Honam Mathematical J. **41** (2019), No. 2, pp. 357–368 https://doi.org/10.5831/HMJ.2019.41.2.357

MODULE AMENABILITY OF BANACH ALGEBRAS AND SEMIGROUP ALGEBRAS

M. Khoshhal, D. Ebrahimi Bagha^{*}, and O. Pourbahri Rahpeyma

Abstract. We define the concepts of the first and the second module dual of a Banach space X. And also bring a new concept of module amenability for a Banach algebra \mathcal{A} . For inverse semigroup S, we will give a new action for $\ell^1(S)$ as a Banach $\ell^1(E_S)$ -module and show that if S is amenable then $\ell^1(S)$ is $\ell^1(E_S)$ -module amenable.

1. Introduction

The most important results in the theory of amenable groups is Johnson's theorem [3]. The auther states that a locally compact topological group G is amenable if and only if the Banach algebra $L^1(G)$ is amenable. But this result is not true for inverse semigroups. Inverse semigroup Sis amenable if and only if the discrete group G_S is amenable, where G_S is the maximal group homomorphic image of S that is defined as $G_S := S/\sim$ for each congeruence relation \sim on S in [8]. For more details, about amenability for C^* -algebras and Banach algebras, one can refer to be refrences [4], [5], [6] and [7].

The concept of module amenability for a class of Banach algebras that are modules over another Banach algebra has been introduced by Amini in [1]. He considered J as the closed ideal of \mathcal{A} generated by $\{\alpha.(ab) - (ab).\alpha\}$ for $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. For an inverse semigroup S along with the set of idempotents E_S , $\ell^1(S)$ as $\ell^1(E_S)$ -module with the right multiplication and left multiplication is trivial actions, that is $\delta_e.\delta_s = \delta_s, \, \delta_s.\delta_e = \delta_{se} = \delta_s * \delta_e, \, (s \in S, e \in E_s)$, is module amenable if and only if S is amenable [1].

Received October 23, 2018. Revised January 23, 2019. Accepted January 24, 2019.

²⁰¹⁰ Mathematics Subject Classification. 43A07, 46H25, 47L45.

Key words and phrases. module amenability, Banach algebra, semigroup algebra. *Corresponding author

In section two, we introduce a closed submodule J_X^{\perp} of X^* for Banach \mathcal{A} - \mathfrak{A} -module X, afther that, the new concepts of module amenability, module virtual diagonal and module approximate diagonal for a Banach algebra \mathcal{A} , are given. Finally we show that the Banach algebra \mathcal{A} is module amenable if and only if \mathcal{A} has a module virtual diagonal.

We will give a new definition of Banach $\ell^1(E_S)$ -module for $\ell^1(S)$ with no trivial left action. In fact, we will consider the semigroup algebra $\ell^1(S)$ as $\ell^1(E_S)$ -module with the following as the right module action and the left multiplication

$$\delta_{e}.\delta_{s} = \delta_{s^*s} = \delta_{s^*} * \delta_{s}, \ \delta_{s}.\delta_{e} = \delta_{se} = \delta_{s} * \delta_{e}, \qquad (s \in S, e \in E_S).$$

With respect to the above definition, we will show that if inverse semigroup S is amenable then, semigroup algebra $\ell^1(S)$ is module amenable.

2. Main results

Let $\mathcal A$ and $\mathfrak A$ be Banach algebras and let $\mathcal A$ be a Banach $\mathfrak A\text{-module}$ such that

$$(\alpha.a)b = \alpha.(ab)$$
, $(ab).\alpha = a(b.\alpha)$ $(a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$

If Y is Banach \mathcal{A} -module and Banach \mathfrak{A} -module with compatible actions, such that

 $\alpha.(a.y) = (\alpha.a).y, \quad (a.y).\alpha = a.(y.\alpha) \quad (a \in \mathcal{A}, y \in Y, \alpha \in \mathfrak{A}),$

and with similar operations for right actions. Then Y is called an $\mathcal{A}\mathchar`-\mathfrak{A}\mathchar`-\mathfrak{A}$ module.

If moreover,

 $\alpha.y = y.\alpha \qquad (\alpha \in \mathfrak{A}, y \in Y),$

then Y is called a *commutative* \mathcal{A} - \mathfrak{A} -module.

If Y is a (commutative) Banach \mathcal{A} - \mathfrak{A} -module so is Y^* , with the following actions:

$$\begin{split} &\langle \alpha.f, y \rangle = \langle f, y.\alpha \rangle, \qquad \langle f.\alpha, y \rangle = \langle f, \alpha.y \rangle \\ &\langle a.f, y \rangle = \langle f, y.a \rangle, \qquad \langle f.a, y \rangle = \langle f, a.y \rangle \quad (a \in \mathcal{A}, y \in Y, \alpha \in \mathfrak{A}, f \in Y^*). \\ &\text{Let } Z \text{ and } Y \text{ be } \mathcal{A}\text{-}\mathfrak{A}\text{-modules, and } \phi : Z \to Y \text{ satisfies the following} \end{split}$$

Let Z and Y be A-2-modules, and $\phi: Z \to Y$ satisfies the following conditions:

$$\phi(\alpha.z) = \alpha.\phi(z), \qquad \phi(z.\alpha) = \phi(z).\alpha$$

$$\phi(a.z) = a.\phi(z), \qquad \phi(z.a) = \phi(z).a \qquad (a \in \mathcal{A}, z \in Z, \alpha \in \mathfrak{A}).$$

Then ϕ is called an *module bihomomorphism*.

Let Y be a commutative Banach \mathcal{A} - \mathfrak{A} -module, then the projective tensor product $\mathcal{A} \hat{\otimes} Y$ is a \mathcal{A} - \mathfrak{A} -module with the following actions:

$$\begin{aligned} a.(b\otimes y) &= (ab)\otimes y, \quad (b\otimes y).a = b\otimes (y.a) \\ \alpha.(b\otimes y) &= (\alpha.b)\otimes y, \quad (b\otimes y).\alpha = b\otimes (y.\alpha) \ (a,b\in\mathcal{A},y\in Y,\alpha\in\mathfrak{A}). \end{aligned}$$

Now, define $\pi_X : \mathcal{A} \otimes X \to X$ by

$$\pi_X(a \otimes x) = a.x \qquad (a \in \mathcal{A}, x \in X).$$

It is clear that π_X is a \mathcal{A} - \mathfrak{A} -module bihomomorphism.

Let I_X be the closed \mathcal{A} - \mathfrak{A} -submodule of the projective tensor product $A \otimes X$ generated by

$$\{(a.\alpha) \otimes x - a \otimes (\alpha.x) : a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X\}.$$

Let J_X be the closed submodule of X generated by $\pi(I_X)$, that is

$$J_X = \overline{\langle \pi_X(I_X) \rangle}.$$

In particular case, when $X = \mathcal{A}$, $J_{\mathcal{A}}$ is the closed ideal in \mathcal{A}^* generated by $\{(a.\alpha)b - a(\alpha.b)\}$ for $a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$.

Definition 2.1. The closed \mathcal{A} - \mathfrak{A} -module J_X^{\perp} of X^* and $J_{J_X^{\perp}}^{\perp}$ of X^{**} are called respectively the first and the second module dual of X.

In the case that \mathcal{A} be a commutative \mathfrak{A} -module, then $J_X^{\perp} = X^*$ and $J_{J_X^{\perp}}^{\perp} = X^{**}$.

Remark 2.2. Since $(\mathcal{A}/J_{\mathcal{A}})^* \simeq J_{\mathcal{A}}^{\perp}$, we have

(1)
$$\langle \tilde{f}, a + J_{\mathcal{A}} \rangle = \langle f, a \rangle \qquad (a \in \mathcal{A})$$

when $f \in J_{\mathcal{A}}^{\perp}$ is the corresponding element $\tilde{f} \in (\mathcal{A}/J_{\mathcal{A}})^*$. Since $(\mathcal{A}/J_{\mathcal{A}})^{**} \simeq \mathcal{A}^{**}/J_{\mathcal{A}}^{\perp\perp}$, we have

(2)
$$\langle \tilde{F}, \tilde{f} \rangle = \langle F, f \rangle \qquad (\tilde{f} \simeq f \in J_{\mathcal{A}}^{\perp}),$$

where $F + J_{\mathcal{A}}^{\perp \perp} \in \mathcal{A}^{**}/J_{\mathcal{A}}^{\perp \perp}$ is the corresponding element to $\tilde{F} \in (\mathcal{A}/J_{\mathcal{A}})^{**}$.

Note that $(\mathcal{A}/J_{\mathcal{A}})^*$ is an \mathcal{A} -module, where the actions \mathcal{A} on $(\mathcal{A}/J_{\mathcal{A}})^*$ are defined by:

(3)
$$\langle \tilde{f}.a, b + J_{\mathcal{A}} \rangle = \langle \tilde{f}, ab + J_{\mathcal{A}} \rangle, \quad \langle a.\tilde{f}, b + J_{\mathcal{A}} \rangle = \langle \tilde{f}, ba + J_{\mathcal{A}} \rangle,$$

for all $a, b \in \mathcal{A}$ and $\tilde{f} \in (\mathcal{A}/J_{\mathcal{A}})^*$.

Therefore the second module dual of X is a closed submodule of $X^{**}/J_X^{\perp\perp}$.

359

Definition 2.3. Let \mathcal{A} and \mathfrak{A} be two Banach algebras and X be a Banach \mathcal{A} - \mathfrak{A} -module. A bounded linear map $D : \mathcal{A} \to X$ is a module derivation if D satisfies the following relations:

$$D(ab) = D(a).b + a.D(b)$$

$$D(\alpha.a) = \alpha.D(a), \qquad D(a.\alpha) = D(a).\alpha \qquad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Lemma 2.4. Let X^* be a commutative Banach \mathcal{A} - \mathfrak{A} -module and $D: \mathcal{A} \to X^*$ be a module derivation, then $D(\mathcal{A}) \subseteq J_X^{\perp}$.

Proof. For each $a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$ and $x \in X$, we have $(a.\alpha).x - a.(\alpha.x) \in J_X$. Hence

$$\langle D(b), (\alpha.a).x - a.(\alpha.x) \rangle = \langle D(b).(\alpha.a) - (D(b).a).\alpha, x \rangle = 0.$$

Definition 2.5. A Banach algebra \mathcal{A} is called module amenable (as an \mathfrak{A} - module) if for every Banach \mathcal{A} - \mathfrak{A} -module X^* with commutative J_X^{\perp} (as an \mathfrak{A} - module) and $a.(\alpha.y) = (a.\alpha).y$ ($a \in \mathcal{A}, \alpha \in \mathfrak{A}, y \in J_X^{\perp}$), for each module derivation $D : \mathcal{A} \to J_X^{\perp}$ there exist $y \in J_X^{\perp}$ such that D(a) = a.y - y.a ($a \in \mathcal{A}$).

Proposition 2.6. Let \mathcal{A} be a amenable Banach algebra, then \mathcal{A} is module amenable.

Proof. Since $J_X^{\perp} = (X/J_X)^*$, then the proof is trivial.

Proposition 2.7. Let \mathcal{A} be a module amenable Banach algebra and let $\mathcal{A}/J_{\mathcal{A}}$ be a commutative Banach \mathfrak{A} -module, then \mathcal{A} has an approximate identity.

Proof. Put $X = J_{\mathcal{A}}^{\perp}$, then X is a Banach \mathcal{A} -module with modules actions a.f = 0 and f.a, with is a canonical action for each $a \in \mathcal{A}, f \in X$. Since $\mathcal{A}/J_{\mathcal{A}}$ is commutative \mathfrak{A} -module, for each $a, b \in \mathcal{A}, \alpha \in \mathfrak{A}$ and $f \in J_{\mathcal{A}}^{\perp}$, we have

$$\begin{aligned} \langle (a.\alpha).f - a.(\alpha.f), b \rangle &= -\langle a.(\alpha.f), b \rangle \\ &= -\langle a.(f.\alpha), b \rangle \\ &= -\langle f, \alpha.(b.a) \rangle = -\langle f, \alpha.(b.a) - b.(\alpha.a) \rangle = 0. \end{aligned}$$

So $J_{J_A^{\perp}} = 0$ and $\mathcal{A}^{**}/J_A^{\perp \perp} \simeq J_{J_A^{\perp}}^{\perp}$. Define

$$\varphi : \mathcal{A} \to \mathcal{A}^{**} / J_{\mathcal{A}}^{\perp \perp} \simeq J_{J_{\mathcal{A}}}^{\perp}$$
$$\varphi(a) = \hat{a} + J_{\mathcal{A}}^{\perp \perp} \simeq \hat{a}.$$

It is easy to check that φ is module derivation. Therefore there exists some $F \in J_{J_A^{\perp}}^{\perp}$ such that $\varphi(a) = a.F - F.a = a.F$ for all $a \in \mathcal{A}$. Take a norm bounded net $\{a_{\alpha}\}$ in \mathcal{A} such that w^* -lim $\varphi(a_{\alpha}) = F$, then we have *w*-lim $aa_{\alpha} = a$. By classical method, the Banach algebra \mathcal{A} has a bounded right approximate identity. Similarly, \mathcal{A} has a bounded left approximate identity. \Box

Let $\pi_{\mathcal{A}/J_{\mathcal{A}}} = \pi : \mathcal{A} \hat{\otimes} \mathcal{A}/J_{\mathcal{A}} \to \mathcal{A}/J_{\mathcal{A}}$ defined by $\pi(a \otimes b + J_{\mathcal{A}}) := ab + J_{\mathcal{A}}$. Since π is a module homomorphism, then the second dual $\pi^{**} : (\mathcal{A} \hat{\otimes} \mathcal{A}/J_{\mathcal{A}})^{**} \to \mathcal{A}^{**}/J_{\mathcal{A}}^{\perp \perp}$ is module homomorphism.

Definition 2.8. A bounded net $\{m_{\alpha}\}_{\alpha}$ in $\mathcal{A} \otimes \mathcal{A}/J_{\mathcal{A}}$ is called module approximate diagonal if

(i) $\{\pi(m_{\alpha})\}\$ is a bounded approximate identity for the Banach algebra $\mathcal{A}/J_{\mathcal{A}}$.

(*ii*) $m_{\alpha}.a - a.m_{\alpha} \to 0$ $(a \in \mathcal{A}).$

Also $M \in (\mathcal{A} \hat{\otimes} \mathcal{A} / J_{\mathcal{A}})^{**}$ is called module virtual diagonal if

(i) M.a = a.M

(*ii*) $(\pi^{**}M).a = \hat{a} + J_{\mathcal{A}}^{\perp \perp} \qquad (a \in \mathcal{A}).$

Proposition 2.9. For a Banach algebra \mathcal{A} the following are equivalent:

(i) \mathcal{A} has a module approximate diagonal.

 $(ii) \mathcal{A}$ has a module virtual diagonal.

Proof. (i) \Rightarrow (ii) Let $\{m_{\alpha}\}$ be module approximate diagonal for \mathcal{A} , so $\{\pi(m_{\alpha})\}$ is bounded approximate identity for Banach algebra $\mathcal{A}/J_{\mathcal{A}}$ and $m_{\alpha}.a-a.\alpha \rightarrow 0$ for each $a \in \mathcal{A}$. Since $\{m_{\alpha}\}$ is a bounded net in $\mathcal{A}\hat{\otimes}\mathcal{A}/J_{\mathcal{A}}$ and $\|m_{\alpha}\| = \|\hat{m}_{\alpha}\|$, then $\{\hat{m}_{\alpha}\}$ is a bounded net in $(\mathcal{A}\hat{\otimes}\mathcal{A}/J_{\mathcal{A}})^{**}$.

Let $M \in (\mathcal{A} \otimes \mathcal{A}/J_{\mathcal{A}})^{**}$ be a ω^* -accumulation point of $\{m_{\alpha}\}$, Therefore

$$\lim_{\alpha} \langle m_{\alpha}, f \rangle = \langle M, f \rangle \qquad (f \in (\mathcal{A} \hat{\otimes} \mathcal{A}/J_{\mathcal{A}})^*).$$

Then for each $a \in \mathcal{A}$,

$$\lim_{\alpha} \langle \hat{m}_{\alpha}.a, f \rangle = \lim_{\alpha} \langle \hat{m}_{\alpha}, a.f \rangle = \langle M, a.f \rangle = \langle M.a, f \rangle$$

Hence $w^*-\lim_{\alpha} m_{\alpha}a = M.a$ and similarly $w^*-\lim_{\alpha} a.m_{\alpha} = a.M$, therefore $w^*-\lim_{\alpha} (\hat{m}_{\alpha}.a - a.\hat{m}_{\alpha}) = M.a - a.M$. Since $\{m_{\alpha}\}$ is module approximate diagonal, then $\lim_{\alpha} (m_{\alpha}.a - a.m_{\alpha}) = 0$, therefore M.a = a.M.

In order to show that $(\pi^{**}M).a = \hat{a} + J_A^{\perp \perp}$, for all $a \in \mathcal{A}$ we have

$$w^*-\lim_{\alpha}\pi^{**}(\hat{m}_{\alpha}) = \pi^{**}(M) \Rightarrow w^*-\lim_{\alpha}\pi(\hat{m}_{\alpha}) = \pi^{**}(M)$$
$$\Rightarrow w^*-\lim_{\alpha}\pi(m_{\alpha}).(a+J_{\mathcal{A}}) = \pi^{**}(M).a.$$

Also $\{\pi(m_{\alpha})\}\$ is approximate identity for $\mathcal{A}/J_{\mathcal{A}}$, hence

$$\lim_{\alpha} \pi(m_{\alpha}).(a+J_{\mathcal{A}}) = a + J_{\mathcal{A}} \Rightarrow \lim_{\alpha} \pi(m_{\alpha}).(a+J_{\mathcal{A}}) = \hat{a} + J_{\mathcal{A}}^{\perp \perp}.$$

Therefore $w^*-\lim_{\alpha} \pi(m_{\alpha}).(a + J_{\mathcal{A}}) = \hat{a} + J_{\mathcal{A}}^{\perp \perp}$, and so M is module virtual diagonal.

 $(ii) \to (i)$ Let $M \in (\mathcal{A} \hat{\otimes} \mathcal{A}/J_{\mathcal{A}})^{**}$ be a module virtual diagonal for \mathcal{A} . We use Goldstein's theorem to obtain a bounded net $\{m_{\alpha}\}$ in $\mathcal{A} \hat{\otimes} \mathcal{A}/J_{\mathcal{A}}$ such that w^* -lim_{α} $\hat{m}_{\alpha} = M$. For each $a \in \mathcal{A}$ and $f \in (\mathcal{A} \hat{\otimes} \mathcal{A}/J_{\mathcal{A}})^*$,

$$\begin{split} \lim_{\alpha} \langle \hat{m_{\alpha}.a} - a.\hat{m_{\alpha}}, f \rangle &= 0 \Rightarrow \lim_{\alpha} \langle m_{\alpha}.a - a.m_{\alpha}, f \rangle = 0 \\ \Rightarrow \lim_{\alpha} \langle f, m_{\alpha}.a - a.m_{\alpha} \rangle &= 0 \\ \Rightarrow w - \lim_{\alpha} (m_{\alpha}.a - a.m_{\alpha}) &= 0 \\ \Rightarrow \lim_{\alpha} (m_{\alpha}.a - a.m_{\alpha}) &= 0. \end{split}$$

Since $w^*-\lim_{\alpha} \pi(\hat{m}_{\alpha}).a = \pi^{**}(M).a$, we have $w^*-\lim_{\alpha} \pi(m_{\alpha}).a = \hat{a} + J_{\mathcal{A}}^{\perp\perp}$. For each $\tilde{f} \in (\mathcal{A}/J_{\mathcal{A}})^*$,

$$\lim_{\alpha} \langle \pi(\hat{m}_{\alpha}).a, \tilde{f} \rangle = \langle \hat{a} + J_{\mathcal{A}}^{\perp \perp}, \tilde{f} \rangle.$$

Therefore

$$\begin{split} \lim_{\alpha} \langle \pi(\hat{m}_{\alpha}), a.\tilde{f} \rangle &= \lim_{\alpha} \langle a.\tilde{f}, \pi(m_{\alpha}) \rangle \\ &= \lim_{\alpha} \langle \tilde{f}, \pi(m_{\alpha}).a \rangle \\ &= \lim_{\alpha} \langle \tilde{f}, \pi(m_{\alpha})(a+J_{\mathcal{A}}) \rangle \\ &= \langle \hat{a} + J_{\mathcal{A}}^{\perp \perp}, \tilde{f} \rangle = \langle \hat{a}, f \rangle = \langle f, a \rangle = \langle \tilde{f}, a + J_{\mathcal{A}} \rangle. \end{split}$$

So $\lim \langle \tilde{f}, \pi(m_{\alpha}).(a+J_{\mathcal{A}}) \rangle = \langle \tilde{f}, a+J_{\mathcal{A}} \rangle$. Hence w-lim $\pi(m_{\alpha}).(a+J_{\mathcal{A}}) = a+J_{\mathcal{A}}$.

By a classical method, the Banach algebra \mathcal{A} has a bounded right approximate identity then, $\lim \pi(m_{\alpha}).(a + J_{\mathcal{A}}) = a + J_{\mathcal{A}}.$

Theorem 2.10. Let $\mathcal{A}/J_{\mathcal{A}}$ be a commutative \mathfrak{A} -module. If \mathcal{A} is a module amenable Banach algebra then \mathcal{A} has a module virtual diagonal.

Proof. By Proposition (2.7), \mathcal{A} has a bounded approximate identity $\{m_{\alpha}\}$. Therefore $\{m_{\alpha}\hat{\otimes}(m_{\alpha}+J_{\mathcal{A}})\}$ is bounded net in $(\mathcal{A}\hat{\otimes}\mathcal{A}/J_{\mathcal{A}})^{**}$ and

there exits $E \in (\mathcal{A} \otimes \mathcal{A}/J_{\mathcal{A}})^{**}$ such that for each $a \in \mathcal{A}$,

$$\pi^{**}(\delta_E(a)) = \pi^{**}(a.E - E.a) =$$

$$\pi^{**}(w^* - \lim_{\alpha} (am_{\alpha} \otimes (m_{\alpha} + J_{\mathcal{A}}) - m_{\alpha} \otimes (m_{\alpha}a + J_{\mathcal{A}})))$$

$$= w^* - \lim_{\alpha} (\pi(am_{\alpha} \otimes (m_{\alpha} + J_{\mathcal{A}}) - m_{\alpha} \otimes (m_{\alpha}a + J_{\mathcal{A}})))$$

$$= w^* - \lim_{\alpha} ((am_{\alpha}^2 - m_{\alpha}^2 a) + J_{\mathcal{A}}) = 0.$$

Then $\delta_E(a) \subseteq ker\pi^{**} = (ker\pi)^{**}$ for each $a \in \mathcal{A}$. Let $X = (ker\pi)^*$, by lemma 2.4, $\delta_E(\mathcal{A}) \subseteq J_X^{\perp}$ and hence $\delta_E : \mathcal{A} \to J_X^{\perp}$ is inner. Therefore three exists some $V \in J_X^{\perp} \leq ker\pi^{**}$, such that $\delta_E = \delta_V$. We put F = E - V, so

 $a.E-E.a = a.V-V.a \Rightarrow a.(E-V) = (E-V).a \Rightarrow a.F = F.a \quad (a \in \mathcal{A}).$ Hence for all $\tilde{f} \in (\mathcal{A}/J_{\mathcal{A}})^*$

$$\begin{split} \langle \pi^{**}(F).a, \tilde{f} \rangle &= \langle \pi^{**}(F), a. \tilde{f} \rangle = \langle \pi^{**}(E - V), a. \tilde{f} \rangle \\ &= \langle \pi^{**}(E), a. \tilde{f} \rangle \\ &= \lim_{\alpha} \langle \pi^{**}(m_{\alpha} \otimes (m_{\alpha} + J_{\mathcal{A}})), a. \tilde{f} \rangle \\ &= \lim_{\alpha} \langle \pi(m_{\alpha} \otimes (m_{\alpha} + J_{\mathcal{A}})), a. \tilde{f} \rangle \\ &= \lim_{\alpha} \langle m_{\alpha}^{2} + J_{\mathcal{A}}, a. \tilde{f} \rangle \\ &= \lim_{\alpha} \langle a. \tilde{f}, m_{\alpha}^{2} + J_{\mathcal{A}} \rangle \\ &= \lim_{\alpha} \langle \tilde{f}, m_{\alpha}^{2}. a + J_{\mathcal{A}} \rangle \\ &= \langle f, a \rangle = \langle \hat{a}, f \rangle = \langle \hat{a} + J_{\mathcal{A}}^{\perp \perp}, \tilde{f} \rangle, \end{split}$$
therefore $\pi^{**}(F).a = \hat{a} + J_{\mathcal{A}}^{\perp \perp}$.

Theorem 2.11. If \mathcal{A} has a module approximate diagonal, then \mathcal{A} is a module amenable.

Proof. Let $\{m_{\alpha}\}_{\alpha}$ be a module approximate diagonal for $\mathcal{A} \hat{\otimes} \mathcal{A}/J_{\mathcal{A}}$, then $\{\pi(m_{\alpha})\}_{\alpha}$ is a left bounded approximate identity for $\mathcal{A}/J_{\mathcal{A}}$. We show that for a Banach \mathcal{A} - \mathfrak{A} -module X with commutative J_X^{\perp} ,

$$H^1(\mathcal{A}, J_X^\perp) = 0.$$

We may assume that X is pseudo-unital. Let $D: \mathcal{A} \to J_X^{\perp}$ be a module derivation and

 $m_{\alpha} = \sum_{n=1}^{\infty} a_n^{\alpha} \otimes b_n^{\alpha} + J_{\mathcal{A}} \text{ that } \sum_{n=1}^{\infty} \|a_n^{\alpha}\| \|b_n^{\alpha}\| < \infty, \text{ then } \sum_{n=1}^{\infty} a_n^{\alpha}.Db_n^{\alpha}$ is a bounded net in J_X^{\perp} , which has a w^* -accumulation point $\varphi \in J_X^{\perp}$

such that, $w^*-\lim \sum_{n=1}^{\infty} a_n^{\alpha}.Db_n^{\alpha} = \varphi \Rightarrow a\varphi = w^*-\lim(a \sum_{n=1}^{\infty} a_n^{\alpha}.Db_n^{\alpha}).$ Therefore

$$\begin{split} \langle x, a.\varphi \rangle &= \lim_{\alpha} \langle x, \sum_{n=1}^{\infty} a.a_{n}^{\alpha}.Db_{n}^{\alpha} \rangle \\ &= \lim_{\alpha} \langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha}.D(b_{n}^{\alpha}.a) \rangle \\ &= \lim_{\alpha} \langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha}.b_{n}^{\alpha}D(a) + \sum_{n=1}^{\infty} a_{n}^{\alpha}.D(b_{n}^{\alpha})a \rangle \\ &= \lim_{\alpha} \langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha}b_{n}^{\alpha}.D(a) \rangle + \lim_{\alpha} \langle x, \sum_{n=1}^{\infty} a_{n}^{\alpha}D(b_{n}^{\alpha}).a \rangle \\ &= \langle x, D(a) \rangle + \langle x, \varphi.a \rangle, \end{split}$$

for $x \in J_X$. Hence

$$\langle x, Da \rangle = \langle x, \varphi.a \rangle - \langle x, a.\varphi \rangle = \langle x, \varphi.a - a.\varphi \rangle \Longrightarrow D = ad_{\varphi}.$$

3. Semigroup algebra

In this section, we show that for the inverse semigroup S with a set of idempotents E_S , if inverse semigroup S is amenable, then $\ell^1(S)$ is $\ell^1(E_S)$ -module amenable.

Recall that a discrete semigroup S is called *inverse semigroup* if for each $s \in S$ there is a unique element $s^* \in S$ such that $s^*ss^* = s$ and $ss^*s = s^*$. An element $e \in S$ is called *idempotent* if $e = e^* = e^2$. The set of *idempotent* elements in semigroup S is denote by E_S .

It is easy to see that $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E_S)$ module with compatible right and left actions as

$$\delta_e \delta_s = \delta_{s^*s}, \ \delta_s \delta_e = \delta_{se} \qquad (e \in E_S, s \in S)$$

These actions $\ell^1(S)$ makes a Banach $\ell^1(E_S)$ -module. Therefore $J_{\ell^1(S)}$ is the closed submodule of $\ell^1(S)$ generated by

$$\Big\{\delta_{set} - \delta_{st^*t} : s, t \in S, e \in E_S\Big\}.$$

in [1], the trivial left action has been considered, but we did not consider this limitation on left action $\ell^1(E_S)$ on $\ell^1(S)$.

Module amenability of Banach algebras and semigroup algebras 365

Lemma 3.1. With the above notions,

 $\ell^1(S) \otimes \ell^1(S) / J_{\ell^1(S)} \simeq \ell^1(S \times S) / J_{\ell^1(S \times S)}.$

Proof. Let $e \in E_S$, consider the map $\psi : \ell^1(S) \to \ell^1(S \times S)$ by

$$\psi(\delta_x) = \delta_{(x,e)} \qquad (x \in S).$$

It is clear that ψ is one-to-one linear map and so $J_{\ell^1(S)}$ is embedding in $J_{\ell^1(S \times S)}$. Now consider the canonical embedding $T : \ell^1(S) \times \ell^1(S) \to \ell^1(S \times S)$ by

$$T(f,g)(x,y) = f(x)g(y) \qquad (f,g \in \ell^1(S), x, y \in S).$$

Trivially that T is a bounded bilinear mapping, so $T_1 : \ell^1(s) \times (\ell^1(s)/J_{\ell^1(S)}) \to \ell^1(S \times S)/J_{\ell^1(S \times S)}$ defined by

$$T_1(f, g + J_{\ell^1(S)}) = T(f, g) + J_{\ell^1(S \times S)} \qquad (f, g \in \ell^1(S)).$$

Therefore it can be extended to a bounded linear mapping $T_2: \ell^1(s) \otimes \frac{\ell^1(s)}{J_{\ell^1(S)}} \to \frac{\ell^1(S \times S)}{J_{\ell^1(S \times S)}}$ defined by

$$T_2(\sum_{i=1}^n (f_i \otimes g_i + J_{\ell^1(S)})) = \sum_{i=1}^n T_1(f_i, g_i + J_{\ell^1(S)}).$$

Therefore T_2 is an isometry.

Consider $\omega : \ell^1(S) \times \ell^1(S) \longrightarrow \ell^1(S)$ defined by $\omega(f \times g) = f * g$, for each $f, g \in \ell^1(S)$. Then ω and ω^{**} are $\ell^1(E_S)$ -module homomorphism. Also if $\phi : \ell^1(S) \otimes (\ell^1(S)/J_{\ell^1(S)}) \longrightarrow \ell^1(S)/J_{\ell^1(S)}$ be defined by $\phi(f \times g + J_{\ell^1(S)}) := f * g + J_{\ell^1(S)}$, so we have

$$\omega^{**}(M) = \phi^{**}(M + J_{\ell^1(S)}) \quad (M \in \ell^1(S) \otimes \ell^1(S)).$$

Proposition 3.2. The following are equivalent:

- (i) $\ell^1(S)$ has a module virtual diagonal;
- (ii) There is $M \in \ell^1(S) \otimes \ell^1(S)^{**}$ such that

$$\omega^{**}(M).s - s \in J_{\ell^1(S)}^{\perp \perp}, \quad M.s - s.M \in J_{\ell^1(S)}^{\perp \perp} \quad (s \in S).$$

Proof. $(i) \rightarrow (ii)$, we defined

$$N \in (\ell^1(S) \otimes (\ell^1(S)/J_{\ell^1(S)}))^{**} = (\ell^1(S \times S))^{**}/J_{\ell^1(S \times S)^{\perp \perp}}$$

by $N = M + J^{\perp \perp}$. Since $M.s - s.M \in J_{\ell^1(S \times S)}^{\perp \perp}$, clearly N.s = s.N and since $\omega^{**}(M) = \phi^{**}(M + J_{\ell^1(S)}^{\perp \perp}) = \phi^{**}(N)$, therefore $\phi^{**}(N).s - \hat{s} = \omega^{**}(M).s - s \in J_{\ell^1(S)}^{\perp \perp}$. $(ii) \to (i)$ Let $N \in (\ell^1(S) \otimes (\ell^1(S)/J_{\ell^1(S)}))^{**} = (l^1(S \times S)/J_l^1(S \times S))^{**}$

is a module virtual diagonal, choose $M \in (\ell^1(S) \otimes \ell^1(S))^{**}$ such that $N = M + J^{\perp \perp}$. For each $s \in S$,

$$(M.s - s.M) + J^{\perp \perp} = N.s - s.N = 0 \in \ell^1(S) \otimes \ell^1(S) / J^{\perp \perp}.$$

Therefore $M.s - s.M \in J^{\perp \perp}$, now we have

$$(\omega^{**}(M).s - s) + J^{\perp \perp} = \phi^{**}(M + J^{\perp \perp}).s - s$$
$$= \phi^{**}(N).s - s = 0 \in \ell^1(S)^{**}/J^1_\ell(S)^{\perp \perp}.$$

Remark 3.3. Consider the congruence \sim on S defined by $s \sim t$ if and only if there exist $e \in E_S$ such that se = te. It is clear that if $s \sim t$ and $f \in \ell^{\infty}(S)$, then $f(\delta_s) = f(\delta_t)$.

Now we are ready to state the main result in this section.

Theorem 3.4. [1, Theorem 3.1] Let S be an inverse semigroup. If S is amenable, then $\ell^1(S)$ is $\ell^1(E_S)$ -module amenable.

Proof. If μ is a right invariant mean on S and M is defined on $\ell^{\infty}(S \times S)$ by

$$M(f) = \int_{S} f(s^*, s) d\mu(s).$$

Then M is clearly a bounded linear functional and $M(1 \otimes 1) = \mu(1) = 1$. For each $s \in S$ and $f \in \ell^{\infty}(S \times S)$

$$\begin{split} s.M(f) &= M(f.s) = \int_{S} f(st^{*},t) d\mu(t) = \int_{S} f(s(ts)^{*},ts) d\mu(t) \\ &= \int_{S} f(ss^{*}t^{*},ts) d\mu(t) = \int_{S} f((tss^{*})^{*},(tss^{*})s) d\mu(t) \\ &= \int_{S} f((t^{*},ts) d\mu(t) = M(s.f) = m.s(f). \end{split}$$

Module amenability of Banach algebras and semigroup algebras 367

For each $s \in S$ and $f \in J_{\ell^1(S \times S)}^{\perp} \subseteq \ell^{\infty}(S \times S)$,

$$\begin{split} \omega^{**}(M).s(f) &= \omega^{**}(M)(f.s) = M(\omega^{*}(f.s)) \\ &= \int_{S} \omega^{*}(f.s)(t^{*},t)d\mu(t) = \int_{S} f.s(t^{*}t)d\mu(t) \\ &= \int_{S} f.s(t^{*}t)d\mu(t) = \int_{S} f(st^{*}t)d\mu(t) \\ &= f(s)\int_{S} d\mu(t) \qquad (\ f(se) = f(s) \ by \ Remark \ 3.3 \) \\ &= f(s). \end{split}$$

Therefore M gives rise to a module virtual diagonal for $\ell^1(S)$ and so $\ell^1(S)$ is module amenable.

References

- M. Amini, Module amenability for semigroup algebras, Semigroup fourm, 69, 302 312, (2004).
- [2] J. Duncan and I. Namioka, Amenebility of invers semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh sect. A, 80 A, 309 – 321, (1978).
- [3] B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math. Soc. 127, Springer Verlag, New York, (1972), American Mathematical Socity, Providens.
- [4] Z. A. Lykova, Structure of Banach algebras with trivial centeral cohomology, J. operator Theory, 28, 147 – 165, (1992).
- [5] Z. A. Lykova, Ordinary and central amenability of C^{*}-algebra, Russian Math. Surveys, 48(1), 175 – 177, (1993).
- [6] J. Phillips and I. Raeburn, Central cohomology of C^{*}-algebras, J. London Math. Soc. 28(2), 365 – 375, (1983).
- [7] V. Ronde, *Lectures on amenability*, Lecture Notes in Mathematics, vol. 1774. Springer, Berlin (2002).
- W. D. Munn, A class of irreducible matrix representations of an arbitrary invers semigroup, Proc. Glasgow Math. Assoc. 5, 41 – 48, (1961).

M. Khoshhal Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran. E-mail: khoshhal-ukh@yahoo.com

D. Ebrahimi Bagha Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran. Email: e-bagha@yahoo.com

O. Pourbahri Rahpeyma Department of Mathematics, Faculty of Science, Chalous Branch, Islamic Azad University, Chalous, Iran. Email: omidpourbahri@iauc.ac.ir