Honam Mathematical J. 41 (2019), No. 2, pp. 357-368
https://doi.org/10.5831/HMJ.2019.41.2.357

MODULE AMENABILITY OF BANACH ALGEBRAS
AND SEMIGROUP ALGEBRAS

M. KHOSHHAL, D. EBRAHIMI BAGHA®,
AND O. POURBAHRI RAHPEYMA

Abstract. We define the concepts of the first and the second mod-
ule dual of a Banach space X. And also bring a new concept of mod-
ule amenability for a Banach algebra A. For inverse semigroup S,
we will give a new action for £!(S) as a Banach £'(Es)-module and
show that if S is amenable then £'(S) is £*(Es)-module amenable.

1. Introduction

The most important results in the theory of amenable groups is John-
son’s theorem [3]. The auther states that a locally compact topological
group G is amenable if and only if the Banach algebra L!(G) is amenable.
But this result is not true for inverse semigroups. Inverse semigroup S
is amenable if and only if the discrete group Gg is amenable, where
(g is the maximal group homomorphic image of S that is defined as
Gg = S/« for each congeruence relation -~ on S in [8]. For more de-
tails, about amenability for C*-algebras and Banach algebras, one can
refer to be refrences [4], [5], [6] and [7].

The concept of module amenability for a class of Banach algebras
that are modules over another Banach algebra has been introduced by
Amini in [1]. He considered J as the closed ideal of A generated by
{a.(ab) — (ab).a} for a,b € A and o € 2. For an inverse semigroup
S along with the set of idempotents Eg, ¢}(S) as ¢'(Eg)-module with
the right multiplication and left multiplication is trivial actions, that is
Je.0s = 05, 05.0¢ = 0se = 05 * 0, (s € S,e € Ey), is module amenable if
and only if S is amenable [1].
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In section two, we introduce a closed submodule Jx* of X* for Ba-
nach A-2(-module X, afther that, the new concepts of module amenabil-
ity, module virtual diagonal and module approximate diagonal for a Ba-
nach algebra A, are given. Finally we show that the Banach algebra A
is module amenable if and only if A has a module virtual diagonal.

We will give a new definition of Banach ¢!(Eg)-module for £!(S) with
no trivial left action. In fact, we will consider the semigroup algebra
(Y(S) as £*(Eg)-module with the following as the right module action
and the left multiplication

Oc.05 = Ogrg = Ogx * 05, 05.0¢ = 0ge = Og * e, (s € S,e€ Eg).

With respect to the above definition, we will show that if inverse semi-
group S is amenable then, semigroup algebra £!(.S) is module amenable.

2. Main results

Let A and 2 be Banach algebras and let A be a Banach 2f-module
such that

(c.a)b = a.(ab) , (ab).a = a(b.r) (a,be A, € ).
If Y is Banach A-module and Banach 2-module with compatible actions,
such that
a.(ay) = (aa)y, (ay).a=a(y.a) (a€ AyeY,aec),

and with similar operations for right actions. Then Y is called an A-2I-
module.
If moreover,
.y =y.« (aed,yeY),
then Y is called a commutative A-2-module.

If Y is a ( commutative) Banach A-2-module so is Y*, with the
following actions:

(afy)=(fya),  (fa,y)=(f )
(a.fy)=(fya),  (fay=(fay) (@eAyeY ac feY)
Let Z and Y be A-2-modules, and ¢ : Z — Y satisfies the following
conditions:
Plaz) =a.g(z), ¢(za)=¢(z).
d(a.z) = a.¢(z), d(z.a) = ¢(z).a (a€e Ajze Z,ac).

Then ¢ is called an module bihomomorphism.
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Let Y be a commutative Banach A-2-module, then the projective
tensor product AQY is a A-A-module with the following actions:

a.b®y)=(ab)®@y, (bRyY).a=>b® (y.a)
a.b®y) =(ab)®y, bRY).a=b0x(y.a) (a,beAycY, ac).
Now, define 7x : A®X — X by
mx(a®x)=ax (ae AxeX).

It is clear that wx is a A-2A-module bihomomorphism.

Let Ix be the closed A-2A-submodule of the projective tensor product
A®X generated by

{(aa) @z —a® (az):ac A,ae Uz e X}
Let Jx be the closed submodule of X generated by 7(Ix), that is
Jx = (rx(Ix)).

In particular case, when X = A, J 4 is the closed ideal in A* generated
by {(a.c)b — a(a.b)} for a,b € A, o € 2.

Definition 2.1. The closed A-2-module Jx* of X* and ijl of
X** are called respectively the first and the second module dual of X.

In the case that A be a commutative 2-module, then Jx+ = X* and
JEo=xm

Remark 2.2. Since (A/J4)* ~ J4*, we have

(1) (fra+Ja)=(f,a) (a€A),

when f € Jut is the corresponding element f € (A/J4)*. Since
(A)JA)* ~ A/ J g, we have

2) (F.Hy=(Ff)  (f=fedah),

where F + J4++ € A**/JAJ‘J‘ is the corresponding element to F €
(A/Ja)™

Note that (A/Ja)* is an A-module, where the actions A on (A/J4)*
are defined by:

(3)  (fab+Ja)=(f.ab+Ja), (a.f,b+Ja) = (f ba+ Ja),
for all a,b € A and f € (A/J4)*.

Therefore the second module dual of X is a closed submodule of
X**/JXJ'L.
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Definition 2.3. Let A and 2 be two Banach algebras and X be a
Banach A-2l-module. A bounded linear map D : A — X is a module
derivation if D satisfies the following relations:

D(ab) = D(a).b+ a.D(b)
D(a.a) = a.D(a), D(a.c) = D(a).«x (a,be A,a ).

Lemma 2.4. Let X* be a commutative Banach A-A-module and
D : A — X* be a module derivation, then D(A) C Jx= .

Proof. For each a,b € A,a € A and © € X, we have (a.a).x —
a.(a.x) € Jx. Hence
(D(b), (v.a).x — a.(a.x)) = (D(b).(a.a) — (D(b).a).cc,x) = 0.
O
Definition 2.5. A Banach algebra A is called module amenable (as
an 2A- module) if for every Banach A-A-module X* with commutative
Jx7 (as an A- module) and a.(ovy) = (a.0).y (a € A,a €A,y € Jxb),

for each module derivation D : A — Jx = there exist Yy € Jx T such that
D(a)=ay—y.a (a€A.

Proposition 2.6. Let A be a amenable Banach algebra, then A is
module amenable.
Proof. Since Jx* = (X/Jx)*, then the proof is trivial. O

Proposition 2.7. Let A be a module amenable Banach algebra and
let A/J4 be a commutative Banach 2-module, then A has an approxi-
mate identity.

Proof. Put X = Ju*, then X is a Banach A-module with modules
actions a.f = 0 and f.a, with is a canonical action for eacha € A, f € X.
Since A/J 4 is commutative 2-module, for each a,b € A,a € A and
f e Jat, we have

((a.q).f —a.(a.f), > —(a.(a.f),b)
—(a.(f.@),b)
= —(f,a.(b.a)) = —(f,a.(b.a) — b.(c.a)) = 0.
So J;,. =0and ATt ~ JJLAL. Define

0 A= At~ JjAL

ola) = a+ Jutt ~a.
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It is easy to check that ¢ is module derivation. Therefore there exists
some F' € JjAL such that ¢(a) = a.F — F.a = a.F for all a € A. Take

a norm bounded net {aq} in A such that w*-lim p(a,) = F, then we
have wlimaa, = a. By classical method, the Banach algebra A has
a bounded right approximate identity. Similarly, A has a bounded left
approximate identity. ]

Let ma/5, = 7 : ARA/J4 — A/J4 defined by m(a @ b+ Ja) :=
ab + J4. Since 7 is a module homomorphism, then the second dual
7% (A®A/ ) — A/ J 4t is module homomorphism.

Definition 2.8. A bounded net {my}, in A®.A/J 4 is called module
approximate diagonal if
(i) {m(mq)} is a bounded approximate identity for the Banach algebra
A/ 4.
(#1) mg.a —a.mg — 0 (a € A).
Also M € (A®A/J4)** is called module virtual diagonal if
(i) M.a =a.M
(ii) (7**M).a = a4 J4 -+ (a e A).
Proposition 2.9. For a Banach algebra A the following are equiva-
lent:
(i) A has a module approximate diagonal.
(74) A has a module virtual diagonal.

Proof. (i) = (ii) Let {mq} be module approximate diagonal for A, so
{m(mq)} is bounded approximate identity for Banach algebra .A/.J 4 and
Mmq.a—a.cc — 0 for each a € A. Since {m,} is a bounded net in A®.A/J 4
and ||ma| = ||al], then {r,} is a bounded net in (ARA/J4)**.

Let M € (A®A/J4)** be a w*-accumulation point of {m,}, There-
fore

lim(ma, f) = (M.1)  (f € (ADA/T4)")
Then for each a € A,

lign(ma.a, f)= li£n<ma,a.f> = (M,a.f) = (M.a, f).

Hence w*-lim, my.a = M.a and similarly w*-lim,, a.m, = a.M, there-
fore w*-limy (Mq.a —a.my) = M.a—a.M. Since {m,,} is module approx-
imate diagonal, then lim, (mq.a — a.mgy) = 0, therefore M.a = a.M.

In order to show that (7**M).a = a + Jat, for all a € A we have

~

w'-lim 7™ (1he) = 7 (M) = w*-lim 7 (mgy) = 7 (M)
(67 «

= w'-lim7(my).(a + J4) = 77(M).a.
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Also {m(mq)} is approximate identity for A/.J 4, hence

lim 7 (me).(a + J4) = a + J4 = lim7(ma).(a + J4) = a + 41t

Therefore w*-limg, 7(my).(a + J4) = a + Ja4=+, and so M is module
virtual diagonal.

(ii) — (i) Let M € (A®A/J4)*™ be a module virtual diagonal for A.
We use Goldstein’s theorem to obtain a bounded net {m,} in ARA/J4
such that w*-lim, 7, = M. For each a € A and f € (A®RA/J4)*,

lim(my.a — a.Mq, f) = 0= lim(mgy.a = a.mq, f) =0
= lim(f,mg.a —a.mqy) =0
= w—lim(mg.a —a.mqy) =0

= lim(mq.a — a.my) = 0.
(0%
Since w*-limy 7(1ha).a = 7 (M).a, we have w™-limq m(ma).a = a +
Jatt. For each f e (A/J4)",

lim(m(ma).a, f) = (a+ J4*5, f).

«

Therefore

lim(r(ma), a.f) = lim{a. f, w(ma))

= 1igl<f, 7(me).a)

= lién<f,7r(ma)(a+ J4))
= <&+JALJ—>JZ> = <daf> = <f7a> = <f7a+JA>'

So im(f, 7(ma).(a+J4)) = (f,a+ J4). Hence w-lim7(my).(a+ J4) =
a—+ Jy.

By a classical method, the Banach algebra A has a bounded right
approximate identity then, limw(mg).(a + J4) = a + J 4. O

Theorem 2.10. Let A/J4 be a commutative A-module. If A is a
module amenable Banach algebra then A has a module virtual diagonal.

Proof. By Proposition (2.7), A has a bounded approximate identity
{mq}. Therefore {mq,&(mq + J4)} is bounded net in (A®.A/J4)** and
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there exits E € (A®.A/J4)** such that for each a € A,
m™*(0g(a)) =7 (a.E — E.a) =
™ (w*- lién(ama ® (ma + J4) — Mo @ (Maa + J4)))
= w- ligl(ﬂ(ama ® (Mo + J4) — Ma @ (Maa + J4))

= w*-lim((ama? — ma2a) + J4) = 0.
6

Then 0g(a) C kern™ = (kerm)* for each a € A. Let X = (kerm)*, by
lemma 2.4, 0 (A) C Jx T and hence 6p : A — Jx T is inner. Therefore

three exists some V € Jxt < kern™, such that 6p = dy. We put
F=F-V,so0

aE—-Fa=aV-Va=a(E-V)=(E-V)a=aF=Fa (acA).
Hence for all f € (A/J4)*
(7 (F).a, f) = (7*(F),a.f) = (" (E = V), a.f)
= (**(E),a.f)
T (Mo ® (ma + J4)), a.f)

3

= lim(
= lim{m(mq ® (ma + J4)), a.f)
- 116131<m +J4,a.f)
= 11£n<a fima® + JA)
(f

li

Q%

Mo’ a+ Ja)

= (f.a) = (@, f) = {a+Ja f),
therefore 7 (F).a = a + Ja*+. O

Theorem 2.11. If A has a module approximate diagonal, then A is
a module amenable.

Proof. Let {m4} be a module approximate diagonal for A®RA/J 4,
then {m(mq)}a is a left bounded approximate identity for A/J4. We

show that for a Banach A-2-module X with commutative Jx =,

HY(A,J&) =0.

We may assume that X is pseudo-unital. Let D : A — Jx* be a module
derivation and

mo = Ty af @b+ T that 2% a5 < o0, then T2, . Db
is a bounded net in Jyx %> which has a w*-accumulation point ¢ € J+ X
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such that, w*-lim >_>°
Therefore

a%. Db = p = ap = w*-lim(a Y 07, a2.DbY).

n=1n" n=1 4n-
(x,a.p) —hm Zaa .Dby)

= lim(z, Zag.p(bg a

zlim Za b5 D(a —}—Za .D(by)a

= lim Zaaba —I—hm x,ia D(b
n=1

= (l‘aD( )> <l’,§0. >a
for x € Jx. Hence

(x, Da) = (x,p.a) — (z,a.¢) = (x,p.a — a.p) = D = ad,.

3. Semigroup algebra

In this section, we show that for the inverse semigroup S with a set
of idempotents Eg, if inverse semigroup S is amenable, then ¢!(S) is
¢*(Es)-module amenable.

Recall that a discrete semigroup S is called inverse semigroup if for
each s € S there is a unique element s* € S such that s*ss* = s and
ss*s = s*. An element e € S is called idempotent if e = e* = 2. The
set of idempotent elements in semigroup S is denote by FEg.

It is easy to see that £1(.9) is a Banach algebra and a Banach ¢!(Eg)-
module with compatible right and left actions as

5005 = g, 050c = 0se (e € Eg,5 € S).

These actions ¢(S) makes a Banach ¢!(Eg)-module. Therefore Jp(s) is
the closed submodule of ¢}(S) generated by

{5set Saper - steSeeEs}

in [1], the trivial left action has been considered, but we did not
consider this limitation on left action ¢}(Eg) on ¢(S).
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Lemma 3.1. With the above notions,
€(8) @ £(S)/Jor(sy = £1(S x 8)/ T (sxs)-
Proof. Let e € Eg, consider the map v : £1(S) — (S x S) by
Y(0z) = Oz (z €9).
It is clear that ¢ is one-to-one linear map and so Jyi(g) is embedding in

Joi(sxs)- Now consider the canonical embedding T' : £'(S) x £'(S) —
Y8 x S) by

T(f,9)(x,y) = f(@)gly)  (f.g €l (S),z,y€S9).

Trivially that 7 is a bounded bilinear mapping, so Ty : £!(s) x
(gl(S)/ng(S)) — €1(S X S)/Jfl(SXS) defined by

Ti(f, 9+ Jos) = T(f,9) + Jn(sxs) (f.g € £1(9)).
Therefore it can be extended to a bounded linear mapping T» : £1(s) ®
() _, LU5X5) Gofined by

Jo1 (s Je1(sx )
n n
T (fi®gi+Jns) = > Tilfir gi + Jos))-
i=1 i=1
Therefore T5 is an isometry. O

Consider w : £1(S) x £1(S) — ¢1(S) defined by w(f x g) = f * g, for
each f,g € £*(S). Then w and w** are ¢!(Eg)-module homomorphism.
Also if ¢ : £1(S) ® (£1(S)/Jp(sy) — £1(S)/Jp(s) be defined by ¢(f x
9+ Jos)) == fxg+ Jpns), so we have

WH(M) = ¢™ (M + Jng)™h) (M e '(S)®0(3)).
Proposition 3.2. The following are equivalent:
(i) £1(S) has a module virtual diagonal;
(ii) There is M € ¢1(S) ® £*(S)** such that
w*(M).s—s € JZ1(S)LJ‘, M.s—s.M € J@(s)lL (s €09).
Proof. (i) — (ii), we defined
N € (€1(8) @ (£1(S)/ Juns)))™ = (£(S % )™ /g (sxs5)++
by N = M+J+t. Since M.s—s.M € ng(SXS)LL, clearly N.s = s.N and
since w** (M) = ¢** (M + JMS)LL) = ¢**(N), therefore ¢**(N).s — § =
w**(M).s —Ssc ng(S)J‘J'.
(ii) = (i) Let N € ((1(S)@(C1(S)/Jn(s)))" = (11(S x §)/J}1(S x )™
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is a module virtual diagonal, choose M € (¢£1(S) ® £}(S))** such that
N =M + J*-. For each s € S,

(M.s —s.M)+J* =Ns—s.N=0e(S)®S)/J* .
Therefore M.s — s.M € J++, now we have

(W™ (M).s —s) + JH =™ (M + J )s —s
= ¢™(N).s —s =0 £2(9)"/J}HS)*

O]

Remark 3.3. Consider the congruence ~ on S defined by s ~ t if
and only if there exist e € Fg such that se = te. It is clear that if s ~t
and f € £°°(95), then f(ds) = f(d¢).

Now we are ready to state the main result in this section.

Theorem 3.4. [1, Theorem 3.1] Let S be an inverse semigroup. If
S is amenable, then ¢*(S) is ¢'(Eg)-module amenable.

Proof. If u is a right invariant mean on S and M is defined on £°°(S x

S) by
MﬁzLﬂﬁﬁ@@

Then M is clearly a bounded linear functional and M(1®1) = p(1) = 1.
For each s € S and f € £>°(S x S)

s.M(f)=M(f.s) = /f (st*,t)du(t) /f (ts)*,ts)du(t)
/f ss*t* ts)du(t) /f ((tss™)*, (tss™)s)du(t)
= [ 1 ts)dnte) = M) = ms().
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For each s € S and f € ng(SX‘g)L C (S x S),

W (M).5(f) = W (M)(f.5) = M(w"(f-5)

= [ ey /fst* )yt
/fsttdu /fsttdu)

= f(s) /Sdu(t) ( f(se)= f(s) by Remark 3.3)
= f(s).

Therefore M gives rise to a module virtual diagonal for ¢}(S) and so
¢1(9) is module amenable. O
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