MODULE AMENABILITY OF BANACH ALGEBRAS AND SEMIGROUP ALGEBRAS

M. Khoshhal, D. Ebrahimi Bagha*, and O. Pourbahri Rahpeyma

Abstract

We define the concepts of the first and the second module dual of a Banach space X. And also bring a new concept of module amenability for a Banach algebra \mathcal{A}. For inverse semigroup S, we will give a new action for $\ell^{1}(S)$ as a Banach $\ell^{1}\left(E_{S}\right)$-module and show that if S is amenable then $\ell^{1}(S)$ is $\ell^{1}\left(E_{S}\right)$-module amenable.

1. Introduction

The most important results in the theory of amenable groups is Johnson's theorem [3]. The auther states that a locally compact topological group G is amenable if and only if the Banach algebra $L^{1}(G)$ is amenable. But this result is not true for inverse semigroups. Inverse semigroup S is amenable if and only if the discrete group G_{S} is amenable, where G_{S} is the maximal group homomorphic image of S that is defined as $G_{S}:=S / \sim$ for each congeruence relation \backsim on S in [8]. For more details, about amenability for C^{*}-algebras and Banach algebras, one can refer to be refrences [4], [5], [6] and [7].

The concept of module amenability for a class of Banach algebras that are modules over another Banach algebra has been introduced by Amini in [1]. He considered J as the closed ideal of \mathcal{A} generated by $\{\alpha .(a b)-(a b) . \alpha\}$ for $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. For an inverse semigroup S along with the set of idempotents $E_{S}, \ell^{1}(S)$ as $\ell^{1}\left(E_{S}\right)$-module with the right multiplication and left multiplication is trivial actions, that is $\delta_{e} \cdot \delta_{s}=\delta_{s}, \delta_{s} \cdot \delta_{e}=\delta_{s e}=\delta_{s} * \delta_{e}, \quad\left(s \in S, e \in E_{s}\right)$, is module amenable if and only if S is amenable [1].

Received October 23, 2018. Revised January 23, 2019. Accepted January 24, 2019.

2010 Mathematics Subject Classification. 43A07, 46H25, 47L45.
Key words and phrases. module amenability, Banach algebra, semigroup algebra.
*Corresponding author

In section two, we introduce a closed submodule $J_{X}{ }^{\perp}$ of X^{*} for Banach \mathcal{A} - \mathfrak{A}-module X, afther that, the new concepts of module amenability, module virtual diagonal and module approximate diagonal for a Banach algebra \mathcal{A}, are given. Finally we show that the Banach algebra \mathcal{A} is module amenable if and only if \mathcal{A} has a module virtual diagonal.

We will give a new definition of Banach $\ell^{1}\left(E_{S}\right)$-module for $\ell^{1}(S)$ with no trivial left action. In fact, we will consider the semigroup algebra $\ell^{1}(S)$ as $\ell^{1}\left(E_{S}\right)$-module with the following as the right module action and the left multiplication

$$
\delta_{e} \cdot \delta_{s}=\delta_{s^{*} s}=\delta_{s^{*}} * \delta_{s}, \delta_{s} \cdot \delta_{e}=\delta_{s e}=\delta_{s} * \delta_{e}, \quad\left(s \in S, e \in E_{S}\right) .
$$

With respect to the above definition, we will show that if inverse semigroup S is amenable then, semigroup algebra $\ell^{1}(S)$ is module amenable.

2. Main results

Let \mathcal{A} and \mathfrak{A} be Banach algebras and let \mathcal{A} be a Banach \mathfrak{A}-module such that

$$
(\alpha . a) b=\alpha .(a b),(a b) . \alpha=a(b . \alpha) \quad(a, b \in \mathcal{A}, \alpha \in \mathfrak{A}) .
$$

If Y is Banach \mathcal{A}-module and Banach \mathfrak{A}-module with compatible actions, such that

$$
\alpha .(a . y)=(\alpha . a) . y, \quad(a . y) \cdot \alpha=a .(y . \alpha) \quad(a \in \mathcal{A}, y \in Y, \alpha \in \mathfrak{A}),
$$

and with similar operations for right actions. Then Y is called an \mathcal{A} - \mathfrak{A} module.
If moreover,

$$
\alpha . y=y . \alpha \quad(\alpha \in \mathfrak{A}, y \in Y),
$$

then Y is called a commutative $\mathcal{A}-\mathfrak{A}$-module.
If Y is a (commutative) Banach \mathcal{A} - \mathfrak{A}-module so is Y^{*}, with the following actions:

$$
\begin{aligned}
& \langle\alpha . f, y\rangle=\langle f, y . \alpha\rangle, \quad\langle f . \alpha, y\rangle=\langle f, \alpha . y\rangle \\
& \langle a . f, y\rangle=\langle f, y \cdot a\rangle, \quad\langle f . a, y\rangle=\langle f, a . y\rangle \quad\left(a \in \mathcal{A}, y \in Y, \alpha \in \mathfrak{A}, f \in Y^{*}\right) .
\end{aligned}
$$

Let Z and Y be \mathcal{A} - \mathfrak{A}-modules, and $\phi: Z \rightarrow Y$ satisfies the following conditions:

$$
\begin{array}{ll}
\phi(\alpha \cdot z)=\alpha \cdot \phi(z), & \phi(z \cdot \alpha)=\phi(z) \cdot \alpha \\
\phi(a \cdot z)=a \cdot \phi(z), & \phi(z \cdot a)=\phi(z) \cdot a
\end{array} \quad(a \in \mathcal{A}, z \in Z, \alpha \in \mathfrak{A}) .
$$

Then ϕ is called an module bihomomorphism.

Let Y be a commutative Banach \mathcal{A} - \mathfrak{A}-module, then the projective tensor product $\mathcal{A} \hat{\otimes} Y$ is a $\mathcal{A}-\mathfrak{A}$-module with the following actions:

$$
\begin{aligned}
& a \cdot(b \otimes y)=(a b) \otimes y, \quad(b \otimes y) \cdot a=b \otimes(y \cdot a) \\
& \alpha \cdot(b \otimes y)=(\alpha \cdot b) \otimes y, \quad(b \otimes y) \cdot \alpha=b \otimes(y \cdot \alpha)(a, b \in \mathcal{A}, y \in Y, \alpha \in \mathfrak{A}) .
\end{aligned}
$$

Now, define $\pi_{X}: \mathcal{A} \hat{\otimes} X \rightarrow X$ by

$$
\pi_{X}(a \otimes x)=a \cdot x \quad(a \in \mathcal{A}, x \in X)
$$

It is clear that π_{X} is a \mathcal{A} - \mathcal{A}-module bihomomorphism.
Let I_{X} be the closed \mathcal{A} - \mathfrak{A}-submodule of the projective tensor product $A \hat{\otimes} X$ generated by

$$
\{(a . \alpha) \otimes x-a \otimes(\alpha . x): a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X\}
$$

Let J_{X} be the closed submodule of X generated by $\pi\left(I_{X}\right)$, that is

$$
J_{X}=\overline{\left\langle\pi_{X}\left(I_{X}\right)\right\rangle}
$$

In particular case, when $X=\mathcal{A}, J_{\mathcal{A}}$ is the closed ideal in \mathcal{A}^{*} generated by $\{(a . \alpha) b-a(\alpha . b)\}$ for $a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$.

Definition 2.1. The closed \mathcal{A} - \mathcal{A}-module $J_{X}{ }^{\perp}$ of X^{*} and $J_{J_{X} \perp}^{\perp}$ of $X^{* *}$ are called respectively the first and the second module dual of X.

In the case that \mathcal{A} be a commutative \mathfrak{A}-module, then $J_{X}{ }^{\perp}=X^{*}$ and $J_{J_{X} \perp}^{\perp}=X^{* *}$.

Remark 2.2. Since $\left(\mathcal{A} / J_{\mathcal{A}}\right)^{*} \simeq J_{\mathcal{A}}{ }^{\perp}$, we have

$$
\begin{equation*}
\left\langle\tilde{f}, a+J_{\mathcal{A}}\right\rangle=\langle f, a\rangle \quad(a \in \mathcal{A}) \tag{1}
\end{equation*}
$$

when $f \in J_{\mathcal{A}}{ }^{\perp}$ is the corresponding element $\tilde{f} \in\left(\mathcal{A} / J_{\mathcal{A}}\right)^{*}$. Since $\left(\mathcal{A} / J_{\mathcal{A}}\right)^{* *} \simeq \mathcal{A}^{* *} / J_{\mathcal{A}}{ }^{\perp \perp}$, we have

$$
\begin{equation*}
\langle\tilde{F}, \tilde{f}\rangle=\langle F, f\rangle \quad\left(\tilde{f} \simeq f \in J_{\mathcal{A}}^{\perp}\right) \tag{2}
\end{equation*}
$$

where $F+J_{\mathcal{A}}{ }^{\perp \perp} \in \mathcal{A}^{* *} / J_{\mathcal{A}}{ }^{\perp \perp}$ is the corresponding element to $\tilde{F} \in$ $\left(\mathcal{A} / J_{\mathcal{A}}\right)^{* *}$.
Note that $\left(\mathcal{A} / J_{\mathcal{A}}\right)^{*}$ is an \mathcal{A}-module, where the actions \mathcal{A} on $\left(\mathcal{A} / J_{\mathcal{A}}\right)^{*}$ are defined by:

$$
\begin{equation*}
\left\langle\tilde{f} . a, b+J_{\mathcal{A}}\right\rangle=\left\langle\tilde{f}, a b+J_{\mathcal{A}}\right\rangle, \quad\left\langle a . \tilde{f}, b+J_{\mathcal{A}}\right\rangle=\left\langle\tilde{f}, b a+J_{\mathcal{A}}\right\rangle, \tag{3}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$ and $\tilde{f} \in\left(\mathcal{A} / J_{\mathcal{A}}\right)^{*}$.
Therefore the second module dual of X is a closed submodule of $X^{* *} / J_{X}{ }^{\perp \perp}$.

Definition 2.3. Let \mathcal{A} and \mathfrak{A} be two Banach algebras and X be a Banach \mathcal{A} - A-module. A bounded linear map $D: \mathcal{A} \rightarrow X$ is a module derivation if D satisfies the following relations:

$$
\begin{aligned}
D(a b) & =D(a) \cdot b+a \cdot D(b) \\
D(\alpha \cdot a) & =\alpha \cdot D(a), \quad D(a \cdot \alpha)=D(a) \cdot \alpha \quad(a, b \in \mathcal{A}, \alpha \in \mathfrak{A})
\end{aligned}
$$

Lemma 2.4. Let X^{*} be a commutative Banach \mathcal{A} - A-module and $D: \mathcal{A} \rightarrow X^{*}$ be a module derivation, then $D(\mathcal{A}) \subseteq J_{X}{ }^{\perp}$.

Proof. For each $a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$ and $x \in X$, we have (a. α). $x-$ $a .(\alpha . x) \in J_{X}$. Hence

$$
\langle D(b),(\alpha \cdot a) \cdot x-a \cdot(\alpha \cdot x)\rangle=\langle D(b) \cdot(\alpha \cdot a)-(D(b) \cdot a) \cdot \alpha, x\rangle=0 .
$$

Definition 2.5. A Banach algebra \mathcal{A} is called module amenable (as an \mathfrak{A} - module) if for every Banach \mathcal{A} - \mathfrak{A}-module X^{*} with commutative $J_{X}{ }^{\perp}$ (as an \mathfrak{A} - module) and a. $(\alpha . y)=(a . \alpha) . y \quad\left(a \in \mathcal{A}, \alpha \in \mathfrak{A}, y \in J_{X}^{\perp}\right)$, for each module derivation $D: \mathcal{A} \rightarrow J_{X}{ }^{\perp}$ there exist $y \in J_{X}{ }^{\perp}$ such that $D(a)=a . y-y . a \quad(a \in \mathcal{A})$.

Proposition 2.6. Let \mathcal{A} be a amenable Banach algebra, then \mathcal{A} is module amenable.

Proof. Since $J_{X}{ }^{\perp}=\left(X / J_{X}\right)^{*}$, then the proof is trivial.
Proposition 2.7. Let \mathcal{A} be a module amenable Banach algebra and let $\mathcal{A} / J_{\mathcal{A}}$ be a commutative Banach \mathfrak{A}-module, then \mathcal{A} has an approximate identity.

Proof. Put $X=J_{\mathcal{A}}{ }^{\perp}$, then X is a Banach \mathcal{A}-module with modules actions $a . f=0$ and $f . a$, with is a canonical action for each $a \in \mathcal{A}, f \in X$. Since $\mathcal{A} / J_{\mathcal{A}}$ is commutative \mathfrak{A}-module, for each $a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$ and $f \in J_{\mathcal{A}}{ }^{\perp}$, we have

$$
\begin{aligned}
\langle(a . \alpha) . f-a .(\alpha . f), b\rangle & =-\langle a .(\alpha . f), b\rangle \\
& =-\langle a \cdot(f . \alpha), b\rangle \\
& =-\langle f, \alpha \cdot(b . a)\rangle=-\langle f, \alpha \cdot(b . a)-b \cdot(\alpha \cdot a)\rangle=0 .
\end{aligned}
$$

So $J_{J_{\mathcal{A}}}=0$ and $\mathcal{A}^{* *} / J_{\mathcal{A}}^{\perp \perp} \simeq J_{J_{\mathcal{A}}}^{\perp}$. Define

$$
\begin{gathered}
\varphi: \mathcal{A} \rightarrow \mathcal{A}^{* *} / J_{\mathcal{A}}{ }^{\perp \perp} \simeq J_{J_{\mathcal{A}}}^{\perp} \\
\varphi(a)=\hat{a}+J_{\mathcal{A}}^{\perp \perp} \simeq \hat{a} .
\end{gathered}
$$

It is easy to check that φ is module derivation. Therefore there exists some $F \in J_{J_{\mathcal{A}} \perp}^{\perp}$ such that $\varphi(a)=a . F-F . a=a . F$ for all $a \in \mathcal{A}$. Take a norm bounded net $\left\{a_{\alpha}\right\}$ in \mathcal{A} such that $w^{*}-\lim \varphi\left(a_{\alpha}\right)=F$, then we have w-lim $a a_{\alpha}=a$. By classical method, the Banach algebra \mathcal{A} has a bounded right approximate identity. Similarly, \mathcal{A} has a bounded left approximate identity.

Let $\pi_{\mathcal{A} / J_{\mathcal{A}}}=\pi: \mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}} \rightarrow \mathcal{A} / J_{\mathcal{A}}$ defined by $\pi\left(a \otimes b+J_{\mathcal{A}}\right):=$ $a b+J_{\mathcal{A}}$. Since π is a module homomorphism, then the second dual $\pi^{* *}:\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{* *} \rightarrow \mathcal{A}^{* *} / J_{\mathcal{A}}{ }^{\perp \perp}$ is module homomorphism.

Definition 2.8. A bounded net $\left\{m_{\alpha}\right\}_{\alpha}$ in $\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}$ is called module approximate diagonal if
(i) $\left\{\pi\left(m_{\alpha}\right)\right\}$ is a bounded approximate identity for the Banach algebra $\mathcal{A} / J_{\mathcal{A}}$.
(ii) $m_{\alpha} \cdot a-a . m_{\alpha} \rightarrow 0 \quad(a \in \mathcal{A})$.

Also $M \in\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{* *}$ is called module virtual diagonal if
(i) $M . a=a \cdot M$
(ii) $\left(\pi^{* *} M\right) \cdot a=\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp} \quad(a \in \mathcal{A})$.

Proposition 2.9. For a Banach algebra \mathcal{A} the following are equivalent:
(i) \mathcal{A} has a module approximate diagonal.
(ii) \mathcal{A} has a module virtual diagonal.

Proof. $(i) \Rightarrow(i i)$ Let $\left\{m_{\alpha}\right\}$ be module approximate diagonal for \mathcal{A}, so $\left\{\pi\left(m_{\alpha}\right)\right\}$ is bounded approximate identity for Banach algebra $\mathcal{A} / J_{\mathcal{A}}$ and $m_{\alpha} \cdot a-a . \alpha \rightarrow 0$ for each $a \in \mathcal{A}$. Since $\left\{m_{\alpha}\right\}$ is a bounded net in $\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}$ and $\left\|m_{\alpha}\right\|=\left\|\hat{m}_{\alpha}\right\|$, then $\left\{\hat{m}_{\alpha}\right\}$ is a bounded net in $\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{* *}$.

Let $M \in\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{* *}$ be a ω^{*}-accumulation point of $\left\{m_{\alpha}\right\}$, Therefore

$$
\lim _{\alpha}\left\langle m_{\alpha}, f\right\rangle=\langle M, f\rangle \quad\left(f \in\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{*}\right)
$$

Then for each $a \in \mathcal{A}$,

$$
\lim _{\alpha}\left\langle\hat{m}_{\alpha} \cdot a, f\right\rangle=\lim _{\alpha}\left\langle\hat{m}_{\alpha}, a . f\right\rangle=\langle M, a . f\rangle=\langle M . a, f\rangle .
$$

Hence $w^{*}-\lim _{\alpha} m_{\alpha} \cdot a=M . a$ and similarly $w^{*}-\lim _{\alpha} a . m_{\alpha}=a . M$, therefore $w^{*}-\lim _{\alpha}\left(\hat{m}_{\alpha} \cdot a-a . \hat{m}_{\alpha}\right)=M \cdot a-a . M$. Since $\left\{m_{\alpha}\right\}$ is module approximate diagonal, then $\lim _{\alpha}\left(m_{\alpha} \cdot a-a . m_{\alpha}\right)=0$, therefore $M . a=a . M$.

In order to show that $\left(\pi^{* *} M\right) \cdot a=\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}$, for all $a \in \mathcal{A}$ we have

$$
\begin{aligned}
w^{*}-\lim _{\alpha} \pi^{* *}\left(\hat{m}_{\alpha}\right)=\pi^{* *}(M) & \Rightarrow w^{*}-\lim _{\alpha} \pi\left(\hat{m}_{\alpha}\right)=\pi^{* *}(M) \\
& \Rightarrow w^{*}-\lim _{\alpha} \pi\left(m_{\alpha}\right) \cdot\left(a+J_{\mathcal{A}}\right)=\pi^{* *}(M) \cdot a
\end{aligned}
$$

Also $\left\{\pi\left(m_{\alpha}\right)\right\}$ is approximate identity for $\mathcal{A} / J_{\mathcal{A}}$, hence

$$
\lim _{\alpha} \pi\left(m_{\alpha}\right) \cdot\left(a+J_{\mathcal{A}}\right)=a+J_{\mathcal{A}} \Rightarrow \lim _{\alpha} \pi\left(m_{\alpha}\right) \cdot\left(a+J_{\mathcal{A}}\right)=\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp} .
$$

Therefore $w^{*}-\lim _{\alpha} \pi\left(m_{\alpha}\right) \cdot\left(a+J_{\mathcal{A}}\right)=\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}$, and so M is module virtual diagonal.
(ii) $\rightarrow\left(\right.$ i Let $M \in\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{* *}$ be a module virtual diagonal for \mathcal{A}. We use Goldstein's theorem to obtain a bounded net $\left\{m_{\alpha}\right\}$ in $\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}$ such that $w^{*}-\lim _{\alpha} \hat{m}_{\alpha}=M$. For each $a \in \mathcal{A}$ and $f \in\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{*}$,

$$
\begin{aligned}
\lim _{\alpha}\left\langle\hat{m_{\alpha}} \cdot a-a \cdot \hat{m}_{\alpha}, f\right\rangle=0 & \Rightarrow \lim _{\alpha}\left\langle m_{\alpha} \cdot a \hat{-} a \cdot m_{\alpha}, f\right\rangle=0 \\
& \Rightarrow \lim _{\alpha}\left\langle f, m_{\alpha} \cdot a-a \cdot m_{\alpha}\right\rangle=0 \\
& \Rightarrow w-\lim _{\alpha}\left(m_{\alpha} \cdot a-a \cdot m_{\alpha}\right)=0 \\
& \Rightarrow \lim _{\alpha}\left(m_{\alpha} \cdot a-a \cdot m_{\alpha}\right)=0 .
\end{aligned}
$$

Since $w^{*}-\lim _{\alpha} \pi\left(\hat{m}_{\alpha}\right) \cdot a=\pi^{* *}(M) \cdot a$, we have $w^{*}-\lim _{\alpha} \pi\left(m_{\alpha}\right) \cdot a=\hat{a}+$ $J_{\mathcal{A}}{ }^{\perp \perp}$. For each $\tilde{f} \in\left(\mathcal{A} / J_{\mathcal{A}}\right)^{*}$,

$$
\lim _{\alpha}\left\langle\pi\left(\hat{m}_{\alpha}\right) \cdot a, \tilde{f}\right\rangle=\left\langle\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}, \tilde{f}\right\rangle .
$$

Therefore

$$
\begin{aligned}
\lim _{\alpha}\left\langle\pi\left(\hat{m}_{\alpha}\right), a \cdot \tilde{f}\right\rangle & =\lim _{\alpha}\left\langle a \cdot \tilde{f}, \pi\left(m_{\alpha}\right)\right\rangle \\
& =\lim _{\alpha}\left\langle\tilde{f}, \pi\left(m_{\alpha}\right) \cdot a\right\rangle \\
& =\lim _{\alpha}\left\langle\tilde{f}, \pi\left(m_{\alpha}\right)\left(a+J_{\mathcal{A}}\right)\right\rangle \\
& =\left\langle\hat{a}+J_{\mathcal{A}}^{\perp \perp}, \tilde{f}\right\rangle=\langle\hat{a}, f\rangle=\langle f, a\rangle=\left\langle\tilde{f}, a+J_{\mathcal{A}}\right\rangle .
\end{aligned}
$$

So $\lim \left\langle\tilde{f}, \pi\left(m_{\alpha}\right) \cdot\left(a+J_{\mathcal{A}}\right)\right\rangle=\left\langle\tilde{f}, a+J_{\mathcal{A}}\right\rangle$. Hence $w-\lim \pi\left(m_{\alpha}\right) \cdot\left(a+J_{\mathcal{A}}\right)=$ $a+J_{\mathcal{A}}$.

By a classical method, the Banach algebra \mathcal{A} has a bounded right approximate identity then, $\lim \pi\left(m_{\alpha}\right) \cdot\left(a+J_{\mathcal{A}}\right)=a+J_{\mathcal{A}}$.

Theorem 2.10. Let $\mathcal{A} / J_{\mathcal{A}}$ be a commutative \mathfrak{A}-module. If \mathcal{A} is a module amenable Banach algebra then \mathcal{A} has a module virtual diagonal.

Proof. By Proposition (2.7), \mathcal{A} has a bounded approximate identity $\left\{m_{\alpha}\right\}$. Therefore $\left\{m_{\alpha} \hat{\otimes}\left(m_{\alpha}+J_{\mathcal{A}}\right)\right\}$ is bounded net in $\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{* *}$ and
there exits $E \in\left(\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}\right)^{* *}$ such that for each $a \in \mathcal{A}$,

$$
\begin{aligned}
\pi^{* *}\left(\delta_{E}(a)\right) & =\pi^{* *}(a \cdot E-E \cdot a)= \\
& \pi^{* *}\left(w^{*}-\lim _{\alpha}\left(a m_{\alpha} \otimes\left(m_{\alpha}+J_{\mathcal{A}}\right)-m_{\alpha} \otimes\left(m_{\alpha} a+J_{\mathcal{A}}\right)\right)\right) \\
& =w^{*}-\lim _{\alpha}\left(\pi\left(a m_{\alpha} \otimes\left(m_{\alpha}+J_{\mathcal{A}}\right)-m_{\alpha} \otimes\left(m_{\alpha} a+J_{\mathcal{A}}\right)\right)\right. \\
& =w^{*}-\lim _{\alpha}\left(\left(a m_{\alpha}{ }^{2}-m_{\alpha}{ }^{2} a\right)+J_{\mathcal{A}}\right)=0 .
\end{aligned}
$$

Then $\delta_{E}(a) \subseteq k e r \pi^{* *}=(k e r \pi)^{* *}$ for each $a \in \mathcal{A}$. Let $X=(k e r \pi)^{*}$, by lemma 2.4, $\delta_{E}(\mathcal{A}) \subseteq J_{X}{ }^{\perp}$ and hence $\delta_{E}: \mathcal{A} \rightarrow J_{X}{ }^{\perp}$ is inner. Therefore three exists some $V \in J_{X} \perp \leq k e r \pi^{* *}$, such that $\delta_{E}=\delta_{V}$. We put $F=E-V$, so
$a . E-E \cdot a=a . V-V . a \Rightarrow a .(E-V)=(E-V) . a \Rightarrow a . F=F \cdot a \quad(a \in \mathcal{A})$.
Hence for all $\tilde{f} \in\left(\mathcal{A} / J_{\mathcal{A}}\right)^{*}$

$$
\begin{aligned}
\left\langle\pi^{* *}(F) \cdot a, \tilde{f}\right\rangle=\left\langle\pi^{* *}(F), a . \tilde{f}\right\rangle & =\left\langle\pi^{* *}(E-V), a \cdot \tilde{f}\right\rangle \\
& =\left\langle\pi^{* *}(E), a \cdot \tilde{f}\right\rangle \\
& =\lim _{\alpha}\left\langle\pi^{* *}\left(m_{\alpha} \otimes\left(m_{\alpha}+J_{\mathcal{A}}\right)\right), a . \tilde{f}\right\rangle \\
& =\lim _{\alpha}\left\langle\pi\left(m_{\alpha} \otimes\left(m_{\alpha}+J_{\mathcal{A}}\right)\right), a \cdot \tilde{f}\right\rangle \\
& =\lim _{\alpha}\left\langle m_{\alpha}{ }^{2}+J_{\mathcal{A}}, a \cdot \tilde{f}\right\rangle \\
& =\lim _{\alpha}\left\langle a \cdot \tilde{f}, m_{\alpha}{ }^{2}+J_{\mathcal{A}}\right\rangle \\
& =\lim _{\alpha}\left\langle\tilde{f}, m_{\alpha}{ }^{2} \cdot a+J_{\mathcal{A}}\right\rangle \\
& =\langle f, a\rangle=\langle\hat{a}, f\rangle=\left\langle\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}, \tilde{f}\right\rangle,
\end{aligned}
$$

therefore $\pi^{* *}(F) \cdot a=\hat{a}+J_{\mathcal{A}}{ }^{\perp \perp}$.
Theorem 2.11. If \mathcal{A} has a module approximate diagonal, then \mathcal{A} is a module amenable.

Proof. Let $\left\{m_{\alpha}\right\}_{\alpha}$ be a module approximate diagonal for $\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}}$, then $\left\{\pi\left(m_{\alpha}\right)\right\}_{\alpha}$ is a left bounded approximate identity for $\mathcal{A} / J_{\mathcal{A}}$. We show that for a Banach \mathcal{A} - \mathfrak{A}-module X with commutative $J_{X}{ }^{\perp}$,

$$
H^{1}\left(\mathcal{A}, J_{X}^{\frac{1}{X}}\right)=0 .
$$

We may assume that X is pseudo-unital. Let $D: \mathcal{A} \rightarrow J_{X}{ }^{\perp}$ be a module derivation and
$m_{\alpha}=\sum_{n=1}^{\infty} a_{n}^{\alpha} \otimes b_{n}^{\alpha}+J_{\mathcal{A}}$ that $\sum_{n=1}^{\infty}\left\|a_{n}^{\alpha}\right\|\left\|b_{n}^{\alpha}\right\|<\infty$, then $\sum_{n=1}^{\infty} a_{n}^{\alpha} \cdot D b_{n}^{\alpha}$ is a bounded net in $J_{\bar{X}}^{\frac{1}{X}}$, which has a w^{*}-accumulation point $\varphi \in J_{\frac{1}{X}}^{\perp}$
such that, $w^{*}-\lim \sum_{n=1}^{\infty} a_{n}^{\alpha} \cdot D b_{n}^{\alpha}=\varphi \Rightarrow a \varphi=w^{*}-\lim \left(a \sum_{n=1}^{\infty} a_{n}^{\alpha} \cdot D b_{n}^{\alpha}\right)$. Therefore

$$
\begin{aligned}
\langle x, a \cdot \varphi\rangle & =\lim _{\alpha}\left\langle x, \sum_{n=1}^{\infty} a \cdot a_{n}^{\alpha} \cdot D b_{n}^{\alpha}\right\rangle \\
& =\lim _{\alpha}\left\langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha} \cdot D\left(b_{n}^{\alpha} \cdot a\right)\right\rangle \\
& =\lim _{\alpha}\left\langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha} \cdot b_{n}^{\alpha} D(a)+\sum_{n=1}^{\infty} a_{n}^{\alpha} \cdot D\left(b_{n}^{\alpha}\right) a\right\rangle \\
& =\lim _{\alpha}\left\langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha} b_{n}^{\alpha} \cdot D(a)\right\rangle+\lim _{\alpha}\left\langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha} D\left(b_{n}^{\alpha}\right) \cdot a\right\rangle \\
& =\langle x, D(a)\rangle+\langle x, \varphi \cdot a\rangle,
\end{aligned}
$$

for $x \in J_{X}$. Hence

$$
\langle x, D a\rangle=\langle x, \varphi \cdot a\rangle-\langle x, a . \varphi\rangle=\langle x, \varphi \cdot a-a . \varphi\rangle \Longrightarrow D=a d_{\varphi} .
$$

3. Semigroup algebra

In this section, we show that for the inverse semigroup S with a set of idempotents E_{S}, if inverse semigroup S is amenable, then $\ell^{1}(S)$ is $\ell^{1}\left(E_{S}\right)$-module amenable.

Recall that a discrete semigroup S is called inverse semigroup if for each $s \in S$ there is a unique element $s^{*} \in S$ such that $s^{*} s s^{*}=s$ and $s s^{*} s=s^{*}$. An element $e \in S$ is called idempotent if $e=e^{*}=e^{2}$. The set of idempotent elements in semigroup S is denote by E_{S}.

It is easy to see that $\ell^{1}(S)$ is a Banach algebra and a Banach $\ell^{1}\left(E_{S}\right)$ module with compatible right and left actions as

$$
\delta_{e} \cdot \delta_{s}=\delta_{s^{*} s}, \delta_{s} \delta_{e}=\delta_{s e} \quad\left(e \in E_{S}, s \in S\right)
$$

These actions $\ell^{1}(S)$ makes a Banach $\ell^{1}\left(E_{S}\right)$-module. Therefore $J_{\ell^{1}(S)}$ is the closed submodule of $\ell^{1}(S)$ generated by

$$
\left\{\delta_{s e t}-\delta_{s t^{*} t}: s, t \in S, e \in E_{S}\right\}
$$

in [1], the trivial left action has been considered, but we did not consider this limitation on left action $\ell^{1}\left(E_{S}\right)$ on $\ell^{1}(S)$.

Lemma 3.1. With the above notions,

$$
\ell^{1}(S) \otimes \ell^{1}(S) / J_{\ell^{1}(S)} \simeq \ell^{1}(S \times S) / J_{\ell^{1}(S \times S)} .
$$

Proof. Let $e \in E_{S}$, consider the map $\psi: \ell^{1}(S) \rightarrow \ell^{1}(S \times S)$ by

$$
\psi\left(\delta_{x}\right)=\delta_{(x, e)} \quad(x \in S)
$$

It is clear that ψ is one-to-one linear map and so $J_{\ell^{1}(S)}$ is embedding in $J_{\ell^{1}(S \times S)}$. Now consider the canonical embedding $T: \ell^{1}(S) \times \ell^{1}(S) \rightarrow$ $\ell^{1}(S \times S)$ by

$$
T(f, g)(x, y)=f(x) g(y) \quad\left(f, g \in \ell^{1}(S), x, y \in S\right) .
$$

Trivially that T is a bounded bilinear mapping, so $T_{1}: \ell^{1}(s) \times$ $\left(\ell^{1}(s) / J_{\ell^{1}(S)}\right) \rightarrow \ell^{1}(S \times S) / J_{\ell^{1}(S \times S)}$ defined by

$$
T_{1}\left(f, g+J_{\ell^{1}(S)}\right)=T(f, g)+J_{\ell^{1}(S \times S)} \quad\left(f, g \in \ell^{1}(S)\right) .
$$

Therefore it can be extended to a bounded linear mapping $T_{2}: \ell^{1}(s) \otimes$ $\frac{\ell^{1}(s)}{J_{\ell^{1}}(S)} \rightarrow \frac{\ell^{1}(S \times S)}{J_{\ell^{1}}(S \times S)}$ defined by

$$
T_{2}\left(\sum_{i=1}^{n}\left(f_{i} \otimes g_{i}+J_{\ell^{1}(S)}\right)\right)=\sum_{i=1}^{n} T_{1}\left(f_{i}, g_{i}+J_{\ell^{1}(S)}\right) .
$$

Therefore T_{2} is an isometry.
Consider $\omega: \ell^{1}(S) \times \ell^{1}(S) \longrightarrow \ell^{1}(S)$ defined by $\omega(f \times g)=f * g$, for each $f, g \in \ell^{1}(S)$. Then ω and $\omega^{* *}$ are $\ell^{1}\left(E_{S}\right)$-module homomorphism. Also if $\phi: \ell^{1}(S) \otimes\left(\ell^{1}(S) / J_{\ell^{1}(S)}\right) \longrightarrow \ell^{1}(S) / J_{\ell^{1}(S)}$ be defined by $\phi(f \times$ $\left.g+J_{\ell^{1}(S)}\right):=f * g+J_{\ell^{1}(S)}$, so we have

$$
\omega^{* *}(M)=\phi^{* *}\left(M+J_{\ell^{1}(S)}{ }^{\perp \perp}\right) \quad\left(M \in \ell^{1}(S) \otimes \ell^{1}(S)\right) .
$$

Proposition 3.2. The following are equivalent:
(i) $\ell^{1}(S)$ has a module virtual diagonal;
(ii) There is $M \in \ell^{1}(S) \otimes \ell^{1}(S)^{* *}$ such that

$$
\omega^{* *}(M) . s-s \in J_{\ell^{1}(S)}{ }^{\perp \perp}, \quad M . s-s . M \in J_{\ell^{1}(S)}{ }^{\perp \perp} \quad(s \in S) .
$$

Proof. (i) \rightarrow (ii), we defined

$$
N \in\left(\ell^{1}(S) \otimes\left(\ell^{1}(S) / J_{\ell^{1}(S)}\right)\right)^{* *}=\left(\ell^{1}(S \times S)\right)^{* *} / J_{\ell^{1}(S \times S)^{\perp \perp}}
$$

by $N=M+J^{\perp \perp}$. Since $M . s-s . M \in J_{\ell^{1}(S \times S)}{ }^{\perp \perp}$, clearly $N . s=s . N$ and since $\omega^{* *}(M)=\phi^{* *}\left(M+J_{\ell^{1}(S)}{ }^{\perp \perp}\right)=\phi^{* *}(N)$, therefore $\phi^{* *}(N) . s-\hat{s}=$ $\omega^{* *}(M) . s-s \in J_{\ell^{1}(S)}{ }^{\perp \perp}$.
$(i i) \rightarrow(i)$ Let $N \in\left(\ell^{1}(S) \otimes\left(\ell^{1}(S) / J_{\ell^{1}(S)}\right)\right)^{* *}=\left(l^{1}(S \times S) / J_{l}^{1}(S \times S)\right)^{* *}$
is a module virtual diagonal, choose $M \in\left(\ell^{1}(S) \otimes \ell^{1}(S)\right)^{* *}$ such that $N=M+J^{\perp \perp}$. For each $s \in S$,

$$
(M . s-s . M)+J^{\perp \perp}=N . s-s . N=0 \in \ell^{1}(S) \otimes \ell^{1}(S) / J^{\perp \perp} .
$$

Therefore $M . s-s . M \in J^{\perp \perp}$, now we have

$$
\begin{aligned}
\left(\omega^{* *}(M) \cdot s-s\right)+J^{\perp \perp} & =\phi^{* *}\left(M+J^{\perp \perp}\right) \cdot s-s \\
& =\phi^{* *}(N) \cdot s-s=0 \in \ell^{1}(S)^{* *} / J_{\ell}^{1}(S)^{\perp \perp} .
\end{aligned}
$$

Remark 3.3. Consider the congruence \sim on S defined by $s \sim t$ if and only if there exist $e \in E_{S}$ such that se $=t e$. It is clear that if $s \sim t$ and $f \in \ell^{\infty}(S)$, then $f\left(\delta_{s}\right)=f\left(\delta_{t}\right)$.

Now we are ready to state the main result in this section.

Theorem 3.4. [1, Theorem 3.1] Let S be an inverse semigroup. If S is amenable, then $\ell^{1}(S)$ is $\ell^{1}\left(E_{S}\right)$-module amenable.

Proof. If μ is a right invariant mean on S and M is defined on $\ell^{\infty}(S \times$ $S)$ by

$$
M(f)=\int_{S} f\left(s^{*}, s\right) d \mu(s)
$$

Then M is clearly a bounded linear functional and $M(1 \otimes 1)=\mu(1)=1$. For each $s \in S$ and $f \in \ell^{\infty}(S \times S)$

$$
\begin{aligned}
s . M(f)=M(f . s) & =\int_{S} f\left(s t^{*}, t\right) d \mu(t)=\int_{S} f\left(s(t s)^{*}, t s\right) d \mu(t) \\
& =\int_{S} f\left(s s^{*} t^{*}, t s\right) d \mu(t)=\int_{S} f\left(\left(t s s^{*}\right)^{*},\left(t s s^{*}\right) s\right) d \mu(t) \\
& =\int_{S} f\left(\left(t^{*}, t s\right) d \mu(t)=M(s . f)=m . s(f) .\right.
\end{aligned}
$$

For each $s \in S$ and $f \in J_{\ell^{1}(S \times S)}{ }^{\perp} \subseteq \ell^{\infty}(S \times S)$,

$$
\begin{aligned}
\omega^{* *}(M) . s(f) & =\omega^{* *}(M)(f . s)=M\left(\omega^{*}(f . s)\right) \\
& =\int_{S} \omega^{*}(f . s)\left(t^{*}, t\right) d \mu(t)=\int_{S} f . s\left(t^{*} t\right) d \mu(t) \\
& =\int_{S} f . s\left(t^{*} t\right) d \mu(t)=\int_{S} f\left(s t^{*} t\right) d \mu(t) \\
& =f(s) \int_{S} d \mu(t) \quad(f(s e)=f(s) \text { by Remark 3.3 }) \\
& =f(s)
\end{aligned}
$$

Therefore M gives rise to a module virtual diagonal for $\ell^{1}(S)$ and so $\ell^{1}(S)$ is module amenable.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup fourm, 69, 302 - 312, (2004).
[2] J. Duncan and I. Namioka, Amenebility of invers semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh sect. A, 80 A, 309 - 321, (1978).
[3] B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127, Springer Verlag, New York, (1972), American Mathematical Socity, Providens.
[4] Z. A. Lykova, Structure of Banach algebras with trivial centeral cohomology, J. operator Theory, 28, $147-165$, (1992).
[5] Z. A. Lykova, Ordinary and central amenability of C^{*}-algebra, Russian Math. Surveys, 48(1), 175 - 177, (1993).
[6] J. Phillips and I. Raeburn, Central cohomology of C^{*}-algebras, J. London Math. Soc. 28(2), $365-375$, (1983).
[7] V. Ronde, Lectures on amenability, Lectture Notes in Mathematics, vol. 1774. Springer, Berlin (2002).
[8] W. D. Munn, A class of irreducible matrix representations of an arbitrary invers semigroup, Proc. Glasgow Math. Assoc. 5, 41 - 48, (1961).

M. Khoshhal
Department of Mathematics, Faculty of Science, Central Tehran Branch,
Islamic Azad University, Tehran, Iran.
E-mail: khoshhal-ukh@yahoo.com

D. Ebrahimi Bagha

Department of Mathematics, Faculty of Science, Central Tehran Branch,
Islamic Azad University, Tehran, Iran.
Email: e-bagha@yahoo.com
O. Pourbahri Rahpeyma

Department of Mathematics, Faculty of Science, Chalous Branch,
Islamic Azad University, Chalous, Iran.
Email: omidpourbahri@iauc.ac.ir

