
Honam Mathematical J. 41 (2019), No. 2, pp. 357–368
https://doi.org/10.5831/HMJ.2019.41.2.357

MODULE AMENABILITY OF BANACH ALGEBRAS

AND SEMIGROUP ALGEBRAS

M. Khoshhal, D. Ebrahimi Bagha∗,
and O. Pourbahri Rahpeyma

Abstract. We define the concepts of the first and the second mod-
ule dual of a Banach space X. And also bring a new concept of mod-
ule amenability for a Banach algebra A. For inverse semigroup S,
we will give a new action for `1(S) as a Banach `1(ES)-module and
show that if S is amenable then `1(S) is `1(ES)-module amenable.

1. Introduction

The most important results in the theory of amenable groups is John-
son’s theorem [3]. The auther states that a locally compact topological
groupG is amenable if and only if the Banach algebra L1(G) is amenable.
But this result is not true for inverse semigroups. Inverse semigroup S
is amenable if and only if the discrete group GS is amenable, where
GS is the maximal group homomorphic image of S that is defined as
GS := S/v for each congeruence relation v on S in [8]. For more de-
tails, about amenability for C∗-algebras and Banach algebras, one can
refer to be refrences [4], [5], [6] and [7].

The concept of module amenability for a class of Banach algebras
that are modules over another Banach algebra has been introduced by
Amini in [1]. He considered J as the closed ideal of A generated by
{α.(ab) − (ab).α} for a, b ∈ A and α ∈ A. For an inverse semigroup
S along with the set of idempotents ES , `1(S) as `1(ES)-module with
the right multiplication and left multiplication is trivial actions, that is
δe.δs = δs, δs.δe = δse = δs ∗ δe, (s ∈ S, e ∈ Es), is module amenable if
and only if S is amenable [1].
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In section two, we introduce a closed submodule JX
⊥ of X∗ for Ba-

nach A-A-module X, afther that, the new concepts of module amenabil-
ity, module virtual diagonal and module approximate diagonal for a Ba-
nach algebra A, are given. Finally we show that the Banach algebra A
is module amenable if and only if A has a module virtual diagonal.

We will give a new definition of Banach `1(ES)-module for `1(S) with
no trivial left action. In fact, we will consider the semigroup algebra
`1(S) as `1(ES)-module with the following as the right module action
and the left multiplication

δe.δs = δs∗s = δs∗ ∗ δs, δs.δe = δse = δs ∗ δe, (s ∈ S, e ∈ ES).

With respect to the above definition, we will show that if inverse semi-
group S is amenable then, semigroup algebra `1(S) is module amenable.

2. Main results

Let A and A be Banach algebras and let A be a Banach A-module
such that

(α.a)b = α.(ab) , (ab).α = a(b.α) (a, b ∈ A, α ∈ A).

If Y is BanachA-module and Banach A-module with compatible actions,
such that

α.(a.y) = (α.a).y, (a.y).α = a.(y.α) (a ∈ A, y ∈ Y, α ∈ A),

and with similar operations for right actions. Then Y is called an A-A-
module.
If moreover,

α.y = y.α (α ∈ A, y ∈ Y ),

then Y is called a commutative A-A-module.

If Y is a ( commutative) Banach A-A-module so is Y ∗, with the
following actions:

〈α.f, y〉=〈f, y.α〉, 〈f.α, y〉=〈f, α.y〉
〈a.f, y〉=〈f, y.a〉, 〈f.a, y〉=〈f, a.y〉 (a ∈ A, y ∈ Y, α ∈ A, f ∈ Y ∗).

Let Z and Y be A-A-modules, and φ : Z → Y satisfies the following
conditions:

φ(α.z) = α.φ(z), φ(z.α) = φ(z).α

φ(a.z) = a.φ(z), φ(z.a) = φ(z).a (a ∈ A, z ∈ Z,α ∈ A).

Then φ is called an module bihomomorphism.
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Let Y be a commutative Banach A-A-module, then the projective
tensor product A⊗̂Y is a A-A-module with the following actions:

a.(b⊗ y) = (ab)⊗ y, (b⊗ y).a = b⊗ (y.a)

α.(b⊗ y) = (α.b)⊗ y, (b⊗ y).α = b⊗ (y.α) (a, b ∈ A, y ∈ Y, α ∈ A).

Now, define πX : A⊗̂X → X by

πX(a⊗ x) = a.x (a ∈ A, x ∈ X).

It is clear that πX is a A-A-module bihomomorphism.

Let IX be the closed A-A-submodule of the projective tensor product
A⊗̂X generated by

{(a.α)⊗ x− a⊗ (α.x) : a ∈ A, α ∈ A, x ∈ X}.
Let JX be the closed submodule of X generated by π(IX), that is

JX = 〈πX(IX)〉.
In particular case, whenX = A, JA is the closed ideal inA∗ generated

by {(a.α)b− a(α.b)} for a, b ∈ A, α ∈ A.

Definition 2.1. The closed A-A-module JX
⊥ of X∗ and J⊥

JX
⊥ of

X∗∗ are called respectively the first and the second module dual of X.

In the case that A be a commutative A-module, then JX
⊥ = X∗ and

J⊥
JX
⊥ = X∗∗.

Remark 2.2. Since (A/JA)∗ ' JA⊥, we have

(1) 〈f̃ , a+ JA〉 = 〈f, a〉 (a ∈ A),

when f ∈ JA
⊥ is the corresponding element f̃ ∈ (A/JA)∗. Since

(A/JA)∗∗ ' A∗∗/JA⊥⊥, we have

(2) 〈F̃ , f̃〉 = 〈F, f〉 (f̃ ' f ∈ JA⊥),

where F + JA
⊥⊥ ∈ A∗∗/JA⊥⊥ is the corresponding element to F̃ ∈

(A/JA)∗∗.
Note that (A/JA)∗ is an A-module, where the actions A on (A/JA)∗

are defined by:

(3) 〈f̃ .a, b+ JA〉 = 〈f̃ , ab+ JA〉, 〈a.f̃ , b+ JA〉 = 〈f̃ , ba+ JA〉,

for all a, b ∈ A and f̃ ∈ (A/JA)∗.

Therefore the second module dual of X is a closed submodule of
X∗∗/JX

⊥⊥.
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Definition 2.3. Let A and A be two Banach algebras and X be a
Banach A-A-module. A bounded linear map D : A → X is a module
derivation if D satisfies the following relations:

D(ab) = D(a).b+ a.D(b)

D(α.a) = α.D(a), D(a.α) = D(a).α (a, b ∈ A, α ∈ A).

Lemma 2.4. Let X∗ be a commutative Banach A-A-module and
D : A → X∗ be a module derivation, then D(A) ⊆ JX⊥.

Proof. For each a, b ∈ A, α ∈ A and x ∈ X, we have (a.α).x −
a.(α.x) ∈ JX . Hence

〈D(b), (α.a).x− a.(α.x)〉 = 〈D(b).(α.a)− (D(b).a).α, x〉 = 0.

Definition 2.5. A Banach algebra A is called module amenable (as
an A- module) if for every Banach A-A-module X∗ with commutative
JX
⊥ (as an A- module) and a.(α.y) = (a.α).y (a ∈ A, α ∈ A, y ∈ JX⊥),

for each module derivation D : A → JX
⊥ there exist y ∈ JX⊥ such that

D(a) = a.y − y.a (a ∈ A).

Proposition 2.6. Let A be a amenable Banach algebra, then A is
module amenable.

Proof. Since JX
⊥ = (X/JX)∗, then the proof is trivial.

Proposition 2.7. Let A be a module amenable Banach algebra and
let A/JA be a commutative Banach A-module, then A has an approxi-
mate identity.

Proof. Put X = JA
⊥, then X is a Banach A-module with modules

actions a.f = 0 and f.a, with is a canonical action for each a ∈ A, f ∈ X.
Since A/JA is commutative A-module, for each a, b ∈ A, α ∈ A and
f ∈ JA⊥, we have

〈(a.α).f − a.(α.f), b〉 = −〈a.(α.f), b〉
= −〈a.(f.α), b〉
= −〈f, α.(b.a)〉 = −〈f, α.(b.a)− b.(α.a)〉 = 0.

So JJA⊥ = 0 and A∗∗/JA⊥⊥ ' J⊥JA⊥ . Define

ϕ : A → A∗∗/JA⊥⊥ ' J⊥JA⊥
ϕ(a) = â+ JA

⊥⊥ ' â.
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It is easy to check that ϕ is module derivation. Therefore there exists
some F ∈ J⊥

JA
⊥ such that ϕ(a) = a.F − F.a = a.F for all a ∈ A. Take

a norm bounded net {aα} in A such that w∗-limϕ(aα) = F , then we
have w-lim aaα = a. By classical method, the Banach algebra A has
a bounded right approximate identity. Similarly, A has a bounded left
approximate identity.

Let πA/JA = π : A⊗̂A/JA → A/JA defined by π(a ⊗ b + JA) :=
ab + JA. Since π is a module homomorphism, then the second dual
π∗∗ : (A⊗̂A/JA)∗∗ → A∗∗/JA⊥⊥ is module homomorphism.

Definition 2.8. A bounded net {mα}α in A⊗̂A/JA is called module
approximate diagonal if
(i) {π(mα)} is a bounded approximate identity for the Banach algebra
A/JA.
(ii) mα.a− a.mα → 0 (a ∈ A).
Also M ∈ (A⊗̂A/JA)∗∗ is called module virtual diagonal if
(i) M.a = a.M
(ii) (π∗∗M).a = â+ JA

⊥⊥ (a ∈ A).

Proposition 2.9. For a Banach algebra A the following are equiva-
lent:
(i) A has a module approximate diagonal.
(ii) A has a module virtual diagonal.

Proof. (i)⇒ (ii) Let {mα} be module approximate diagonal for A, so
{π(mα)} is bounded approximate identity for Banach algebra A/JA and
mα.a−a.α→ 0 for each a ∈ A. Since {mα} is a bounded net inA⊗̂A/JA
and ‖mα‖ = ‖m̂α‖, then {m̂α} is a bounded net in (A⊗̂A/JA)∗∗.

Let M ∈ (A⊗̂A/JA)∗∗ be a ω∗-accumulation point of {mα}, There-
fore

lim
α
〈mα, f〉 = 〈M,f〉 (f ∈ (A⊗̂A/JA)∗).

Then for each a ∈ A,

lim
α
〈m̂α.a, f〉 = lim

α
〈m̂α, a.f〉 = 〈M,a.f〉 = 〈M.a, f〉.

Hence w∗-limαmα.a = M.a and similarly w∗-limα a.mα = a.M , there-
fore w∗-limα(m̂α.a−a.m̂α) = M.a−a.M. Since {mα} is module approx-
imate diagonal, then limα(mα.a− a.mα) = 0, therefore M.a = a.M.

In order to show that (π∗∗M).a = â+ JA
⊥⊥, for all a ∈ A we have

w∗- lim
α
π∗∗(m̂α) = π∗∗(M)⇒ w∗- lim

α

ˆπ(mα) = π∗∗(M)

⇒ w∗- lim
α
π(mα).(a+ JA) = π∗∗(M).a.
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Also {π(mα)} is approximate identity for A/JA, hence

lim
α
π(mα).(a+ JA) = a+ JA ⇒ lim

α
π(mα).(a+ JA) = â+ JA

⊥⊥.

Therefore w∗-limα π(mα).(a + JA) = â + JA
⊥⊥, and so M is module

virtual diagonal.
(ii) → (i) Let M ∈ (A⊗̂A/JA)∗∗ be a module virtual diagonal for A.
We use Goldstein’s theorem to obtain a bounded net {mα} in A⊗̂A/JA
such that w∗-limα m̂α = M. For each a ∈ A and f ∈ (A⊗̂A/JA)∗,

lim
α
〈m̂α.a− a.m̂α, f〉 = 0⇒ lim

α
〈 ˆmα.a− a.mα, f〉 = 0

⇒ lim
α
〈f,mα.a− a.mα〉 = 0

⇒ w− lim
α

(mα.a− a.mα) = 0

⇒ lim
α

(mα.a− a.mα) = 0.

Since w∗-limα π(m̂α).a = π∗∗(M).a, we have w∗-limα π(mα).a = â +

JA
⊥⊥. For each f̃ ∈ (A/JA)∗,

lim
α
〈 ˆπ(mα).a, f̃〉 = 〈â+ JA

⊥⊥, f̃〉.

Therefore

lim
α
〈 ˆπ(mα), a.f̃〉 = lim

α
〈a.f̃ , π(mα)〉

= lim
α
〈f̃ , π(mα).a〉

= lim
α
〈f̃ , π(mα)(a+ JA)〉

= 〈â+ JA
⊥⊥, f̃〉 = 〈â, f〉 = 〈f, a〉 = 〈f̃ , a+ JA〉.

So lim〈f̃ , π(mα).(a+JA)〉 = 〈f̃ , a+JA〉. Hence w-limπ(mα).(a+JA) =
a+ JA.

By a classical method, the Banach algebra A has a bounded right
approximate identity then, limπ(mα).(a+ JA) = a+ JA.

Theorem 2.10. Let A/JA be a commutative A-module. If A is a
module amenable Banach algebra then A has a module virtual diagonal.

Proof. By Proposition (2.7), A has a bounded approximate identity
{mα}. Therefore {mα⊗̂(mα + JA)} is bounded net in (A⊗̂A/JA)∗∗ and
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there exits E ∈ (A⊗̂A/JA)∗∗ such that for each a ∈ A,

π∗∗(δE(a)) = π∗∗(a.E − E.a) =

π∗∗(w∗- lim
α

(amα ⊗ (mα + JA)−mα ⊗ (mαa+ JA)))

= w∗- lim
α

(π(amα ⊗ (mα + JA)−mα ⊗ (mαa+ JA))

= w∗- lim
α

((amα
2 −mα

2a) + JA) = 0.

Then δE(a) ⊆ kerπ∗∗ = (kerπ)∗∗ for each a ∈ A. Let X = (kerπ)∗, by
lemma 2.4, δE(A) ⊆ JX

⊥ and hence δE : A → JX
⊥ is inner. Therefore

three exists some V ∈ JX
⊥ ≤ kerπ∗∗, such that δE = δV . We put

F = E − V , so

a.E−E.a = a.V −V.a⇒ a.(E−V ) = (E−V ).a⇒ a.F = F.a (a ∈ A).

Hence for all f̃ ∈ (A/JA)∗

〈π∗∗(F ).a, f̃〉 = 〈π∗∗(F ), a.f̃〉 = 〈π∗∗(E − V ), a.f̃〉

= 〈π∗∗(E), a.f̃〉

= lim
α
〈π∗∗(mα ⊗ (mα + JA)), a.f̃〉

= lim
α
〈π(mα ⊗ (mα + JA)), a.f̃〉

= lim
α
〈mα

2 + JA, a.f̃〉

= lim
α
〈a.f̃ ,mα

2 + JA〉

= lim
α
〈f̃ ,mα

2.a+ JA〉

= 〈f, a〉 = 〈â, f〉 = 〈â+ JA
⊥⊥, f̃〉,

therefore π∗∗(F ).a = â+ JA
⊥⊥.

Theorem 2.11. If A has a module approximate diagonal, then A is
a module amenable.

Proof. Let {mα}α be a module approximate diagonal for A⊗̂A/JA,
then {π(mα)}α is a left bounded approximate identity for A/JA. We
show that for a Banach A-A-module X with commutative JX

⊥,

H1(A, J⊥X) = 0.

We may assume that X is pseudo-unital. Let D : A → JX
⊥ be a module

derivation and
mα =

∑∞
n=1 a

α
n⊗ bαn +JA that

∑∞
n=1 ‖aαn‖‖bαn‖ <∞, then

∑∞
n=1 a

α
n.Db

α
n

is a bounded net in J⊥X , which has a w∗-accumulation point ϕ ∈ J⊥X
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such that, w∗-lim
∑∞

n=1 a
α
n.Db

α
n = ϕ ⇒ aϕ = w∗-lim(a

∑∞
n=1 a

α
n.Db

α
n).

Therefore

〈x, a.ϕ〉 = lim
α
〈x,

∞∑
n=1

a.aαn.Db
α
n〉

= lim
α
〈x,

∞∑
n=1

aαn.D(bαn.a)〉

= lim
α
〈x,

∞∑
n=1

aαn.b
α
nD(a) +

∞∑
n=1

aαn.D(bαn)a〉

= lim
α
〈x,

∞∑
n=1

aαnb
α
n.D(a)〉+ lim

α
〈x,

∞∑
n=1

aαnD(bαn).a〉

= 〈x,D(a)〉+ 〈x, ϕ.a〉,

for x ∈ JX . Hence

〈x,Da〉 = 〈x, ϕ.a〉 − 〈x, a.ϕ〉 = 〈x, ϕ.a− a.ϕ〉 =⇒ D = adϕ.

3. Semigroup algebra

In this section, we show that for the inverse semigroup S with a set
of idempotents ES , if inverse semigroup S is amenable, then `1(S) is
`1(ES)-module amenable.

Recall that a discrete semigroup S is called inverse semigroup if for
each s ∈ S there is a unique element s∗ ∈ S such that s∗ss∗ = s and
ss∗s = s∗. An element e ∈ S is called idempotent if e = e∗ = e2. The
set of idempotent elements in semigroup S is denote by ES .

It is easy to see that `1(S) is a Banach algebra and a Banach `1(ES)-
module with compatible right and left actions as

δe.δs = δs∗s, δsδe = δse (e ∈ ES , s ∈ S).

These actions `1(S) makes a Banach `1(ES)-module. Therefore J`1(S) is

the closed submodule of `1(S) generated by{
δset − δst∗t : s, t ∈ S, e ∈ ES

}
.

in [1], the trivial left action has been considered, but we did not
consider this limitation on left action `1(ES) on `1(S).
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Lemma 3.1. With the above notions,

`1(S)⊗ `1(S)/J`1(S) ' `1(S × S)/J`1(S×S).

Proof. Let e ∈ ES , consider the map ψ : `1(S)→ `1(S × S) by

ψ(δx) = δ(x,e) (x ∈ S).

It is clear that ψ is one-to-one linear map and so J`1(S) is embedding in

J`1(S×S). Now consider the canonical embedding T : `1(S) × `1(S) →
`1(S × S) by

T (f, g)(x, y) = f(x)g(y) (f, g ∈ `1(S), x, y ∈ S).

Trivially that T is a bounded bilinear mapping, so T1 : `1(s) ×
(`1(s)/J`1(S))→ `1(S × S)/J`1(S×S) defined by

T1(f, g + J`1(S)) = T (f, g) + J`1(S×S) (f, g ∈ `1(S)).

Therefore it can be extended to a bounded linear mapping T2 : `1(s)⊗
`1(s)
J`1(S)

→ `1(S×S)
J`1(S×S)

defined by

T2(
n∑
i=1

(fi ⊗ gi + J`1(S))) =
n∑
i=1

T1(fi, gi + J`1(S)).

Therefore T2 is an isometry.

Consider ω : `1(S)× `1(S) −→ `1(S) defined by ω(f × g) = f ∗ g, for
each f, g ∈ `1(S). Then ω and ω∗∗ are `1(ES)-module homomorphism.
Also if φ : `1(S) ⊗ (`1(S)/J`1(S)) −→ `1(S)/J`1(S) be defined by φ(f ×
g + J`1(S)) := f ∗ g + J`1(S), so we have

ω∗∗(M) = φ∗∗(M + J`1(S)
⊥⊥) (M ∈ `1(S)⊗ `1(S)).

Proposition 3.2. The following are equivalent:
(i) `1(S) has a module virtual diagonal;
(ii) There is M ∈ `1(S)⊗ `1(S)∗∗ such that

ω∗∗(M).s− s ∈ J`1(S)⊥⊥, M.s− s.M ∈ J`1(S)⊥⊥ (s ∈ S).

Proof. (i)→ (ii), we defined

N ∈ (`1(S)⊗ (`1(S)/J`1(S)))
∗∗ = (`1(S × S))∗∗/J`1(S×S)⊥⊥

by N = M+J⊥⊥. Since M.s−s.M ∈ J`1(S×S)⊥⊥, clearly N.s = s.N and

since ω∗∗(M) = φ∗∗(M + J`1(S)
⊥⊥) = φ∗∗(N), therefore φ∗∗(N).s− ŝ =

ω∗∗(M).s− s ∈ J`1(S)⊥⊥.

(ii)→ (i) Let N ∈
(
`1(S)⊗(`1(S)/J`1(S))

)∗∗
=
(
l1(S × S)/J1

l (S × S)
)∗∗
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is a module virtual diagonal, choose M ∈ (`1(S) ⊗ `1(S))∗∗ such that
N = M + J⊥⊥. For each s ∈ S,

(M.s− s.M) + J⊥⊥ = N.s− s.N = 0 ∈ `1(S)⊗ `1(S)/J⊥⊥.

Therefore M.s− s.M ∈ J⊥⊥, now we have

(
ω∗∗(M).s− s

)
+ J⊥⊥ = φ∗∗(M + J⊥⊥).s− s

= φ∗∗(N).s− s = 0 ∈ `1(S)∗∗/J1
` (S)⊥⊥.

Remark 3.3. Consider the congruence ∼ on S defined by s ∼ t if
and only if there exist e ∈ ES such that se = te. It is clear that if s ∼ t
and f ∈ `∞(S), then f(δs) = f(δt).

Now we are ready to state the main result in this section.

Theorem 3.4. [1, Theorem 3.1] Let S be an inverse semigroup. If
S is amenable, then `1(S) is `1(ES)-module amenable.

Proof. If µ is a right invariant mean on S and M is defined on `∞(S×
S) by

M(f) =

∫
S
f(s∗, s)dµ(s).

Then M is clearly a bounded linear functional and M(1⊗1) = µ(1) = 1.
For each s ∈ S and f ∈ `∞(S × S)

s.M(f) = M(f.s) =

∫
S
f(st∗, t)dµ(t) =

∫
S
f(s(ts)∗, ts)dµ(t)

=

∫
S
f(ss∗t∗, ts)dµ(t) =

∫
S
f((tss∗)∗, (tss∗)s)dµ(t)

=

∫
S
f((t∗, ts)dµ(t) = M(s.f) = m.s(f).
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For each s ∈ S and f ∈ J`1(S×S)⊥ ⊆ `∞(S × S),

ω∗∗(M).s(f) = ω∗∗(M)(f.s) = M(ω∗(f.s))

=

∫
S
ω∗(f.s)(t∗, t)dµ(t) =

∫
S
f.s(t∗t)dµ(t)

=

∫
S
f.s(t∗t)dµ(t) =

∫
S
f(st∗t)dµ(t)

= f(s)

∫
S
dµ(t) ( f(se)= f(s) by Remark 3.3 )

= f(s).

Therefore M gives rise to a module virtual diagonal for `1(S) and so
`1(S) is module amenable.
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