DOI QR코드

DOI QR Code

THICKLY SYNDETIC SENSITIVITY OF SEMIGROUP ACTIONS

  • Wang, Huoyun (Department of Mathematics Guangzhou University)
  • Received : 2017.07.15
  • Accepted : 2017.11.22
  • Published : 2018.07.31

Abstract

We show that for an M-action on a compact Hausdorff uniform space, if it has at least two disjoint compact invariant subsets, then it is thickly syndetically sensitive. Additionally, we point out that for a P-M-action of a discrete abelian group on a compact Hausdorff uniform space, the multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity.

Keywords

References

  1. V. Bergelson and N. Hindman, Partition regular structures contained in large sets are abundant, J. Combin. Theory Ser. A 93 (2001), no. 1, 18-36. https://doi.org/10.1006/jcta.2000.3061
  2. V. Bergelson, N. Hindman, and R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, Topology Proc. 23 (1998), Spring, 23-60.
  3. X. Dai and X. Tang, Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics, J. Differential Equations 263 (2017), no. 9, 5521-5553. https://doi.org/10.1016/j.jde.2017.06.021
  4. D. B. Ellis, R. Ellis, and M. Nerurkar, The topological dynamics of semigroup actions, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1279-1320. https://doi.org/10.1090/S0002-9947-00-02704-5
  5. W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, RI, 1955.
  6. N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification, De Gruyter Expositions in Mathematics, 27, Walter de Gruyter & Co., Berlin, 1998.
  7. W. Huang, K. D. Anylo, S. Kolyada, and G. H. Zhang, Dynamical compactness and sensitivity, J. Differential Equations 260 (2016), no. 9, 6800-6827. https://doi.org/10.1016/j.jde.2016.01.011
  8. W. Huang, S. Kolyada, and G. H. Zhang, Analogues of Auslander-Yorke theorems for multi-sensitivity, arXiv:1509.08818v1[math.DS], 29 September, 2015.
  9. S. Kolyada and Snoha, Some aspects of topological transitivity-a survey, in Iteration theory (ECIT 94) (Opava), 3-35, Grazer Math. Ber., 334, Karl-Franzens-Univ. Graz, 2004.
  10. E. Kontorovich and M. Megrelishvili, A note on sensitivity of semigroup actions, Semigroup Forum 76 (2008), no. 1, 133-141. https://doi.org/10.1007/s00233-007-9033-5
  11. H. Liu, L. Liao, and L. Wang, Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nat. Soc. (2014), Art. ID 583431, 4 pp.
  12. A. Miller and C. Money, Syndetic sensitivity in semiflows, Topology Appl. 196 (2015), part A, 1-7. https://doi.org/10.1016/j.topol.2015.09.008
  13. T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity 20 (2007), no. 9, 2115-2126. https://doi.org/10.1088/0951-7715/20/9/006
  14. F. M. Schneider, S. Kerkhoff, M. Behrisch, and S. Siegmund, Chaotic actions of topological semigroups, Semigroup Forum 87 (2013), no. 3, 590-598. https://doi.org/10.1007/s00233-013-9517-4
  15. H. Wang, Z. Chen, and H. Fu, M-systems and scattering systems of semigroup actions, Semigroup Forum 91 (2015), no. 3, 699-717. https://doi.org/10.1007/s00233-015-9736-y
  16. H. Wang, X. Long, and H. Fu, Sensitivity and chaos of semigroup actions, Semigroup Forum 84 (2012), no. 1, 81-90. https://doi.org/10.1007/s00233-011-9335-5