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SOLUTIONS AND STABILITY OF TRIGONOMETRIC

FUNCTIONAL EQUATIONS ON AN AMENABLE GROUP

WITH AN INVOLUTIVE AUTOMORPHISM

Omar Ajebbar and Elhoucien Elqorachi

Abstract. Given σ : G → G an involutive automorphism of a semi-
group G, we study the solutions and stability of the following functional

equations

f(xσ(y)) = f(x)g(y) + g(x)f(y), x, y ∈ G,
f(xσ(y)) = f(x)f(y)− g(x)g(y), x, y ∈ G

and
f(xσ(y)) = f(x)g(y)− g(x)f(y), x, y ∈ G,

from the theory of trigonometric functional equations.

(1) We determine the solutions when G is a semigroup generated by its

squares.
(2) We obtain the stability results for these equations, when G is an

amenable group.

1. Introduction

The stability problem of functional equations originated from a question of
Ulam [25] concerning the stability of group homomorphims. Hyers [13] gave
a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’s Theorem was generalized by Aoki [4] for additive mappings and by Ras-
sias [20] for linear mappings by considering an unbounded Cauchy difference.
The stability problem of several functional equations has been extensively in-
vestigated by a number of authors. An account on the further progress and
developments in this field can be found in [11], [14], [15] and [18]. We refer also
to [16] and [17]. In this paper we investigate the stability of the trigonometric
functional equations

(1.1) f(xσ(y)) = f(x)g(y) + g(x)f(y), x, y ∈ G,

(1.2) f(xσ(y)) = f(x)f(y)− g(x)g(y), x, y ∈ G,
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and

(1.3) f(xσ(y)) = f(x)g(y)− g(x)f(y), x, y ∈ G,
where G is an amenable group, σ : G → G is an involutive automorphism.
That is σ(xy) = σ(x)σ(y) and σ(σ(x)) = x for all x, y ∈ G.

The complex-valued solutions of (1.1), (1.2) and (1.3) on groups that need
not be abelian are obtained by Poulsen and Stetkær [19]. A particular case of
(1.1) and (1.2) is the sine addition law

(1.4) f(xy) = f(x)g(y) + g(x)f(y), x, y ∈ G
and the cosine addition law

(1.5) f(xy) = f(x)f(y)− g(x)g(y), x, y ∈ G.
The stability properties of (1.4) and (1.5) have been obtained by Székelyhidi [20]
on amenable groups. The stability problems of (1.3) were studied by Chung,
Choi and Kim [8] in 2-divisible abelian groups. Chang and chung [7] proved the
Hyers-Ulam stability of (1.4) and (1.5) in the spaces of generalized functions.

Recently, Chang et al. [6] studied the stability of equation (1.2) on abelian
groups. We refer also to [5] and [16].

The aim of the present paper is

(1) To extend Poulsen and Stetkær’s work [15] from groups to the semi-
groups generated by its squares.

(2) To show how Székelyhidi’s results [20] on the stability of equations (1.4)
and (1.5) extends to the much wider frame work of (1.1) and (1.2).

Our results encompass not Székelyhidi’s in [20], but also those of Chung et
al. [8] and Chang et al. [6] about stability of functional equations (1.3) and
(1.2).

2. Definitions and preliminaries

Throughout this paper G denotes a semigroup (a set with an associative
composition) or a group. That G is generated by its squares means that for
all x ∈ G their exist x1, . . . , xn ∈ G such that x = x21 · · ·x2n. We denote by
B(G) the linear space of all bounded complex-valued functions on G. The map
σ : G → G denotes an involutive automorphism. That σ is involutive means
that σ(σ(x)) = x for all x ∈ G. We call a : G → C additive provided that
a(xy) = a(x)+a(y) for all x, y ∈ G and call m : G→ C multiplicative provided
that m(xy) = m(x)m(y) for all x, y ∈ G. If m 6= 0, then Im := {x ∈ G |m(x) =
0} is either empty or a proper subset of G. Im is a two sided ideal in G if not
empty and G \ Im is a subsemigroup of G.

Let V be a linear space of complex-valued functions on G. We say that the
functions f, g : G → C are linearly independent modulo V if λ f + µ g ∈ V
implies λ = µ = 0 for any λ, µ ∈ C. We say that the linear space V is two-sided
invariant if f ∈ V implies that the functions x 7→ f(xy) and x 7→ f(yx) belong
to V for any y ∈ G. We say that V is σ-invariant if f ∈ V implies that f ◦σ ∈ V.
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The space B(G) is an obvious example of a linear space of complex-valued
functions on G which is two-sided invariant and σ-invariant.

Let f : G −→ C be a function. We call fe := f+f◦σ
2 the even part of f and

fo := f−f◦σ
2 its odd part.

3. Stability of equation (1.1) on amenable groups

Regular solutions of the functional equation (1.4) were described, on abelian
groups, by Aczél [1].

The functional equation (1.4) was solved by Chung et al. [10] on groups.
Poulsen and Stetkær [19] determined, on a topological group with continuous
involutive automorphism σ, the continuous solutions of the functional equation
(1.1). Recently Ajebbar and Elqorachi [3] obtained the solutions of equation
(1.1) on a semigroup generated by its squares.

In this section we will extend the result obtained by Székelyhidi [24, Theorem
2.3] to the functional equation (1.1).

Lemma 3.1. Let G be a semigroup, f, g : G → C be functions and let V be a
two-sided invariant linear space of complex-valued functions on G such that V
is σ-invariant. Suppose that f and g are linearly independent modulo V. If the
function

x 7→ f(xσ(y))− f(x)g(y)− g(x)f(y)

belongs to V for all y ∈ G, then

f ◦ σ = f and g ◦ σ = g

or
f ◦ σ = −f and g ◦ σ = g.

Proof. We use a similar computation as the one of the proof of [24, Lemma
2.1].

Let ψ be the function defined by

(3.1) ψ(x, y) = f(xσ(y))− f(x)g(y)− g(x)f(y)

for x, y ∈ G. Since f and g are linearly independent modulo V we get that
f 6= 0, then there exists x0 ∈ G such that f(x0) 6= 0. Let α0 := −f(x0)−1g(x0)
and α1 := f(x0)−1 ∈ C \ {0}. By applying (3.1) to the pair (x, x0) we derive

(3.2) g(x) = α0 f(x) + α1 f(xσ(x0))− α1 ψ(x, x0)

for all x ∈ G.
Let x, y, z ∈ G. By applying (3.1) to the pair (xσ(y), z) and using (3.2) we

get that

f(xσ(y)σ(z)) = f(xσ(y))g(z) + g(xσ(y))f(z) + ψ(xσ(y), z)

= [f(x)g(y) + g(x)f(y) + ψ(x, y)]g(z)

+ [α0 f(xσ(y)) + α1 f(xσ(yx0)

− α1 ψ(xσ(y), x0)]× f(z) + ψ(xσ(y), z)
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= f(x)g(y)g(z) + g(x)f(y)g(z) + ψ(x, y)g(z)

+ α0 [f(x)g(y) + g(x)f(y) + ψ(x, y)]f(z)

+ α1 [f(x)g(yx0) + g(x)f(yx0) + ψ(x, yx0)]f(z)

− α1 ψ(xσ(y), x0)f(z) + ψ(xσ(y), z).

So that

(3.3)

f((xσ(y))σ(z))

= f(x)[g(y)g(z) + α0 g(y)f(z) + α1 g(yx0)f(z)]

+ g(x)[f(y)g(z) + α0 f(y)f(z) + α1 f(yx0)f(z)]

+ ψ(x, y)g(z) + [α0 ψ(x, y) + α1 ψ(x, yx0)− α1 ψ(xσ(y), x0)]f(z)

+ ψ(xσ(y), z).

On the other hand, by applying (3.1) to the pair (x, yz) we get that

(3.4) f(xσ(y)σ(z)) = f(xσ(yz)) = f(x)g(yz) + g(x)f(yz) + ψ(x, yz).

From (3.3) and (3.4) we deduce that

(3.5)

f(x)[g(y)g(z) + α0 g(y)f(z) + α1 g(yx0)f(z)− g(yz)]

+ g(x)[f(y)g(z) + α0 f(y)f(z) + α1 f(yx0)f(z)− f(yz)]

= − ψ(x, y)g(z)− [α0 ψ(x, y) + α1 ψ(x, yx0)− α1 ψ(xσ(y), x0)]f(z)

− ψ(xσ(y), z) + ψ(x, yz).

Now, let y, z ∈ G be arbitrary. By assumption the functions

x 7→ ψ(x, y), x 7→ ψ(x, y)g(z), x 7→ ψ(x, yz),

x 7→ ψ(x, y)f(z), x 7→ ψ(x, yx0)f(z)

belong to V. Moreover the linear space V is two-sided invariant, then the
functions

x 7→ ψ(xσ(y), x0), x 7→ ψ(xσ(y), z)

belong to V. By using (3.5) it follows that the function

x 7→f(x)[g(y)g(z) + α0 g(y)f(z) + α1 g(yx0)f(z)− g(yz)]

+ g(x)[f(y)g(z) + α0 f(y)f(z) + α1 f(yx0)f(z)− f(yz)]

belongs to V. Since f and g are linearly independent modulo V we get that

f(y)g(z) + α0 f(y)f(z) + α1 f(yx0)f(z)− f(yz) = 0.

y, z ∈ G being arbitrary we deduce that

(3.6) f(xy) = f(x)g(y) + α0 f(y)f(x) + α1 f(y)f(xx0)

for all x, y ∈ G.
By applying (3.1) to the pair (x, σ(y)) we get

(3.7) f(xy) = f(x)g ◦ σ(y) + f ◦ σ(y)g(x) + ψ(x, σ(y)).
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By subtracting (3.7) from (3.6) we get that

ψ(x, σ(y)) = f(x)(g(y)−g ◦σ(y))+α0 f(y)f(x)+α1 f(y)f(xx0)−f ◦σ(y)g(x),

which can be written

(3.8) ψ(x, σ(y)) = 2 f(x)go(y) + α0 f(y)f(x) + α1 f(y)f(xx0)− f ◦ σ(y)g(x).

By replacing y by σ(y) in (3.8) we get

(3.9) ψ(x, y) = −2 f(x)go(y)+α0 f ◦σ(y)f(x)+α1 f ◦σ(y)f(xx0)−f(y)g(x).

Let
ϕ(x) := α0f(x) + α1 f(xx0)− g(x)

for all x ∈ G.
By adding the identities (3.8) and (3.9) we get that

ψ(x, σ(y)) + ψ(x, y) = α0 f(x)[f(y) + f ◦ σ(y)] + α1 f(xx0)[f(y) + f ◦ σ(y)]

− g(x)[f(y) + f ◦ σ(y)].

So that

(3.10) ψ(x, σ(y)) + ψ(x, y) = 2 fe(y)ϕ(x)

for all x, y ∈ G.
On the other hand, by subtracting (3.9) from (3.8) we get that

ψ(x, σ(y))− ψ(x, y)

= 4 f(x)go(y) + 2α0 fo(y)f(x) + 2α1 fo(y)f(xxo) + 2 fo(y)g(x)

= 4 f(x)go(y) + 2 fo(y)[α0 f(x) + α1 f(xxo) + g(x)],

which implies

(3.11) ψ(x, σ(y))− ψ(x, y) = 4 f(x)go(y) + 4 fo(y)g(x) + 2 fo(y)ϕ(x).

We split the discussion into the cases of f ◦ σ = −f or f ◦ σ 6= −f .
Case 1: f ◦ σ 6= −f , then fe 6= 0. So, there exists y0 ∈ G such that fe(y0) 6= 0.
By replacing y by y0 in (3.10) and using the fact that the functions x 7→ ψ(x, y0)
and x 7→ ψ(x, σ(y0)) belong to V we deduce that

(3.12) ϕ ∈ V.
Let y ∈ G be arbitrary. As the functions x 7→ ψ(x, y) and x 7→ ψ(x, σ(y))
belong to V, then from (3.11) and (3.12) we deduce that the function x 7→
4 f(x)go(y) + 4 fo(y)g(x) belongs to V. Since f and g are linearly independent
modulo V we get that fo(y) = go(y) = 0. So, f◦σ(y) = f(y) and g◦σ(y) = g(y).
So, y being arbitrary, we deduce that f ◦ σ = f and g ◦ σ = g.
Case 2: f ◦ σ = −f , then we apply (3.1) to the pairs (x, σ(y)) and (σ(x), y),
and get respectively

ψ(x, σ(y)) = f(xy)−f(x)g◦σ(y)−f ◦σ(y)g(x) = f(xy)−f(x)g◦σ(y)+f(y)g(x)

and

ψ(σ(x), y) = f ◦ σ(xy)− f ◦ σ(x)g(y)− f(y)g ◦ σ(x)
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= −f(xy) + f(x)g(y)− f(y)g ◦ σ(x).

So,

(3.13) ψ(x, σ(y)) + ψ(σ(x), y) = 2 f(x)go(y) + 2 f(y)go(x).

In the following we prove that g ◦ σ = g. Assume that there exists y1 ∈ G
such that go(y1) 6= 0. Let φ : G → C be the function defined by φ(x) :=
ψ(x, σ(y1)) + ψ(σ(x), y1).

By replacing y by y1 in (3.13) we get

(3.14) φ(x) = 2 f(x)go(y1) + 2 f(y1)go(x), x ∈ G.
The function x 7→ ψ(x, σ(y1)) belongs to V by assumption. Furthermore, since
V is σ-invariant then the function x 7→ ψ(σ(x), y1) belongs to V. Hence,

(3.15) φ ∈ V.
Taking (3.14), (3.15) and go(y1) 6= 0 into account we deduce that there exist
h ∈ V and a constant α ∈ C such that

(3.16) f = α go + h.

Substituting (3.16) back into (3.13) we obtain

ψ(x, σ(y)) + ψ(σ(x), y) = 2 (αgo(x) + h(x))go(y) + 2 (αg0(y) + h(y))go(x),

then

(3.17) ψ(x, σ(y)) + ψ(σ(x), y) = 2 (2α go(y) + h(y))go(x) + 2h(x)go(y).

If there exists y0 ∈ G such that 2α go(y0) + h(y0) 6= 0, then f ∈ V. Indeed,
the functions x 7→ ψ(x, σ(y0)) + ψ(σ(x), y0) and x 7→ h(x)go(y0) belong to V.
So, by replacing y by y0 in (3.17), we get that the function x 7→ (2α go(y0) +
h(y0))go(x) belongs to V. Hence, go ∈ V. Taking (3.16) into account we deduce
that f ∈ V.

If 2α go(y) + h(y) = 0 for all y ∈ G, then 2α go = −h. Taking (3.16) into
account we get that f ∈ V.

Thus f ∈ V in both cases, which contradicts the linear independence modulo
V of f and g. We conclude that g ◦ σ = g. This completes the proof of Lemma
3.1. �

Lemma 3.2. Let G be a semigroup, f, g : G → C be functions and let V be a
two-sided invariant linear space of complex-valued functions on G such that V
is σ-invariant. If the function

x 7→ f(xσ(y))− f(x)g(y)− g(x)f(y)

belongs to V for all y ∈ G, then we have one of the following possibilities:
(1) f = 0 and g is arbitrary.
(2) f, g ∈ V.
(3) g ∈ V and g is multiplicative.
(4) f = λm−λϕ, g = 1

2 m+ 1
2 ϕ, where λ ∈ C\{0} is a constant, m : G→ C

is a multiplicative function and ϕ ∈ V.
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(5) f(xσ(y)) = f(x)g(y) + g(x)f(y) for all x, y ∈ G.
(6) ψ(x, σ(y)) + ψ(y, σ(x)) = f(xy) + f(yx) for all x, y ∈ G, where ψ is the

function defined by (3.1).

Proof. We split the discussion into the cases of f and g are linearly independent
modulo V, or f and g are linearly dependent modulo V.
Case 1: f and g are linearly independent modulo V. Then, according to Lemma
3.1, (f ◦ σ = f and g ◦ σ = g) or (f ◦ σ = −f and g ◦ σ = g).

If f ◦ σ = f and g ◦ σ = g, then, by using similar computations as the ones
of the proof of [24, Lemma 2.1], we get that

ψ(x, y) = 0

for all x, y ∈ G, where ψ is the function defined in (3.1). That is f(xσ(y)) =
f(x)g(y) + g(x)f(y) for all x, y ∈ G. The result occurs in (5) of Lemma 3.2.

If f ◦ σ = −f and g ◦ σ = g, then by replacing y by σ(y) in (3.1) we get

ψ(x, σ(y)) = f(xy)− f(x)g(y) + g(x)f(y).

Interchanging x and y in the identity above we get

ψ(y, σ(x)) = f(yx)− f(y)g(x) + g(y)f(x).

By adding the two last identities we obtain

ψ(x, σ(y)) + ψ(y, σ(x)) = f(xy) + f(yx)

for all x, y ∈ G. The result occurs in (6) of Lemma 3.2.
Case 2: f and g are linearly dependent modulo V. We prove, by a computation
adapted to that of the proof of [24, Lemma 2.2], that one of the possibilities
(1)-(6) of Lemma 3.2 holds. �

Theorem 3.3. Let G be an amenable group, σ : G → G be an involutive
automorphism and let f, g : G→ C be functions. The function

(x, y) 7→ f(xσ(y))− f(x)g(y)− g(x)f(y)

is bounded if and only if one of the following assertions holds:
(1) f = 0 and g is arbitrary.
(2) f, g ∈ B(G).
(3) f = am + b and g = m, where a : G → C is an additive function,

m : G → C is a bounded multiplicative function and b : G → C is a bounded
function such that m ◦ σ = m and a ◦ σ = a.

(4) f = λm−λ b, g = 1
2 m+ 1

2 b, where λ ∈ C\{0} is a constant, b : G→ C
is a bounded function and m : G → C is a multiplicative function such that
m ◦ σ = m or m ∈ B(G).

(5) f(xσ(y)) = f(x)g(y) + g(x)f(y) for all x, y ∈ G.

Proof. First we prove the necessity. Let f, g : G → C be two functions such
that the function ψ defined in (3.1) is bounded. Then the function

x 7→ f(xσ(y))− f(x)g(y)− g(x)f(y)
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belongs to B(G) for all y ∈ G. Notice that B(G) is a two-sided invariant linear
space and σ-invariant. According to Lemma 3.2 we have one of the following
possibilities:

(1) f = 0 and g is arbitrary, which occurs in (1) of Theorem 3.3.
(2) f, g ∈ B(G), which occurs in (2) of Theorem 3.3.
(3) f = λm−λ b, g = 1

2 m+ 1
2 b, where λ ∈ C\{0} is a constant, m : G→ C

is a multiplicative function and b ∈ B(G). Hence,

ψ(x, y) = λ (m(xσ(y))− b(xσ(y)))− λ

2
(m(x)− b(x))(m(y) + b(y))

− λ

2
(m(y)− b(y))(m(x) + b(x))

= λm(x) (m ◦ σ(y)−m(y))− λ (b(xσ(y))− b(x)b(y))

for all x, y ∈ G.
Then the function (x, y) 7→ m(x) (m◦σ(y)−m(y)) is bounded. So, m◦σ = m

or m is bounded. The result occurs in (4) of Theorem 3.3.
(4) g = m : G→ C where m is a bounded multiplicative function. Then

(3.18) ψ(x, y) = f(xσ(y))− f(x)m(y)−m(x)f(y)

for all x, y ∈ G.
If m = 0, then ψ(x, y) = f(xσ(y)) for all x, y ∈ G. Since ψ is bounded by

assumption so is f . The result occurs in (2) of Theorem 3.3.
If m 6= 0, then by replacing y by σ(y) respectively x by σ(x) in (3.18) we

obtain respectively

(3.19) ψ(x, σ(y)) = f(xy)− f(x)m(σ(y))−m(x)f(σ(y)),

(3.20) ψ(σ(x), y) = f(σ(xy))− f(σ(x))m(y)−m(σ(x))f(y).

We split the discussion into the cases of m ◦ σ = m or m ◦ σ 6= m.
Case 1: m ◦ σ = m. By adding the identities (3.19) and (3.20) we get that

1

2
[ψ(x, σ(y)) + ψ(σ(x), y)] = fe(xy)− fe(x)m(y)−m(x)fe(y).

Since m is a nonzero multiplicative function on the group G we get that
m(x) 6= 0 and m(x−1) = (m(x))−1 for all x ∈ G. Hence, 1

2 [ψ(x, σ(y)) +

ψ(σ(x), y)]m((xy)−1) = fe(xy)m((xy)−1) − fe(x)m(x−1) − fe(y)m(y−1) for
all x, y ∈ G. Since the function ψ is bounded so is the function (x, y) 7→
fe(xy)m((xy)−1)− fe(x)m(x−1)− fe(y)m(y−1). So, according to Hyers’s The-
orem [23, Theorem 3.1] there exist an additive function a : G → G and a
bounded function ϕ : G → G such that fe(x)m(x−1) − a(x) = ϕ(x) for all
x ∈ G. Hence, fe = (a+ ϕ)m.

On the other hand, by subtracting (3.19) and (3.20) we get that 1
2 [ψ(x, σ(y))

−ψ(σ(x), y)] = fo(xy) − fo(x)m(y) + m(x)fo(y) for all x, y ∈ G. Hence, the
function (x, y) 7→ fo(xy) − fo(x)m(y) + m(x)fo(y) is bounded. Let e be the
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identity element of G. By putting x = e we get that fo = b0 where b0 ∈ B(G).
Hence f = am+ b with b := ϕm+ b0 ∈ B(G). So,

ψ(x, y) = a(xσ(y))m(xσ(y)) + b(xσ(y))− [a(x)m(x) + b(x)]m(y)

− [a(y)m(y) + b(y)]m(x)

= [a ◦ σ(y)− a(y)]m(xy)−m(x)b(y)−m(y)b(x) + b(xσ(y)),

which implies

ψ(x, y)m(xy)−1 = a◦σ(y)−a(y)−m(y−1)b(y)−m(x−1)b(x)+b(xσ(y))m(xy)−1

for all x, y ∈ G. Since the functions ψ, m and b are bounded so is the function
y 7→ (a ◦ σ(y)− a(y). Since the function a ◦ σ− a is additive we get, according
to [21, Exercise 2.5(a)], that a ◦ σ = a. The result occurs in (3) of Theorem
3.3.
Case 2: m◦σ 6= m. Since m 6= 0 we have m(e) = 1. By putting x = e in (3.18)
we obtain ψ(e, y) = f ◦ σ(y) − f(e)m(y) − f(y). It follows that the function
y 7→ −2 fo(y)− f(e)m(y) belongs to B(G). Since m ∈ B(G) then fo ∈ B(G).

On the other hand, by adding (3.19) and (3.20) we get that

ψ(x, σ(y)) + ψ(σ(x), y)

= 2 fe(xy)− f(x)m ◦ σ(y)−m(x)f ◦ σ(y)− f ◦ σ(x)m(y)−m ◦ σ(x)f(y)

= 2 fe(xy)− 2 fe(x)me(y) + 2 fo(x)mo(y)− 2me(x) fe(y) + 2mo(x) fo(y),

hence

fe(xy)− fe(x)me(y) =
1

2
[ψ(x, σ(y)) + ψ(σ(x), y)]− fo(x)mo(y)−mo(x)fo(y)

+me(x)fe(y)

for all x, y ∈ G.
Since the functions

x 7→ ψ(x, y), x 7→ fo(x)mo(y), x 7→ mo(x)fo(y) and x 7→ me(x)fe(y)

belong to B(G) for all y ∈ G, B(G) is a two-sided invariant and σ-invariant
linear space of complex-valued functions on G, and seeing that me is not mul-
tiplicative because m ◦ σ 6= m, we deduce by applying [22, Theorem] that
fe ∈ B(G), so f ∈ B(G). It follows that (2) of Theorem 3.3 holds.

(5) f(xσ(y)) = f(x)g(y) +g(x)f(y) for all x, y ∈ G. The result occurs in (5)
of Theorem 3.3.

(6) ψ(x, σ(y)) + ψ(y, σ(x)) = f(xy) + f(yx) for all x, y ∈ G. If f = 0, then
the functional equation (1.1) is satisfied, which corresponds to (5) of Theorem
3.3.

In what follows we assume that f 6= 0. By putting y = e in the identity
above we get

ψ(x, e) + ψ(e, σ(x)) = 2 f(x)
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for all x ∈ G. Since the functions x 7→ ψ(x, e) and x 7→ ψ(e, x) belong to B(G)
and B(G) is σ-invariant, we get that f ∈ B(G). So, we get from (3.1) that
g ∈ B(G), which implies (2) of Theorem 3.3.

Conversely, we check by elementary computations that if one of the asser-
tions (1)-(5) in Theorem 3.3 is satisfied, then the function ψ defined in (3.1) is
bounded. This completes the proof of Theorem 3.3. �

By taking σ(x) = x for all x ∈ G in Theorem 3.3 we obtain the following
corollary.

Corollary 3.4 ([24, Theorem 2.3]). Let G be an amenable group and let f, g :
G→ C be functions. The function

(x, y) 7→ f(xy)− f(x)g(y)− g(x)f(y)

is bounded if and only if one of the following assertions holds:
(1) f = 0 and g is arbitrary.
(2) f, g ∈ B(G).
(3) f = am + b and g = m, where a : G → C is an additive function,

m : G → C is a bounded multiplicative function and b : G → C is a bounded
function.

(4) f = λm−λ b, g = 1
2 m+ 1

2 b, where λ ∈ C\{0} is a constant, b : G→ C
is a bounded function and m : G→ C is a multiplicative function.

(5) f(xy) = f(x)g(y) + g(x)f(y) for all x, y ∈ G.

4. Solutions and stability of equation (1.2)

4.1. Solutions of equation (1.2) on semigroup generated by its squares

Regular solutions of the functional equation (1.5) were described, on abelian
groups, by Aczél [1]. Poulsen and Stetkær [19] determined, on a topological
group with continuous involutive automorphism σ, the continuous solutions of
the functional equation (1.2).

In this subsection we will solve the functional equation (1.2) on a semigroup
G generated by its squares, and so, extend the results obtain by Poulsen and
Stetkær [19].

Lemma 4.1. Let G be a semigroup generated by its squares. The solutions
f, g : G→ C of the functional equation

(4.1) f(xy) = f(x)f(y)− g(x)g(y), x, y ∈ G

can be listed as follows:
(1) f = 0 and g = 0.
(2) f = 1

1−λ2 m and g = λ
1−λ2 m, where λ ∈ C \ {−1, 1} is a constant and

m : G→ C is a nonzero multiplicative function.

(3) f =
λM+ 1

λ m

λ+ 1
λ

and g = M−m
(λ+ 1

λ )i
, where λ ∈ C \ {0,−i, i} is a constant and

m,M : G→ C are two multiplicative functions such that m 6= M .
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(4)

{
f = m (1 + a) and g = ma on G \ Im,
f = g = 0 on Im,

where m : G→ C is a nonzero multiplicative function and a : G \ Im → C is a
nonzero additive function.

(5)

{
f = m (1 + a) and g = −ma on G \ Im,
f = g = 0 on Im,

where m : G→ C is a nonzero multiplicative function and a : G \ Im → C is a
nonzero additive function.

Proof. Let f, g : G→ C satisfy the functional equation (4.1).
If f = 0, then g(x)g(y) = 0 for all x, y ∈ G, hence g = 0. This is case (1)

of Lemma 4.1. Assume that f 6= 0. We split the discussion into the cases of f
and g are linearly dependent or f and g are linearly independent.
Case 1: f and g are linearly dependent. Since f 6= 0 there exists a constant
c ∈ C such that g = c f . By substituting this in Eq. (4.1) we obtain f(xy) =
(1 − c2)f(x)f(y) for all x, y ∈ G. Since f 6= 0 and G is generated by its
squares we get that c 6= 1 and c 6= −1. From the last equation we obtain
(1− c2)f(xy) = (1− c2)2f(x)f(y) for all x, y ∈ G, then there exists a nonzero
multiplicative function m : G→ C such that (1−c2)f = m. So that f = 1

1−c2 m

and g = c
1−c2 m. The result occurs in (2) of the list of Lemma 4.1.

Case 2: f and g are linearly independent. By similar computations as the ones
of the proof of [21, Theorem 4.15], we get that

(4.2) g(xy) = g(x)f(y) + g(y)f(x) + α g(x)g(y)

for all x, y ∈ G, where α, λ1, λ2 ∈ C are constants such that λ1 and λ2 are
the roots of the polynomial z2 + α z + 1, and the functions m : f − λ1g and
M := f − λ2g are multiplicative. Notice that λ1λ2 = 1 and λ1 + λ2 = −α.

If λ1 6= λ2, then

f =
λM + 1

λ m

λ+ 1
λ

and g =
M −m
(λ+ 1

λ )i
,

where λ = −i λ1 = −i
λ2

. Notice that λ ∈ C \ {0,−i, i}. The result occurs in (3)
of the list of Lemma 4.1.

If λ1 = λ2, then λ1 = λ2 = 1 or λ1 = λ2 = −1.
If λ1 = λ2 = 1, then the functional equation (4.1) becomes

(4.3) g(xy) = g(x)m(y) + g(y)m(x)

for all x, y ∈ G. As g 6= 0, because f and g are linearly independent, and
G is generated by its squares we get from Eq. (4.3) that m 6= 0. By similar
computations as the ones in the proof of [21, Lemma 3.4] we deduce from (4.3)
that there exists a nonzero additive function a : G \ Im → C such that g = ma
on G \ Im and g = 0 on Im, then f = m (1 + a) on G \ Im and f = 0. The
result occurs in (4) of the list of Lemma 4.1.
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If λ1 = λ2 = −1, then, by similar arguments as above, we obtain a solution
of the form (5) of the list of Lemma 4.1.

Conversely, we check by elementary computations that the pairs (f, g) de-
scribed in Lemma 4.1 are solutions of equation (4.1). This completes the proof
of Lemma 4.1. �

Lemma 4.2. Let G be a semigroup generated by its squares. Let f, g : G→ C
a solution of the functional equation (1.2). Then

(1) f ◦ σ = f , i.e., f is even with respect to σ, and f is central.
(2) g ◦ σ = g or g ◦ σ = −g.

Proof. (1) Let x, y, z ∈ S be arbitrary. By interchanging x and y in (1.2) we
get that f(xσ(y)) = f(yσ(x)). By replacing x by σ(x) in the last identity we
obtain f ◦ σ(xy) = f(σ(x)σ(y)) = f(yx). So, f ◦ σ(xyz) = f ◦ σ(x(yz)) =
f(yzx) = f ◦ σ(zxy) = f(xyz). Since G is generated by its squares there exist
x1, . . . , xn ∈ G such that x = x21 · · ·x2n. So, we have f ◦σ(x) = f ◦σ(x21 · · ·x2n).

If n = 1 we obtain f ◦ σ(x) = f ◦ σ(x21) = f(x21) = f(x).
If n ≥ 2 we get that f ◦σ(x) = f ◦σ(x1x1(x22 · · ·x2n)) = f(x1x1(x22 · · ·x2n)) =

f(x). In both cases we get that f ◦σ(x) = f(x). Since x is arbitrary, we deduce
that f ◦ σ = f . Moreover, since f ◦ σ(xy) = f(yx) for all x, y ∈ G, we get that
f(xy) = f(yx) for all x, y ∈ G. Hence, f is central. This is the result (1) of
Lemma 4.2.

(2) By applying Eq. (1.2) to the pairs (x, σ(y)) and (σ(x), y), and taking
into account that f ◦ σ = f , we get respectively

f(xy) = f(x)f(y)− g(x)g ◦ σ(y)

and
f(xy) = f(x)f(y)− g ◦ σ(x)g(y).

Hence, g(x)g ◦ σ(y) = g ◦ σ(x)g(y) for all x, y ∈ G, which implies that the two
functions g and g ◦ σ are linearly dependent. Since σ ◦ σ(x) = x for all x ∈ G,
we get g ◦ σ = g or g ◦ σ = −g, which is the result (2) of Lemma 4.2 and
completes the proof of Lemma 4.2. �

Theorem 4.3. Let G be a semigroup generated by its squares. The solutions
f, g : G→ C of the functional equation (1.2) can be listed as follows:

(1) f = 0 and g = 0.
(2) f = 1

1−λ2 m and g = λ
1−λ2 m, where λ ∈ C \ {−1, 1} is a constant and

m : G→ C is a nonzero multiplicative function such that m ◦ σ = m.

(3) f =
λM+ 1

λ m

λ+ 1
λ

and g = M−m
(λ+ 1

λ )i
, where λ ∈ C \ {0,−i, i} is a constant and

m,M : G → C are two different multiplicative functions such that m ◦ σ = m
and M ◦ σ = M .

(4)

{
f = m (1 + a) and g = ma on G \ Im,
f = g = 0 on Im,

where m : G → C is a nonzero multiplicative function and a : G \ Im → C is
an nonzero additive function such that m ◦ σ = m and a ◦ σ = a.
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(5)

{
f = m (1 + a) and g = −ma on G \ Im,
f = g = 0 on Im,

where m : G → C is a nonzero multiplicative function and a : G \ Im :→ C is
a nonzero additive function such that m ◦ σ = m and a ◦ σ = a.

(6) f = m+m◦σ
2 and g = m−m◦σ

2 , where m : G → C is a multiplicative
function such that m ◦ σ 6= m.

Proof. Let f, g : G → C satisfy the functional equation (1.2). According to
Lemma 4.2(2) we have two cases: g ◦ σ = g or g ◦ σ = −g.
Case 1: g ◦ σ = g. By applying (1.2) to the pair (x, σ(y)) we get, according to
Lemma 4.2(1), that

f(xy) = f(x)f(y)− g(x)g(y)

for all x, y ∈ G. According to Lemma 4.1 we get that one of the following
possibilities holds:

(1) f = 0 and g = 0, which is (1) of Theorem 4.3.
(2) f = 1

1−λ2m and g = λ
1−λ2m, where λ ∈ C \ {−1, 1} is a constant and

m : G → C is a nonzero multiplicative function. Since f ◦ σ = f we get that
m ◦ σ = m. So, we obtain a solution of the form (2) in Theorem 4.3.

(3) f =
λM+ 1

λ m

λ+ 1
λ

and g = M−m
(λ+ 1

λ )i
, where λ ∈ C \ {0,−i, i} is a constant

and m,M : G → C are two multiplicative functions such that m 6= M . Since
f ◦ σ = f , g ◦ σ = g and λ 6= 0, we get that m ◦ σ + λ2M ◦ σ = m+ λ2M and
M ◦σ−m◦σ = M −m, which implies (1 +λ2)(M −M ◦σ) = 0. As 1 +λ2 6= 0
we get that M ◦σ = M , and then m ◦σ = m. The solution occurs in (3) of the
list of Theorem 4.3.

(4)

{
f = m (1 + a) and g = ma on G \ Im,
f = g = 0 on Im,

where m : G→ C is a nonzero multiplicative function and a : G \ Im → C is a
nonzero additive function. Since f ◦σ = f , g◦σ = g we get that m◦σ a◦σ = ma
and m ◦ σ + m ◦ σ a ◦ σ = m + ma on G \ Im, which implies m ◦ σ = m on
G \ Im and a ◦ σ = a. Moreover, σ(Im) ⊆ Im. Indeed, if there exists x ∈ Im
such that σ(x) ∈ G\ Im, then f(σ(x)) = m(σ(x)) +m(σ(x)) a(σ(x)), f(x) = 0,
g(σ(x)) = m(σ(x)) a(σ(x)) and g(x) = 0. We infer from f ◦σ = f and g◦σ = g
that m(σ(x)) = 0, which is a contradiction. Hence, σ(Im) ⊆ Im. We deduce
that m◦σ(x) = m(σ(x)) = 0, and then m◦σ(x) = m(x) for all x ∈ Im. Hence,
m ◦ σ = m. The solution occurs in (4) of Theorem 4.3.

(5)

{
f = m (1 + a) and g = −ma on G \ Im,
f = g = 0 on Im,

where m : G → C is a nonzero multiplicative function and a : G \ Im → C is
a nonzero additive function. As in the case (4) we prove that m ◦ σ = m and
a ◦ σ = a. The solution occurs in (5) of Theorem 4.3.
Case 2: g ◦ σ = −g. By applying (1.2) to the pair (x, σ(y)) we get, according
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to Lemma 4.2(1), that

f(xy) = f(x)f(y) + g(x)g(y)

for all x, y ∈ G. By writing ig instead of g we go back to the functional equation
(4.1). So, as in case 1, we have the following possibilities:

(1) f = 0 and g = 0, which is (1) of Theorem 4.3.
(2) f = 1

1−λ2m and ig = λ
1−λ2m, where λ ∈ C \ {−1, 1} is a constant and

m : G→ C is a nonzero multiplicative function. Since f ◦σ = f and g ◦σ = −g
we get that λ = 0 and m ◦ σ = m. It follows that f = m and g = 0 with
m ◦ σ = m which (2) of Theorem 4.3.

(3) f =
λM+ 1

λ m

λ+ 1
λ

and ig = M−m
(λ+ 1

λ )i
, where λ ∈ C \ {0,−i, i} is a constant and

m,M : G→ C are two multiplicative functions such that m 6= M . Hence, f =
m+λ2M
1+λ2 and g = λ

1+λ2 (m−M). Since g◦σ = −g we get m◦σ+m = M ◦σ+M .

According to [21, Corollary 3.19] and taking into account that m 6= M , we get

that M = m ◦ σ, and then m ◦ σ 6= m. So, f = m+λ2m◦σ
1+λ2 . Since f ◦ σ = f we

deduce that (λ2 − 1)(m−m ◦ σ) = 0. Hence λ2 = 1.
If λ = 1, then f = m+m◦σ

2 and g = m−m◦σ
2 . The solution occurs in (6) of

Theorem 4.3.
If λ = −1, then f = m+m◦σ

2 and g = m◦σ−m
2 . By writing m ◦ σ instead of

m, we obtain a solution of the form (6) of Theorem 4.3.

(4)

{
f = m (1 + a) and g = −ima on G \ Im,
f = g = 0 on Im,

where m : G → C is a nonzero multiplicative function and a : G \ Im → C is
a nonzero additive function. As in (4) of case 1, we check that σ(Im) ⊆ Im.
So, σ being an involution, we obtain σ(G \ Im) = G \ Im. Since f ◦ σ = f and
g ◦ σ = −g we get that

m(σ(x))(1 + a(x)) = m(x)(1 + a(x))

and

m(σ(x))a(σ(x)) = −m(x)a(x)

for all x ∈ G \ Im.
By adding the two last identity, we obtainm◦σ(x)+2m◦σ(x) a◦σ(x) = m(x)

for all x ∈ G\Im. So that m(x)−m◦σ(x) = 2m◦σ(x) a◦σ(x) for all x ∈ G\Im.
Since G\Im is a semigroup, then, according to [3, Lemma 4.4] (due to Stetkær)
and using that m ◦ σ(x) 6= 0 for all x ∈ G \ Im, we get that a(σ(x)) = 0, and
then m ◦ σ(x) = m(x) for all x ∈ G \ Im. So, σ being an involution and
σ(G \ Im) = G \ Im, we obtain a(x) = 0 for all x ∈ G \ Im, which contradicts
the fact that a a nonzero function on G \ Im. Hence, the functional equation
(1.2) has no solution in this case.

(5)

{
f = m (1 + a) and g = ma on G \ Im,
f = g = 0 on Im,

where m : G → C is a nonzero multiplicative function and a : G \ Im → C is
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a nonzero additive function. Proceeding as above we prove that the functional
equation (1.2) has no solution in this case.

Conversely, we check by elementary computations that the pairs (f, g) de-
scribed in Theorem 4.3 are solutions of equation (1.2). This completes the
proof of Theorem 4.3. �

4.2. Stability of equation (1.2) on amenable groups

The stability of the functional equation (1.5) was established by Székelyhidi
[24, Theorem 3.3] on an amenable group. In this subsection we will study the
stability of the functional equation (1.2) on an amenable group. The results
obtained are generalizations of those in [24, Theorem 3.3].

By using similar computations to the ones of the proofs of [24, Lemma 3.1
and Lemma 3.2] we get the following lemma.

Lemma 4.4. Let G be a semigroup, f, g : G → C be functions and let V be
a two-sided invariant linear space of complex-valued functions on G. If the
functions

x 7→ f(xσ(y))− f(x)f(y) + g(x)g(y)

and

x 7→ f(xσ(y))− f(yσ(x))

belong to V for all y ∈ G, then we have one of the following possibilities:
(1) f, g ∈ V.
(2) f is multiplicative and g ∈ V.
(3) f + g or f − g is multiplicative in V.

(4) f = λ2

λ2−1 m −
1

λ2−1 ϕ and g = λ
λ2−1 m −

λ
λ2−1 ϕ, where λ ∈ C \ {−1, 1}

is a constant, m : G→ C is multiplicative and ϕ ∈ V.
(5) f(xσ(y)) = f(x)f(y)− g(x)g(y) for all x, y ∈ G.

Theorem 4.5. Let G be an amenable group, σ : G → G be an involutive
automorphism and let f, g : G→ C be functions. The function

(x, y) 7→ f(xσ(y))− f(x)f(y) + g(x)g(y)

is bounded if and only if one of the following assertions holds:
(1) f, g ∈ B(G).
(2) f is multiplicative and g ∈ B(G).
(3) f = (1 +a)m+ b and g = am+ b, or f = am+ b and g = (1−a)m− b,

where a : G → C is additive, m : G → C is a bounded multiplicative function
and b ∈ B(G) such that m ◦ σ = m and a ◦ σ = a.

(4) f = λ2

λ2−1 m−
1

λ2−1 b and g = λ
λ2−1 m−

λ
λ2−1 b, where λ ∈ C \ {−1, 1} is

a constant, m : G→ C is multiplicative and b : G→ C is a bounded function.
(5) f(xσ(y)) = f(x)f(y)− g(x)g(y) for all x, y ∈ G.

Proof. First we prove the necessity. We define the function

(4.4) F (x, y) = f(xσ(y))− f(x)f(y) + g(x)g(y)
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for x, y ∈ G. Since F is bounded then the functions

x 7→ f(xσ(y))− f(x)f(y) + g(x)g(y)

and

x 7→ f(xσ(y))− f(yσ(x))

belong to B(G) for all y ∈ G. Since B(G) is a two-sided invariant linear space
we have, according to Lemma 4.4, one of the following possibilities:

(1) f, g ∈ B(G), which occurs in (1) of Theorem 4.5.
(2) f is multiplicative and g ∈ B(G), which is (2) of Theorem 4.5.
(3) f+g or f−g is multiplicative in B(G). We will study the case f−g = m

with m multiplicative in B(G). The case f + g multiplicative in B(G) go back
to the first one by writing −g instead of g.

If m = 0, then F (x, y) = f(xσ(y)) for all x, y ∈ G, and consequently f, g ∈
B(G). The result occurs in (1) of Theorem 4.5.

If m 6= 0, then

F (x, y) = f(xσ(y))− f(x)f(y) + [f(x)−m(x)][f(y)−m(y)]

= f(xσ(y))− f(x)m(y)−m(x)f(y) +m(x)m(y)

for all x, y ∈ G. So,

F (x, σ(y)) = f(xy)− f(x)m(σ(y))−m(x)f(σ(y)) +m(x)m(σ(y))

and

F (σ(x), y) = f ◦ σ(xy)− f(σ(x)m(y)−m(σ(x))f(y) +m(σ(x))m(y).

We split the discussion into the cases of m ◦ σ = m or m ◦ σ 6= m.
Case A: m ◦ σ = m. Let x, y ∈ G. The identities above become

(4.5) F (x, σ(y)) = f(xy)− f(x)m(y)−m(x)f(σ(y)) +m(x)m(y)

and

(4.6) F (σ(x), y) = f ◦ σ(xy)− f(σ(x))m(y)−m(x)f(y) +m(x)m(y)

for all x, y ∈ G.
By adding the identities (4.5) and (4.6), and using the fact that m is multi-

plicative, we obtain

F (x, σ(y)) + F (σ(x), y) = 2 fe(xy)− 2 fe(x)m(y)− 2m(x)fe(y) + 2m(xy).

As m is a nonzero multiplicative function on the group G we get that m(x) 6= 0
and m(x−1) = (m(x))−1 for all x ∈ G. So,

1

2
[F (x, σ(y)) + F (σ(x), y)]m((xy))−1)

= fe(xy)(m(xy))−1 − fe(x)(m(x))−1 − fe(y)(m(y))−1 + 1

= [fe(xy)(m(xy))−1 − 1]− [fe(x)(m(x))−1 − 1]− [fe(y)(m(y))−1 − 1].
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On the other hand, by subtracting (4.6) from (4.5), we get similarly that

1

2
[F (x, σ(y))− F (σ(x), y)]m((xy)−1)

= fo(xy)(m(xy))−1)− fo(x)(m(x))−1 − fo(y)(m(y))−1.

Since the functions F and m are bounded, and B(G) is a two-sided invariant
and σ-invariant linear space of complex-valued functions on G, we get that
the right hand side of the identity above is bounded as a function in (x, y).
Moreover, G being an amenable group, we get, according to Hyers’s Theorem
[23, Theorem 3.1], that there exist two additive functions a1, a2 : G → C and
two functions b1, b2 ∈ B(G) such that fe = (1 + a1)m+ b1 and fo = a2m+ b2.
Hence, f = (1 + a)m+ b and g = am+ b, where a := a1 + a2 is additive and
b := b1+b2 is a bounded function on G. Substituting this into (4.4), and taking
into account that a is additive and m is multiplicative such that m ◦ σ = m,
we get that

F (x, y) = (1 + a(xσ(y)))m(xσ(y)) + b(xσ(y))− [(1 + a(x))m(x) + b(x)]

× [(1 + a(y))m(y) + b(y)] + [a(x)m(x) + b(x)][a(y))m(y) + b(y)]

= (a ◦ σ(y)− a(y))m(xy)−m(x)b(y)−m(y)b(x) + b(xσ(y))

for all x, y ∈ G.
As m(x) 6= 0 and m(x−1) = (m(x))−1 for all x ∈ G, we get that

F (x, y)(m(xy)−1) = [a ◦ σ(y)− a(y)]m(x)−m(y)b(y)−m(x)b(x)

+ b(xσ(y))(m(xy)−1)

for all x, y ∈ G. Since the functions F , m and b are bounded so is the function
(x, y) 7→ (a◦σ(y)−a(y))m(x). Since m 6= 0, we deduce that the function a◦σ−a
is bounded. Since a◦σ−a is additive we get, according to [21, Exercise 2.5(a)],
that a ◦ σ = a. The result obtained in this case occurs in (3) of Theorem 4.5.
Case B: m◦σ 6= m. By similar computations to the ones in Case 2 of the proof
of Theorem 3.3 we prove that f ∈ B(G) and then g ∈ B(G), which occurs in
(1) of Theorem 4.5.

(4) f = λ2

λ2−1 m −
1

λ2−1 b and g = λ
λ2−1 m −

λ
λ2−1 b, where λ ∈ C \ {−1, 1}

is a constant, m : G→ C is multiplicative and b ∈ B(G). The result occurs in
(4) of Theorem 4.5.

(5) f(xσ(y)) = f(x)f(y)−g(x)g(y) for all x, y ∈ G. The result occurs in (5)
of Theorem 4.5.

Conversely, we check by elementary computations that if one of assertions
(1)-(4) in Theorem 4.5 is satisfied, then the function F is bounded. This
completes the proof of Theorem 4.5. �

By taking σ(x) = x for all x ∈ G in Theorem 4.5 we obtain the following
corollary.
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Corollary 4.6 ([24, Theorem 3.3]). Let G be an amenable group and let f, g :
G→ C be functions. The function

(x, y) 7→ f(xy)− f(x)f(y) + g(x)g(y)

is bounded if and only if one of the following assertions holds:
(1) f, g ∈ B(G).
(2) f is multiplicative and g ∈ B(G).
(3) f = (1 +a)m+ b and g = am+ b, or f = am+ b and g = (1−a)m− b,

where a : G → C is additive, m : G → C is a bounded multiplicative function
and b ∈ B(G).

(4) f = λ2

λ2−1 m−
1

λ2−1 b and g = λ
λ2−1 m−

λ
λ2−1 b, where λ ∈ C \ {−1, 1} is

a constant, m : G→ C is multiplicative and b : G→ C is a bounded function.
(5) f(xy) = f(x)f(y)− g(x)g(y) for all x, y ∈ G.

5. Solutions and stability of equation (1.3)

The general solution of the functional equation f(x − y) = f(x)g(y) −
g(x)f(y) is given by Aczél and Dhombres in [2, p. 217, Theorem 11] on abelian
group. Stetkær determined in [21, Theorem 4.12] the continuous solutions of
the functional equation (1.3) on a topological group with σ a continuous invo-
lutive automorphism of G.

Chung et al. [9, Theorem 2] proved the Hyers-Ulam stability of (1.3) on
an abelian 2-divisible group [9, Theorem 9]. In [7, Theorem 2.3] Chang and
Chung proved the Hyers-Ulam stability of the functional equation f(x− y) =
f(x)g(y) − g(x)f(y) on an abelian 2-divisible group. They proved the Hyers-
Ulam stability of the same equation on an abelian group [8, Theorem 2.5].

In this section we generalize the cited results by solving the functional equa-
tion (1.3) on a semigroup generated by its squares, and proving the Hyers-Ulam
stability of (1.3) on an amenable group.

5.1. Solutions of equation (1.3) on semigroup generated by its squares

In this subsection we assume that G is a semigroup generated by its squares.
By using similar computations used in the proof of Lemma 4.2 we get the

following result.

Lemma 5.1. Let G be a semigroup generated by its squares. Let f, g : G→ C
be a solution of the functional equation (1.3). Then

(1) f ◦ σ = −f , i.e., f is odd with respect to σ.
(2) f(xy) = f(yx) for all x, y ∈ S, i.e., f is central.

Theorem 5.2. The solutions f, g : G→ C of the functional equation (1.3) can
be listed as follows:

(A) f = 0 and g is arbitrary.

(B) f = m−m◦σ
2α and g = m+m◦σ

2 + ρ (m−m◦σ)
2 , where α, ρ ∈ C are two

constants with α 6= 0, and m : G → C is a multiplicative function such that
m ◦ σ 6= m·
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(C)

{
f = ma and g = m(1 + β a) on G \ Im,
f = g = 0 on Im,

where β ∈ G is a constant, m : G → C is a nonzero multiplicative function
and a : G \ Im → C is a nonzero additive function such that m ◦ σ = m and
a ◦ σ = −a.

Proof. Let f, g : G→ C be a solution of the functional equation (1.3). If f = 0,
then g is arbitrary, and the solution occurs in (A) of Theorem 5.2. So, in what
follows we assume that f 6= 0. Since f is central and odd with respect to σ,
then by using similar computations to that of the proof of [21, Theorem 4.12]
we get that there exists a constant β ∈ C such

(5.1) go = βf

and that

(5.2) f(xy) = f(x)ge(y) + ge(x)f(y), x, y ∈ G.

According to [12, Lemma 3.4] there exist two multiplicative functions m1,m2 :
G→ C such ge = m1+m2

2 .

If m1 6= m2, then there exists a constant α ∈ C \ {0} such that f = m1−m2

2α .
Since ge ◦ σ = ge and f ◦ σ = −f we get that m1 ◦ σ − m2 ◦ σ = m2 − m1

and m1 ◦ σ + m2 ◦ σ = m1 + m2. It follows that m2 = m1 ◦ σ. So, f =
m−m◦σ

2α and ge = m+m◦σ
2 , where m := m1. Taking (5.2) into account we get

that go = β (m−m◦σ)
2α = ρ (m−m◦σ)

2 , where ρ := β
α . As g = ge + go we obtain

g = m+m◦σ
2 + ρ (m−m◦σ)

2 . The solution occurs in (B) of the list of Theorem 5.2.
If m1 = m2, then letting m := m1 we get ge = m. Since f 6= 0 and G is

generated by its squares we deduce, from (5.2), that m 6= 0 and there exists a
nonzero additive function a : G \ Im → C such that f = ma on G \ Im and
f = 0 on Im. Hence, we get from (5.1) that go = β ma on G \ Im and go = 0
on Im. It follows that g = m (1 + β a) on G \ Im and g = 0 on Im. Moreover
m◦σ = ge ◦σ = ge = m, then σ(G\ Im) = G\ Im. Let x ∈ G\ Im be arbitrary.
Since f ◦ σ = −f we get that m(σ(x)) a(σ(x)) = −m(x) a(x), which implies
m(x) a ◦ σ(x) = −a(x). As m(x) 6= 0 we obtain a ◦ σ(x) = −a(x). We deduce
that a ◦ σ = −a. The solution occurs in (C) of the list of Theorem 5.2.

Conversely, if f and g are of the forms (A)-(C) in Theorem 5.2, we check
by elementary computations that f and g satisfy the functional equation (1.3).
This completes the proof of Theorem 5.2. �

5.2. Stability of equation (1.3) on amenable groups

Lemma 5.3. Let G be a semigroup, f, g : G → C be functions and let V be a
two-sided invariant linear space of complex-valued functions on G such that V
is σ-invariant. Suppose that f and g are linearly independent modulo V. If the
function

x 7→ f(xσ(y))− f(x)g(y) + g(x)f(y)



74 O. AJEBBAR AND E. ELQORACHI

belongs to V for all y ∈ G, then

f ◦ σ = f and g ◦ σ = g

or

f ◦ σ = −f and go = γf,

where γ ∈ C is a constant.

Proof. Let F be the function defined by

(5.3) F (x, y) = f(xσ(y))− f(x)g(y) + g(x)f(y)

for x, y ∈ G. Using similar computations as the ones of the proof of Lemma
3.1 we prove that there exist y0 ∈ G and λ0, λ1 ∈ C such that the function
ϕ1 defined by ϕ1(x) = −λ0 f(x) + λ1 f(xy0) + g(x) for x ∈ G, satisfies the
following functional equations

(5.4) F (x, y) + F (x, σ(y)) = 2 fe(y)ϕ1(x)

and

(5.5) F (x, σ(y))− F (x, y) = 4 f(x) go(y) + 4 g(x) fo(y) + 2fo(y)ϕ1(x)

for all x, y ∈ G.
If f ◦σ 6= −f , then fe 6= 0. So, there exists y1 ∈ G such that fe(y1) 6= 0. By

replacing y by y1 in (5.4) and using the fact that the function x 7→ F (x, y1) +
F (x, σ(y1)) belongs to V we get that

(5.6) ϕ1 ∈ V.

Let y ∈ G be arbitrary. Equations (5.5) and (5.6) implies that the function
x 7→ f(x) go(y) + g(x) fo(y) belongs to V. As f and g are linearly independent
modulo V we get that go(y) = fo(y) = 0. So, y being arbitrary, we deduce that
f ◦ σ = f and g ◦ σ = g.

If f ◦ σ = −f , then

F (x, σ(y)) = f(xy)− f(x) g ◦ σ(y)− g(x) f(y)

and

F (σ(x), y) = −f(xy) + f(x) g(y) + g ◦ σ(x) f(y)

for all x, y ∈ G. By adding the identities above we get that

(5.7) F (x, σ(y)) + F (σ(x), y) = 2 f(x) go(y)− 2 go(x) f(y).

On the other hand f 6= 0, because f and g are linearly independent mod-
ulo V, so there exists z0 ∈ G such that f(z0) 6= 0. Moreover, the functions
x 7→ F (x, σ(z0)) and x 7→ F (x, z0) belong to V. Since V is σ-invariant the
function x 7→ F (σ(x), z0) belongs to V, so does the function x 7→ F (x, σ(z0)) +
F (σ(x), z0). By replacing y by z0 in (5.7) and dividing by f(z0) we get that
there exist a constant γ ∈ C and a function h ∈ V such that

(5.8) go = γf + h.
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Let y ∈ G be arbitrary. Substituting (5.8) back into (5.7) we obtain

F (x, σ(y)) + F (σ(x), y) = 2 f(x)(γf(y) + h(y))− 2 (γf(x) + h(x))f(y)

= 2 f(x)h(y)− 2h(x)f(y)

for all x ∈ G.
Since the functions x 7→ F (x, σ(y)) + F (σ(x), y) and x 7→ h(x) belong to V,

we deduce from the identity above that the function x 7→ f(x)h(y) belongs to
V. As f 6∈ V we infer that h(y) = 0. So, y being arbitrary, we deduce that
h = 0. Hence (5.8) becomes go = γf . This completes the proof of Lemma
5.3. �

Lemma 5.4. Let G be a semigroup, f, g : G → C be functions and let V be a
two-sided invariant linear space of complex-valued functions on G such that V
is σ-invariant. If the function

x 7→ f(xσ(y))− f(x)g(y) + g(x)f(y)

belongs to V for all y ∈ G, then we have one of the following possibilities:
(1) f = 0 and g is arbitrary.
(2) f, g ∈ V.
(3) f 6∈ V, g ∈ V and g is multiplicative.
(4) f 6∈ V, g 6∈ V and g = δ f+m, where δ ∈ C\{0} is a constant and m ∈ V

is a multiplicative function.
(5) f(xσ(y)) = f(x)g(y)− g(x)f(y) for all x, y ∈ G.
(6) F (x, σ(y)) +F (y, σ(x)) = f(xy) + f(yx) for all x, y ∈ G, where F is the

function defined in (5.3).

Proof. We use a similar computation as the one of the proof of [24, Lemma
2.1]. Let F be the function defined in (5.3). We split the discussion into the
cases of f and g are linearly independent modulo V, or f and g are linearly
dependent modulo V.
Case 1: f and g are linearly independent modulo V. Then, according to Lemma
5.3, we have one of the following subcases:
Subcase 1.1: f ◦ σ = −f and go = γ f , where γ ∈ C is a constant.
Since f and g are linearly independent modulo V, then f 6= 0. So, there exists
y0 ∈ G such that f(y0) 6= 0. Let x, y, z ∈ G. By similar computation as the
one of the proof of equations (3.2) and (3.6) (See the proof of Lemma 3.1) we
prove that there exist two constants λ0, λ1 ∈ C such that

(5.9) g(x) = λ0 f(x)− λ1 f(xσ(y0)) + λ1 F (x, y0),

(5.10) f(yz) = f(y)g(z)− λ0 f(y) f(z) + λ1 f(yy0) f(z)

and

(5.11) g(yz) = g(y)g(z)− λ0 g(y)f(z) + λ1 g(yy0)f(z).

By replacing x by σ(y) in (5.9) and using that f ◦ σ = −f we get that

g(σ(y)) = −λ0 f(y) + λ1 f(yy0) + λ1 F (σ(y), y0)
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so that
g(σ(y))− λ1 F (σ(y), y0) = −λ0 f(y) + λ1 f(yy0).

Substituting this back into (5.10) we obtain

(5.12) f(yz) = f(y)g(z) + g(σ(y))f(z)− λ1 F (σ(y), y0)f(z).

Moreover, from (5.3) we have

f(yσ(z)) = f(y)g(z)− g(y)f(z) + F (y, z).

By replacing y by σ(y) in the identity above and using that f ◦ σ = −f we get

(5.13) f(yz) = f(y)g(z) + g(σ(y))f(z)− F (σ(y), z).

From (5.12) and (5.13) we deduce that

(5.14) F (y, z) = λ1 F (y, y0)f(z)

for all y, z ∈ G.
By applying (5.10) to the pair (σ(x), y) and using that f ◦ σ = −f we get

that

f(xσ(y)) = f(x)g(y)− λ0 f(x)f(y) + λ1 f(xσ(y0))f(y)

= f(x)g(y)− f(y)[λ0 f(x)− λ1 f(xσ(y0))].

Moreover, the identity (5.9) implies λ0 f(x)−λ1 f(xσ(y0)) = g(x)−λ1 F (x, y0).
Hence,

(5.15) f(xσ(y)) = f(x)g(y)− f(y)[g(x)− λ1 F (x, y0)].

Computing f(xσ(y)σ(z)) first as f((xσ(y))σ(z)) and then as f(xσ(yz)), by
using (5.15) and a computation adapted to that of the proof of [24, Lemma
2.1], we derive

(5.16)

− ψ(x)f(y) + λ1 F (xσ(y), y0)

= λ1 F (σ(y), y0)g(x) + λ1 F (x, y0)g(σ(y))− λ21 F (x, y0)F (y, y0)

− f(x)ψ(y),

where
ψ(x) := λ0 g(x)− λ1 g(xy0)

for all x ∈ G.
By interchanging x and y in (5.16) we get

(5.17)

− ψ(y)f(x) + λ1 F (yσ(x), y0)

= λ1 F (σ(x), y0)g(y) + λ1 F (y, y0)g(σ(x))− λ21 F (x, y0)F (y, y0)

− f(y)ψ(x).

By adding (5.16) and (5.17) we obtain

(5.18)

λ1 [F (xσ(y), y0) + F (yσ(x), y0)]

= λ1 F (σ(y), y0)g(x) + λ1 F (y, y0)g(σ(x)) + λ1 F (x, y0)g(σ(y))

+ λ1 F (σ(x), y0)g(y)− 2λ21 F (x, y0)F (y, y0)
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Let y ∈ G be arbitrary. Since V a two-sided invariant and σ-invariant linear
space of complex-valued functions on G, and the function x 7→ F (x, y0) belongs
to V by assumption, we derive that the functions x 7→ F (xσ(y), y0), x 7→
F (yσ(x), y0) and x 7→ F (σ(x), y0) belong to V. So, taking (5.18) into account,
the function x 7→ λ1 F (σ(y), y0)g(x) + λ1 F (y, y0)g ◦ σ(x) belongs to V. As
go = γ f we get that g ◦ σ = g − 2 γ f . It follows that the function x 7→
λ1 [F (σ(y), y0) + F (y, y0)]g(x) + 2 γ λ1 F (y, y0)f(x) belongs to V. Since f and
g are linearly independent modulo V and y being arbitrary, we obtain

(5.19) γ λ1 F (y, y0) = 0

for all y ∈ G.
If γ 6= 0, then we get, from (5.19), that λ1 F (y, y0) = 0. It follows, from

(5.14), that F (y, z) = 0 for all y, z ∈ G. Hence, f(xσ(y)) = f(x)g(y)−g(x)f(y)
for all x, y ∈ G. The result occurs in (5) of Lemma 5.4.

If γ = 0, then g0 = 0, which implies that g ◦ σ = g. So, F (x, σ(y)) =
f(xy)− f(x)g(y)− g(x)f(y) for all x, y ∈ G. Hence, the function x 7→ f(xy)−
f(x)g(y)−g(x)f(y) belongs to V for each fixed y in G. According to [24, Lemma
2.1] we get that

f(xy) = f(x)g(y) + g(x)f(y)

for all x, y ∈ G. By applying this functional equation to the pair (x, σ(y)) we
get that

f(xσ(y)) = f(x)g(y)− g(x)f(y)

for all x, y ∈ G. The result occurs in (5) of Lemma 5.4.
Subcase 1.2: f ◦ σ = f and g ◦ σ = g. Let x, y ∈ G. By applying (5.3) to the
pairs (y, σ(x)) and (σ(x), y) we obtain respectively

F (y, σ(x)) = f(yx)− f(y)g(x) + g(y)f(x)

and
F (σ(x), y) = f(xy)− f(x)g(y) + g(x)f(y).

By adding the last identities we get that

F (σ(x), y) + F (y, σ(x)) = f(xy) + f(yx)

for all x, y ∈ G, which occurs in (6) of Lemma 5.4.
Case 2: f and g are linearly dependent modulo V. Then, there exist two
constants µ, ν ∈ C, not both zero, and a function h ∈ V such that µ f+ν g = h.

If f = 0, then g is arbitrary. This is (1) of Lemma 5.4.
If f 6∈ V and g 6∈ V, then µ 6= 0 and ν 6= 0. So g = δ f + l, where

δ := −µν ∈ C \ {0} is a constant and l := − 1
ν h ∈ V. Hence,

F (x, σ(y)) = f(xy)− f(x)[δ f(σ(y)) + l(σ(y))] + [δ f(x) + l(x)]f(σ(y))

= f(xy)− f(x)l ◦ σ(y) + l(x)f(σ(y))

for all x, y ∈ G. Let y ∈ G be arbitrary. Since the functions x 7→ F (x, σ(y))
and x 7→ l(x)f(σ(y)) belong to V so does the function x 7→ f(xy)−f(x)l◦σ(y).
As f 6∈ V we derive, according to [22, Theorem], that l ◦ σ is a multiplicative
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function, so is l. Hence g = δ f +m, where m ∈ V is multiplicative. The result
occurs in (4) of Lemma 5.4.

If f ∈ V and f 6= 0, then the function x 7→ g(x)f(y) belongs to V for all
y ∈ G, because the functions x 7→ F (x, y) and x 7→ f(x)g(y) belong also to V.
As f 6= 0 we derive that g ∈ V. So we obtain the result (2) of Lemma 5.4.

If g ∈ V and f 6∈ V. Let y be arbitrary. We have f(xy) − f(x)g ◦ σ(y) =
F (x, σ(y))−g(x)f(σ(y)) for all x ∈ G. Since the functions x 7→ F (x, σ(y)) and
x 7→ g(x)f(σ(y)) belong to V so does the function x 7→ f(xy)−f(x)g◦σ(y). As
f 6∈ V we get, according to [22, Theorem], that g is a multiplicative function.
The result occurs in (3) of Lemma 5.4. This completes the proof of Lemma
5.4. �

Theorem 5.5. Let G be an amenable group, σ : G → G be an involutive
automorphism and let f, g : G→ C be functions. The function

(x, y) 7→ f(xσ(y))− f(x)g(y) + g(x)f(y)

is bounded if and only if one of the following assertions holds:
(1) f = 0 and g is arbitrary.
(2) f, g ∈ B(G).
(3) f 6∈ B(G), g 6∈ B(G), and f = am + b and g = (1 + δ a)m + δ b, where

δ ∈ C is a constant, b : G → C is a bounded function, a : G → C is nonzero
additive function and m : G→ C is a nonzero bounded multiplicative function
such that m ◦ σ = m and a ◦ σ = −a.

(4) f(xσ(y)) = f(x)g(y)− g(x)f(y) for all x, y ∈ G.

Proof. First we prove the necessity. Let F be the function defined in (5.3).
Since F is bounded, then the function

x 7→ f(xσ(y))− f(x)g(y) + g(x)f(y)

belongs to B(G) for every y ∈ G. Notice that B(G) is a two-sided invariant
and σ-invariant linear space of complex-valued functions on G. According to
Lemma 5.4 we have one of the following possibilities:

(1) f = 0 and g is arbitrary, which occurs in (1) of Theorem 5.5.
(2) f, g ∈ B(G), the result occurs in (2) of Theorem 5.5.
(3) g ∈ B(G) and g is multiplicative. Let m := g. If m = 0, then F (x, y) =

f(xσ(y)) for all x, y ∈ G. Since F is bounded so is f . The result occurs in (2)
of Theorem 5.5.

Suppose that m 6= 0. Let x, y ∈ G, we have

(5.20) F (x, σ(y)) = f(xy)− f(x)m ◦ σ(y) +m(x)f ◦ σ(y)

and

(5.21) F (σ(x), y) = f ◦ σ(xy)− f ◦ σ(x)m(y) +m ◦ σ(x)f(y).

We discuss two cases: m ◦ σ = m, and m ◦ σ 6= m.
Case 1: m ◦ σ = m, then by adding the equations (5.20) and (5.21) we get

H(x, y) = fe(xy)− fe(x)m(y) +m(x)fe(y),
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where H(x, y) := 1
2 [F (σ(x), y) + F (x, σ(y))]. So,

H(x, y) +H(y, x) = fe(xy) + fe(yx).

Let e be the identity element of the group G. By putting y = e in the identity
above we get that

(5.22) fe(x) =
1

2
[H(x, e) +H(e, x)]

for all x ∈ G.
Since the function F is bounded so is the function x 7→ 1

2 [H(x, e) +H(e, x)].
Hence, we deduce from (5.22) that

(5.23) fe ∈ B(G).

On the other hand, by subtracting (5.20) from (5.21) and taking into account
that m ◦ σ = m, we get that

F (x, σ(y))− F (σ(x), y) = 2 fo(xy)− fo(x)m(y)−m(x)fo(y).

Since m is a nonzero multiplicative function on the group G we get that m(x) 6=
0 and m(x−1) = (m(x))−1 for all x ∈ G. Hence, multiplying the last equation
by 1

2m((xy)−1), we get that

1

2
[F (x, σ(y))− F (σ(x), y)]m((xy)−1)

= fo(xy)(m(xy))−1 − fo(x)(m(x))−1 − fo(y)(m(y))−1.

Since the functions F and m are bounded so are the right hand sides of the
identity above as a function in (x, y). As G is an amenable group we get,
according to Hyers’s theorem [23, Theorem 3.1], that there exist an additive
function a : G→ C and a function b1 ∈ B(G) such that fo(x)m(x)−1 − a(x) =
b1(x) for all x ∈ G. Hence,

(5.24) fo = (a+ b1)m.

We derive from (5.23) and (5.24) that f = am + b, where b := fe + b1m is a
bounded function.

On the other hand, using that f = am + b, g = m, a is additive, m is
multiplicative and m ◦ σ = m, we obtain from (5.3) that

F (x, y) = a(xσ(y))m(xσ(y)) + b(xσ(y))− [a(x)m(x) + b(x)]m(y)

+ [a(y)m(y) + b(y)]m(x)

= [a(x) + a ◦ σ(y)]m(xy)− a(x)m(xy) + a(y)m(xy)− b(x)m(y)

+ b(y)m(x) + b(xσ(y))

= [a ◦ σ(y) + a(y)]m(xy)− b(x)m(y) + b(y)m(x) + b(xσ(y))

for all x, y ∈ G. As m is a nonzero multiplicative function on the group G we
get that m(x) 6= 0 and m(x−1) = (m(x))−1 for all x ∈ G. So,

F (x, y)m((xy)−1) = a ◦ σ(y) + a(y)− b(x)m(x−1) + b(y)m(y−1)



80 O. AJEBBAR AND E. ELQORACHI

+ b(xσ(y))m((xy)−1).

Let x ∈ G be fixed. Since the functions y 7→ F (x, y), y 7→ m((xy)−1) and b
belong to B(G) so does the function y 7→ a ◦ σ(y) + a(y). Since a ◦ σ + a is
additive we get, according to [21, Exercise 2.5(a)], that a ◦ σ = −a. The result
occurs in (3) of Theorem 5.5.
Case 2: m ◦ σ 6= m. Since m 6= 0 we have m(e) = 1. Hence,

F (e, y) = f ◦ σ(y)− f(e)m(y) + f(y) = 2 fe(y)− f(e)m(y)

for all y ∈ G. Since the functions y 7→ F (e, y), y 7→ f(e)m(y) belong to B(G)
we get that

(5.25) fe ∈ B(G).

On the other hand, by subtracting (5.20) from (5.21) we obtain

F (x, σ(y))− F (σ(x), y)

= 2 fo(xy)− f(x)m ◦ σ(y) +m(x)f ◦ σ(y) + f ◦ σ(x)m(y)−m ◦ σ(x)f(y)

for all x, y ∈ G. Notice that f = fe + fo, f ◦ σ = fe − fo, m = me + mo and
m ◦ σ = me −mo. So, we have

1

2
[F (x, σ(y))− F (σ(x), y)]

= fo(xy)− fo(x)me(y) +mo(x)fe(y)−me(x)fo(y) + fe(x)me(y)

for all x, y ∈ G. Let y ∈ G be arbitrary. Since the functions x 7→ F (x, σ(y)),
x 7→ F (σ(x), y), x 7→ mo(x)fe(y), x 7→ me(x)fo(y) and x 7→ fe(x)me(y) belong
to B(G) so does the function x 7→ fo(xy) − fo(x)me(y). As B(G) is a two-
sided invariant linear space of complex-valued functions on G and me is not
multiplicative, because m◦σ 6= m, we deduce, according to [22, Theorem], that

(5.26) fo ∈ B(G).

We deduce from (5.23) and (5.24) that f ∈ B(G). The result occurs in (2) of
Theorem 5.5.

(4) f 6∈ B(G), g 6∈ B(G) and g = δ f + m, where δ ∈ C\{0} is a constant
and m ∈ B(G) is a multiplicative function. Then

F (x, y) = f(xσ(y))− f(x)[δ f(y) +m(y)] + f(y)[δ f(x) +m(x)]

= f(xσ(y))− f(x)m(y) +m(x)f(y)

for all x, y ∈ G. So we go back to (3) (see page 21).
If m = 0, then g = δ f . Hence, F (x, y) = f(xσ(y)) for all x, y ∈ G. Sine the

function (x, y) 7→ F (x, y) is bounded so are f and g, which contradicts that
f 6∈ B(G) and g 6∈ B(G).

If m 6= 0, then, proceeding exactly as in (3) (see page 21), and seeing
that f 6∈ B(G) and g 6∈ B(G) we prove that there exist an additive function
a : G→ C and a function b ∈ B(G) such that f = am+ b, g = (1 + δ a)m+ δ b,
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m ◦ σ = m and a ◦ σ = −a. Moreover a is nonzero because f 6∈ B(G). The
result occurs in (3) of Theorem 5.5.

(5) f(xσ(y)) = f(x)g(y) − g(x)f(y) for all x, y ∈ G, which is the assertion
(4) of Theorem 5.5.

(6) F (x, σ(y)) + F (y, σ(x)) = f(xy) + f(yx) for all x, y ∈ G. If f = 0, then
the functional equation (1.3) is satisfied, which corresponds to (4) of Theorem
5.5. In what follows we assume that f 6= 0. By putting y = e in the identity
above we get

F (x, e) + F (e, σ(x)) = 2 f(x)

for all x ∈ G. Since the functions x 7→ F (x, e) and x 7→ F (e, x) belong to B(G)
and B(G) is σ-invariant, we get that f ∈ B(G). So, we get from the identity

F (x, y) = f(xσ(y))− f(x)g(y) + g(x)f(y),

that g ∈ B(G). The result occurs in (2) of Theorem 5.5.
Conversely, we check by elementary computations that if one of the asser-

tions (1)-(4) in Theorem 5.5 is satisfied, then the function

(x, y) 7→ f(xσ(y))− f(x)g(y) + g(x)f(y)

is bounded. This completes the proof of Theorem 5.5. �
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