (e) holds. Let x ∈ S

and let A = {x} ∪ (Sx ∩ xS) be the quasi-ideal of S gen-
erated by x. Then, by Theorem 4.2, [χA, χA] ∈ IVQI(S).
Thus, by the hypothesis, [χA, χA] = 1̃ ◦ 1̃ ◦ [χA, χA]. So

1 = χA(x) = ([χA, χA] ◦ 1̃ ◦ [χA, χA])L(x)
=
∨
x=yz

((AL(y) ∧ (1̃ ◦ [χA, χA])L(z)).

Then there exist p, q ∈ S with x = pq such that

χA(p) = 1 and (1̃ ◦ [χA, χA)])L(q) = 1.

Since χA(p) = 1, p ∈ A, i.e., p = x or p = xs where
s ∈ S. Since (1̃ ◦ [χA, χA])(q) = [1, 1],∨
q=st

(1̃L(s) ∧ χA(t)) = 1 and
∨
q=st

(1̃L(s) ∧ χA(t)) = 1.

Then there exist a, b ∈ S with q = ab such that χA(b) = 1.
So b ∈ A, i.e., either b = x or b = s1x where s1 ∈ S.
Hence x = pq = xcx where c ∈ S. Therefore x is a
regular element of S. Hence S is regular. This completes
the proof.

Theorem 5.2. Let S be a regular semigroup and let 0̃ 6=
A ∈ D(I)S . Then A ∈ IVQI(S) if and only if there exist
B ∈ IVRI(S) and C ∈ IVLI(S) such that A = B ◦ C.

Proof. (⇒) : Suppose A ∈ IVQI(S). Then

A = A ◦ 1̃ ◦A (By Theorem 5.1)
= A ◦ (1̃ ◦ 1̃) ◦A
= (A ◦ 1̃) ◦ (1̃ ◦A).

LetA◦ 1̃ = B and let C = 1̃◦A. Then, by Proposition 3.6,
B ∈ IVRI(S) and C ∈ IVLI(S). Hence the necessary con-
dition holds.

(⇐) : Suppose the necessary condition holds. Let A ∈
D(I)S . Then there exist B ∈ IVRI(S) and C ∈ IVLI(S)
such that A = B ◦ C. Since S is regular, by Theorem 5.1,
B ◦C ∈ IVQI(S). Hence A ∈ IVQI(S). This completes the
proof.

Theorem 5.3. Let S be a regular semigroup. Then the
following hold:
(a) If A ∈ IVQI(S), then A2 = A3.
(b) A ∈ IVQI(S) if and only if A ∈ IVBI(S).

Proof. (a) Suppose A ∈ IVQI(S). Since A ∈ IVSG(S), A◦
A ⊂ A. ThusA◦(A◦A) ⊂ A◦A. SoA3 ⊂ A2. Since S is
regular, by Theorem 5.1, A ◦ A ∈ IVQI(S). Since IVQI(S)
is regular, there exists B ∈ IVQI(S) such that A2 = A2 ◦
B ◦A2. On the other hand, A2 ◦B ◦A2 ⊂ A2 ◦ 1̃ ◦A2 =
A ◦ (A ◦ 1̃ ◦ A) ◦ A = A ◦ A ◦ A = A3. Thus A2 ⊂ A3.
Hence A2 = A3.

(b) (⇒) : It is clear from Proposition 4.12.
(⇐) : Suppose A ∈ IVBI(S). Then 1̃ ◦A ∈ IVLI(S) and

A ◦ 1̃ ∈ IVRI(S). Thus

[A ◦ 1̃] ∩ [1̃ ◦A] = [A ◦ 1̃] ◦ [1̃ ◦A]
(By Theorem 5.1)

= A ◦ (1̃ ◦ 1̃) ◦A
(By Result 3.A)

= A ◦ 1̃ ◦A ⊂ A.
(By the hypothesis)

Hence A ∈ IVQI(S). This completes the proof.

A semigroup S is called a band(See [2]) if for each
a ∈ S, aa = a.

Theorem 5.4. Let S be a semigroup. Then the following
are equivalent :

(a) For each A ∈ IVRI(S) and each B ∈ IVLI(S), A ◦
B = A ∩B ⊂ B ◦A.
(b) (IVQI(S), ◦) is a band.
(c) For each A ∈ IVQI(S), A ◦A = A.

Proof. (a)⇒(b) : Suppose the condition(a) holds. Then,
by Theorem 5.1, S is regular. Thus, by Theorem
5.1,(IVQI(S), ◦) is a regular semigroup. Let A ∈ IVQI(S).
Then,

A = A ◦ 1̃ ◦A
(By Theorem 5.1)

= (A ◦ 1̃ ◦A) ◦ 1̃ ◦ (A ◦ 1̃ ◦A)
(By theorem 5.1)

= (A ◦ 1̃) ◦ (A ◦ 1̃) ◦ (1̃ ◦A) ◦ (1̃ ◦A)
(Since 1̃ ◦ 1̃ = 1̃)

⊂ (A ◦ 1̃) ◦ (1̃ ◦A) ◦ (A ◦ 1̃) ◦ (1̃ ◦A)
(By the hypothesis)

= A ◦ (1̃ ◦ 1̃) ◦A ◦A ◦ (1̃ ◦ 1̃) ◦A
(By Result 3.A)

= (A ◦ 1̃ ◦A) ◦ (A ◦ 1̃ ◦A)
( Since 1̃ ◦ 1̃ = 1̃)

= A ◦A (Since A ◦ 1̃ ◦A = A)

⊂ A. (Since A ◦A ⊂ A)

Thus A ◦ A = A. So A is an idempotent element of
IVQI(S). Hence (IVQI(S), ◦) is a band.

(b)⇒(c) : It is clear.
(c)⇒(a) : Suppose the condition (c) holds. Let A ∈

IVRI(S) and let B ∈ IVLI(S). Then, by Proposition 4.6,
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A ∩B ∈ IVQI(S). Thus,

A ∩B = (A ∩B) ◦ (A ∩B) (By the hypothesis)
⊂ (A ◦ (A ∩B)) ∩ (B ◦ (A ∩B))

(By Proposition 3.2(b))
⊂ (A ◦A) ∩ (A ◦B) ∩ (B ◦A) ∩ (B ◦B).

(By Proposition 3.2(b))

So A ∩B ⊂ A ◦B and (A ∩B) ⊂ B ◦A. (5.3)
On the other hand, A ◦ B ⊂ A ◦ 1̃ ⊂ A and
A ◦ B ⊂ 1̃ ◦ B ⊂ B. Thus A ◦ B ⊂ A ∩ B.
Hence, by (5.3), A ◦B = A∩B ⊂ B ◦A. This completes
the proof.

A semigroup S is said to be intra-regular [10] if for
each a ∈ S there exist x, y ∈ S such that a = xa2y.

Theorem 5.5. Let S be a semigroup. Then S is intra-
regular if and only if for each A ∈ IVRI(S) and each B ∈
IVLI(S), A ∩B ⊂ B ◦A.

Proof. (⇒) : Suppose S is intra-regular. Let A ∈ IVRI(S),
let B ∈ IVLI(S) and let a ∈ S. Then, by the hypothesis,
there exist x, y ∈ S such that a = xa2y. Thus

(B ◦A)L(a) =
∨
a=st

(BL(s) ∧AL(t))

≥ BL(xa) ∧AL(ay)
(Since a = (xa)(ay))

≥ BL(a) ∧AL(a)
(Since B ∈ IVLI(S) and A ∈ IVRI(S))

= (A ∩B)L(a)

Similarly, we have that (B◦A)U (a) ≥ (A∩B)U (a). Hence
A ∩B ⊂ B ◦A.

(⇐) : Suppose the necessary condition holds and let
x ∈ S. Let L = {x}∪Sx andR = {x}∪xS be the left and
right ideals of S generated by x, respectively. Then, by Re-
sult 3.B (b), [χL, χL] ∈ IVLI(S) and [χR, χR] ∈ IVRI(S).
Thus, by the hypothesis,

[χR, χR] ∩ [χL, χL] ⊂ [χL, χL] ◦ [χR, χR].

So

([χL, χL] ◦ [χR, χR])L (x)

=
∨
x=yz

(χL(y) ∧ χR(z))

≥ χL(x) ∧ χR(x) = 1.

Similarly, we have that ([χL, χL] ◦ [χR, χR])U (x) ≥ 1.
Then there exist p, q ∈ S with x = pq such that χL(p) = 1,
χL(p) = 0 and χR(q) = 1, χR(q) = 0. Thus p ∈ L and
q ∈ R. So p = x or p = sx and q = x or q = xs where

s ∈ S. In any case, x = pq = ax2b, where a, b ∈ S.
Hence S is intra-regular. This completes the proof.

The following is the immediate results of Theorems 5.4
and 5.5.

Theorem 5.6. Let S be a semigroup. Then the following
are equivalent:

(a) S is regular and intra-regular.
(b) For each A ∈ IVRI(S) and each B ∈ IVLI(S), A ◦

B = A ∩B ⊂ B ◦A.
(c) (IVQI(S), ◦) is a band.
(d) For each A ∈ IVQI(S), A ◦A = A.

Example 5.7 Let S = {a, b, c, d, e} be the semigroup with
the following multiplication table:

a b c d e

a a a a a a

b a a a b c

c a b c a a

d a a a d e

e a d e a a

Then clearly S is a non-commutative semigroup which is
not intra-regular. We define two mappings A,B : S →
D(I) as follows, respectively :

AL(a) ≥ AL(x), AU (a) ≥ AU (x)

for each x ∈ S,

A(b) = A(d), A(c) = A(e)

and
BL(a) ≥ BL(x), BU (a) ≥ BU (x)

for each x ∈ S,

B(b) = B(c), B(d) = B(e).

Then we can easily see that 0̃ 6= A ∈ IVLI(S) and 0̃ 6=
B ∈ IVRI(S). Moreover, we can check that A ◦ A = A,
B ◦B = B andB ◦A = B∩A. Now we define a mapping
C : S → D(I) as follows:

C(a) = [1, 1], C(b) = C(c) = C(d) = [0.4, 0.5]

and
C(e) = [0.5, 0.5].

Then we can see that A ∈ IVQI(S) and A 6= A ◦ A =
A ◦A ◦A.

Example 5.8 Let S = {0, a, 1} be the semigroup with the
following multiplication table:
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0 a 1
0 a a a

a a a a

1 a a b

Then S is a commutative semigroup which is regular and
intra-regular. Let A ∈ IVQI(S) and let x ∈ S. Then

AL(x) ≥ (A ◦A)L(x) (Since A ∈ IVSG(S))

=
∨
x=yz

(AL(y) ∧AL(z)) =
∨
x=yz

AL(y)

(Since S is commutative)

and

AU (x) ≥ (A ◦A)U (x) =
∨
x=yz

(AU (y) ∧AU (z))

=
∨
x=yz

AU (y).

Thus

AL(0) =
∨

0=yz

AL(y) ≥ AL(x), AU (0)

=
∨

0=yz

AU (y) ≥ AU (x)

for each x ∈ S and

AL(a) = AL(a) ∧AL(1) ≥ AL(1),

AU (a) = AU (a) ∧AU (1) ≥ AU (1).

So AL(0) ≥ AL(a) ≥ AL(1) and AU (0) ≥ AU (a) ≥
AU (1). Then

(A ◦A)L(0) =
∨

0=xy

(AL(x) ∧AL(y)) = AL(0),

(A ◦A)U (0) =
∨

0=xy

(AU (x) ∧AU (y))U = AU (0),

(A ◦A)L(a) = (AL(a) ∧AL(a)) ∨ (AL(a) ∧AL(1))
= AL(a),

(A ◦A)U (a) = (AU (a) ∧AU (a)) ∨ (AU (a) ∧AU (1))
= AU (a)

and

(A ◦A)L(1) = AL(1) ∧AL(1) = AL(1),

(A ◦A)U (1) = AU (1) ∧AU (1) = AU (1).

Hence A2 = A.

Example 5.9 Let S = {a, b, c} be the semigroup with the
following multiplication table:

a b c

a a a a

b b b b

c c c c

Then S is not commutative but it is regular and intra-
regular. We can easily see that A ∈ IVQI(S) for each
0̃ 6= A ∈ D(I)S . Let A ∈ IVQI(S) and let a ∈ S. Then

(A ◦ A)L(a)
=

∨
a=xy

(AL(x) ∧AL(y))

= (AL(a) ∧AL(a)) ∨ (AL(a) ∧AL(b))
∨(AL(a) ∧AL(c))

= AL(a),

(A ◦ A)U (a) =
∨
a=xy

(AU (x) ∧AU (y))

= (AU (a) ∧AU (a)) ∨ (AU (a) ∧AU (b))
∨(AU (a) ∧AU (c))

= AU (a),

(A ◦ A)L(b) = (AL(b) ∧AL(a)) ∨ (AL(b) ∧AL(b))
∨(AL(b) ∧AL(c))

= AL(b),

(A ◦ A)U (b) = (AU (b) ∧AU (a)) ∨ (AU (b) ∧AU (b))
∨(AU (b) ∧AU (c))

= AU (b),

and

(A ◦ A)L(c)
= (AL(c) ∧AL(a)) ∨ (AL(c) ∧AL(b))
∨(AL(c) ∧AL(c))

= AL(c),

(A ◦ A)U (c)
= (AU (c) ∧AU (a)) ∨ (AU (c) ∧AU (b))
∨(AU (c) ∧AU (c))

= AU (c).

SoA◦A = A. Hence eachA ∈ IVQI(S) is idempotent.
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