ϵ -FUZZY CONGRUENCES ON SEMIGROUPS

INHEUNG CHON

ABSTRACT. We define an ϵ -fuzzy congruence, which is a weakened fuzzy congruence, find the ϵ -fuzzy congruence generated by the union of two ϵ -fuzzy congruences on a semigroup, and characterize the ϵ -fuzzy congruences generated by fuzzy relations on semigroups. We also show that the collection of all ϵ -fuzzy congruences on a semigroup is a complete lattice and that the collection of ϵ -fuzzy congruences under some conditions is a modular lattice.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([8]). Subsequently, Goguen ([1]) and Sanchez ([6]) studied fuzzy relations in various contexts. In [4] Nemitz discussed fuzzy equivalence relations, fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3]) developed some properties of fuzzy equivalence relations and certain lattice theoretic properties of fuzzy equivalence relations. Samhan ([5]) characterized the fuzzy congruences generated by fuzzy relations on a semigroup and studied the lattice of fuzzy congruences on a semigroup. Also Gupta et al. ([2]) proposed a generalized definition of a fuzzy equivalence relation on a set, which is called a G-fuzzy equivalence relation, and developed some properties of that relation. The standard definition of a reflexive fuzzy relation μ on a set X, which Murali ([3]), Nemitz ([4]), and Samhan ([5]) used in their papers, is $\mu(x, x) = 1$ for all $x \in X$. Yeh ([7]) weakened the standard reflexive fuzzy relation to $\mu(x, x) \ge \epsilon > 0$ for all $x \in X$, which is called an ϵ -reflexive fuzzy relation.

We define an ϵ -fuzzy congruence, which is a weakened fuzzy congruence based on the ϵ -refexive fuzzy relation, and characterize the generated ϵ -fuzzy congruences on semigroups and some lattice properties of ϵ -fuzzy congruences. In Section 2 we review some basic definitions and properties of fuzzy relations and ϵ -fuzzy congruences. In Section 3 we find the ϵ -fuzzy congruence generated

©2008 The Korean Mathematical Society

461

Received March 9, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 03E72.

Key words and phrases. ϵ -reflexive fuzzy relation, ϵ -fuzzy equivalence relation, ϵ -fuzzy congruence.

This work was supported by a special research grant from Seoul Women's University (2008).

by the union of two ϵ -fuzzy congruences on a semigroup, find the ϵ -fuzzy congruence generated by a fuzzy relation which is fuzzy left and right compatible on a semigroup, and find the ϵ -fuzzy congruence generated by a fuzzy relation on a semigroup. In Section 4 we show that the set C(S) of all ϵ -fuzzy congruences on a semigroup is a complete lattice and every sublattice H of the lattice $\{\mu \in C(S) : \mu(x, y) \leq \epsilon \text{ for } x, y \in S \text{ and } x \neq y\}$ such that $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in H$ is modular.

2. Preliminaries

In this section we recall some basic definitions and properties of fuzzy relations and ϵ -fuzzy congruences which will be used in the next section.

Definition 2.1. A function B from a set X to the closed unit interval [0, 1] in \mathbb{R} is called a *fuzzy set* in X. For every $x \in B$, B(x) is called a *membership grade* of x in B.

The standard definition of a reflexive fuzzy relation μ in a set X demands $\mu(x, x) = 1$ for all $x \in X$. Yeh ([7]) weakened this definition as follows.

Definition 2.2. A fuzzy relation μ in a set X is a fuzzy subset of $X \times X$. μ is ϵ -reflexive in X if $\mu(x, x) \ge \epsilon > 0$ for all $x \in X$. μ is symmetric in X if $\mu(x, y) = \mu(y, x)$ for all x, y in X. The composition $\lambda \circ \mu$ of two fuzzy relations λ, μ in X is the fuzzy subset of $X \times X$ defined by

$$(\lambda \circ \mu)(x, y) = \underset{z \in X}{\longrightarrow} \sup \min(\lambda(x, z), \mu(z, y)).$$

A fuzzy relation μ in X is *transitive* in X if $\mu \circ \mu \subseteq \mu$. A fuzzy relation μ in X is called ϵ -fuzzy equivalence relation if μ is ϵ -reflexive, symmetric, and transitive.

Example. Let $X = \{x, y, z\}$ be a set. Let ν be a fuzzy relation in X such that $\nu(x, x) = \nu(y, y) = \nu(z, z) = 1$, $\nu(x, y) = \nu(y, x) = 0.2$, $\nu(x, z) = \nu(z, x) = 0.1$, and $\nu(y, z) = \nu(z, y) = 0.1$. Then ν is a fuzzy equivalence relation in X. Let μ be a fuzzy relation in X such that $\mu(x, x) = 0.5$, $\mu(y, y) = 0.3$, $\mu(z, z) = 0.7$, $\mu(x, y) = \mu(y, x) = 0.2$, $\mu(x, z) = \mu(z, x) = 0.1$, and $\mu(y, z) = \mu(z, y) = 0.1$. Then μ is an ϵ -fuzzy equivalence relation. That is, μ need not to be $\mu(x, x) = \mu(y, y) = \mu(z, z) = 1$.

Let \mathcal{F}_X be the set of all fuzzy relations in a set X. Then it is easy to see that the composition \circ is associative and \mathcal{F}_X is a monoid under the operation of composition \circ .

Definition 2.3. Let μ be a fuzzy relation in a set X. μ is called *fuzzy left* (*right*) compatible if $\mu(x, y) \leq \mu(zx, zy)$ ($\mu(x, y) \leq \mu(xz, yz)$) for all $x, y, z \in X$. An ϵ -fuzzy equivalence relation on X is called an ϵ -fuzzy left congruence (*right congruence*) if it is fuzzy left compatible (right compatible). An ϵ -fuzzy equivalence relation on X is an ϵ -fuzzy congruence if it is an ϵ -fuzzy left and right congruence.

Definition 2.4. Let μ be a fuzzy relation in a set X. μ^{-1} is defined as a fuzzy relation in X by $\mu^{-1}(x, y) = \mu(y, x)$.

It is easy to see that $(\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1}$ for fuzzy relations μ and ν .

Proposition 2.5. Let μ be a fuzzy relation on a set X. Then $\bigcup_{n=1}^{\infty} \mu^n$ is the smallest transitive fuzzy relation on X containing μ , where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.3 of [5].

Proposition 2.6. Let μ be a fuzzy relation on a set X. If μ is symmetric, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 2.4 of [5].

Proposition 2.7. If μ is a fuzzy relation on a semigroup S that is fuzzy left and right compatible, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. See Proposition 3.6 of [5].

Proposition 2.8. Let μ be a fuzzy relation on a set S. If μ is ϵ -reflexive, then so is $\bigcup_{n=1}^{\infty} \mu^n$, where $\mu^n = \mu \circ \mu \circ \cdots \circ \mu$.

Proof. Clearly μ is ϵ -reflexive. Suppose μ^k is ϵ -reflexive. Then $\mu^{k+1}(x,x) = (\mu^k \circ \mu)(x,x) = \underset{z \in X}{\rightarrow} \sup\min[\mu^k(x,z), \ \mu(z,x)] \ge \min[\mu^k(x,x), \ \mu(x,x)] \ge \epsilon > 0.$ By the mathematical induction, μ^n is ϵ -reflexive for all natural numbers n. Thus $[\bigcup_{n=1}^{\infty} \mu^n](x,x) = \sup[\mu(x,x), \ (\mu \circ \mu)(x,x), \ldots] \ge \epsilon > 0.$ Hence $\bigcup_{n=1}^{\infty} \mu^n$ is ϵ -reflexive.

Proposition 2.9. Let μ and each ν_i be fuzzy relations in a set X for all $i \in I$. Then $\mu \circ (\underset{i \in I}{\rightarrow} \cap \nu_i) \subseteq \underset{i \in I}{\rightarrow} \cap (\mu \circ \nu_i)$ and $(\underset{i \in I}{\rightarrow} \cap \nu_i) \circ \mu \subseteq \underset{i \in I}{\rightarrow} \cap (\nu_i \circ \mu)$.

Proof. Straightforward.

3. ϵ -fuzzy congruences on semigroups

In this section we characterize the generated $\epsilon\text{-fuzzy}$ congruences on semi-groups.

Proposition 3.1. Let μ and ν be ϵ -fuzzy congruences in a set X. Then $\mu \cap \nu$ is an ϵ -fuzzy congruence.

Proof. It is clear that $\mu \cap \nu$ is ϵ -reflexive and symmetric. By Proposition 2.9, $[(\mu \cap \nu) \circ (\mu \cap \nu)] \subseteq [\mu \circ (\mu \cap \nu)] \cap [\nu \circ (\mu \cap \nu)] \subseteq [(\mu \circ \mu) \cap (\mu \circ \nu)] \cap [(\nu \circ \mu) \cap (\nu)] \subseteq [\mu \cap (\mu \circ \nu)] \cap [(\nu \circ \mu) \cap \nu] \subseteq \mu \cap \nu$. That is, $\mu \cap \nu$ is transitive. Clearly $\mu \cap \nu$ is fuzzy left and right compatible. Thus $\mu \cap \nu$ is an ϵ -fuzzy congruence.

Example. Let $X = \{x, y, z\}$ be a semigroup such that xy = y, yx = x, xz = z, zx = x, yz = z, zy = y. Let μ and ν be fuzzy relations in X such that $\mu(x, x) = \mu(y, y) = \mu(z, z) = 0.8$, $\mu(x, y) = \mu(y, x) = 0.4$, $\mu(x, z) = \mu(z, x) = 0.2$, $\mu(y, z) = \mu(z, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = \nu(y, y) = \nu(z, z) = 0.6$, $\nu(x, y) = 0.2$, $\nu(x, x) = 0.2$,

 $\nu(y,x) = 0.3, \ \nu(x,z) = \nu(z,x) = 0.3, \ \nu(y,z) = \nu(z,y) = 0.5.$ Then $(\mu \cup \nu)(x,x) = (\mu \cup \nu)(y,y) = (\mu \cup \nu)(z,z) = 0.8, \ (\mu \cup \nu)(x,y) = (\mu \cup \nu)(y,x) = 0.4, \ (\mu \cup \nu)(x,z) = (\mu \cup \nu)(z,x) = 0.3, \text{ and } (\mu \cup \nu)(y,z) = (\mu \cup \nu)(z,y) = 0.5.$ It is easily checked that μ and ν are ϵ -fuzzy congruences on X, but $\mu \cup \nu$ is not an ϵ -fuzzy congruence on X.

Even though μ and ν are ϵ -fuzzy congruences, $\mu \cup \nu$ is not necessarily an ϵ -fuzzy congruence as shown in the above example. We find the ϵ -fuzzy congruence generated by $\mu \cup \nu$ on a semigroup in the following proposition.

Proposition 3.2. Let μ and ν be ϵ -fuzzy congruences on a semigroup S. Then the ϵ -fuzzy congruence generated by $\mu \cup \nu$ in S is $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n = (\mu \cup \nu) \cup [(\mu \cup \nu) \circ (\mu \cup \nu)] \cup \cdots$.

Proof. Clearly $(\mu \cup \nu)(x,x) \geq \epsilon > 0$. That is, $\mu \cup \nu$ is ϵ -reflexive. By Proposition 2.8, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is ϵ -reflexive. Clearly $\mu \cup \nu$ is symmetric. By Proposition 2.6, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is an ϵ -fuzzy equivalence relation containing $\mu \cup \nu$. It is straightforward to see that $\mu \cup \nu$ is fuzzy left and right compatible. By Proposition 2.7, $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is fuzzy left and right compatible. Thus $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is an ϵ -fuzzy congruence containing $\mu \cup \nu$. Let λ be an ϵ -fuzzy congruence in S containing $\mu \cup \nu$. Then $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n \subseteq \bigcup_{n=1}^{\infty} \lambda^n = \lambda \cup (\lambda \circ \lambda) \cup (\lambda \circ \lambda \circ \lambda) \cup \cdots \subseteq \lambda \cup \lambda \cup \cdots = \lambda$. Thus $\bigcup_{n=1}^{\infty} (\mu \cup \nu)^n$ is the ϵ -fuzzy congruence generated by $\mu \cup \nu$.

We now turn to the characterization of the ϵ -fuzzy congruences generated by fuzzy relations on semigroups.

Theorem 3.3. Let μ be a fuzzy relation on a semigroup S such that μ is fuzzy left and right compatible. Then the ϵ -fuzzy congruence generated by μ in S is $\bigcup_{n=1}^{\infty} (\mu \cup \mu^{-1} \cup \theta)^n$, where θ is a fuzzy relation in S such that $\theta(a, a) = \epsilon$ for all $a \in S$ and $\theta(x, y) = \theta(y, x) \leq \min[\mu(x, y), \mu(y, x)]$ for all $x, y \in S$ with $x \neq y$.

 $\begin{array}{l} Proof. \ (\mu\cup\mu^{-1}\cup\theta)(a,a)\geq\theta(a,a)=\epsilon>0 \ \text{for all } a\in S. \ \text{Thus } \mu\cup\mu^{-1}\cup\theta\\ \text{is ϵ-reflexive. Let $\mu_1=\mu\cup\mu^{-1}\cup\theta$. By Proposition 2.8, $\cup_{n=1}^{\infty}\mu_1^n$ is ϵ-reflexive. $\mu_1(x,y)=(\mu\cup\mu^{-1}\cup\theta)(x,y)=\max[\mu(x,y),\mu^{-1}(x,y),\theta(x,y)]=\max[\mu^{-1}(y,x),\mu(y,x),\theta(y,x)]=(\mu\cup\mu^{-1}\cup\theta)(y,x)=\mu_1(y,x). \ \text{Thus } \mu_1$ is symmetric. By Proposition 2.6, $\cup_{n=1}^{\infty}\mu_1^n$ is symmetric. By Proposition 2.5, $\cup_{n=1}^{\infty}\mu_1^n$ is transitive. Hence $\cup_{n=1}^{\infty}\mu_1^n$ is an ϵ-fuzzy equivalence relation containing μ. Since $\theta(x,y)\leq\mu(x,y)]=\max[\mu(x,y),\mu(y,x),\theta(x,y)]\leq\max[\mu(zx,zy),\mu(zy,zx),\theta(zx,zy)]=\max[\mu(zx,zy),\mu^{-1}(zx,zy),\theta(zx,zy)]=(\mu\cup\mu^{-1}\cup\theta)(zx,zy),\mu(zy,zx),\theta(zx,zy)]=\max[\mu(zx,zy),\mu^{-1}(zx,zy),\theta(zx,zy)]=(\mu\cup\mu^{-1}\cup\theta)(zx,zx),\theta(zx,zy)=\mu_1(zx,zx),\theta(zx,zx)=\max[\mu(x,x),\theta(x,x)]\leq\max[\mu(zx,zx),\theta(zx,zx),\theta(zx,zx)]=(\mu\cup\mu^{-1}\cup\theta)(x,x)=\max[\mu(x,x),\theta(x,x)]\leq\max[\mu(zx,zx),\theta(zx,zx),\theta(zx,zx)]=(\mu\cup\mu^{-1}\cup\theta)(zx,zx)=\max[\mu(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx)]=(\mu\cup\mu^{-1}\cup\theta)(zx,zx)=\max[\mu(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx)]=(\mu\cup\mu^{-1}\cup\theta)(zx,zx)=\max[\mu(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx),\theta(zx,zx)]=(\mu\cup\mu^{-1}\cup\theta)(zx,zx)=\max[\mu(zx,zx),\theta(zx$

Proposition 2.7, $\bigcup_{n=1}^{\infty} \mu_1^n$ is fuzzy left and right compatible. Thus $\bigcup_{n=1}^{\infty} \mu_1^n$ is an ϵ -fuzzy congruence containing μ . Let ν be an ϵ -fuzzy congruence containing μ . Then $\mu(x,y) \leq \nu(x,y)$, $\mu^{-1}(x,y) = \mu(y,x) \leq \nu(y,x) = \nu(x,y)$, and $\theta(x,y) \leq \mu(x,y) \leq \nu(x,y)$ for all $x, y \in S$ such that $x \neq y$. That is, $\nu(x,y) \geq (\mu \cup \mu^{-1} \cup \theta)(x,y)$ for all $x, y \in S$ such that $x \neq y$. $\nu(a,a) \geq \mu(a,a) = \mu^{-1}(a,a)$ for all $a \in S$. Since $\theta(a,a) = \epsilon$ and $\nu(a,a) \geq \epsilon$ for all $a \in S$, $\theta(a,a) \leq \nu(a,a)$. That is, $\mu_1(a,a) \leq \nu(a,a)$ for all $a \in S$. Thus $\mu_1 = (\mu \cup \mu^{-1} \cup \theta) \subseteq \nu$. Suppose $\mu_1^k \subseteq \nu$. Then $\mu_1^{k+1}(x,y) = (\mu_1^k \circ \mu_1)(x,y) = \underset{z \in S}{\longrightarrow}$ sup min $[\mu_1^k(x,z), \mu_1(z,y)] \leq \underset{z \in S}{\longrightarrow}$ sup min $[\nu(x,z), \nu(z,y)] = (\nu \circ \nu)(x,y)$. Since ν is transitive, $\mu_1^{k+1} \subseteq \nu \circ \nu \subseteq \nu$. By the mathematical induction, $\mu_1^n \subseteq \nu$ for $n = 1, 2, \ldots$. Hence $\bigcup_{n=1}^{\infty} \mu_1^n = \mu_1 \cup (\mu_1 \circ \mu_1) \cup (\mu_1 \circ \mu_1 \circ \mu_1) \cup \cdots \subseteq \nu$.

We need the following definition and proposition to find the ϵ -fuzzy congruence generated by a fuzzy relation on a semigroup.

Definition 3.4. Let μ be a fuzzy relation on a semigroup S and let $S^1 = S \cup \{e\}$, where e is the identity of S. We define the fuzzy relation μ^* on S as

$$\mu^*(c,d) = \bigcup_{\substack{x,y \in S^1, \\ xay = c, \\ xby = d}} \mu(a,b) \text{ for all } c,d \in S.$$

Proposition 3.5. Let μ and ν be two fuzzy relations on a semigroup S. Then

μ ⊆ μ*
(μ*)⁻¹ = (μ⁻¹)*
If μ ⊆ ν, then μ* ⊆ ν*
(μ ∪ ν)* = μ* ∪ ν*
μ = μ* if and only if μ is fuzzy left and right compatible
(μ*)* = μ*

Proof. See Proposition 3.5 of [5].

 \Box

Theorem 3.6. Let μ be a fuzzy relation on a semigroup S. Then the ϵ -fuzzy congruence generated by μ in S is $\bigcup_{n=1}^{\infty} [\mu^* \cup (\mu^*)^{-1} \cup \theta^*]^n$, where θ is a fuzzy relation in S such that $\theta(a, a) = \epsilon$ for all $a \in S$ and $\theta(x, y) = \theta(y, x) \leq \min [\mu(x, y), \mu(y, x)]$ for all $x, y \in S$ with $x \neq y$, and μ^* and θ^* are fuzzy relations defined in Definition 3.4.

Proof. Since $\theta(a, a) = \epsilon$, $\theta^*(a, a) \ge \epsilon > 0$ for all $a \in S$ by Proposition 3.5(1). Let $\mu_1 = \mu^* \cup (\mu^*)^{-1} \cup \theta^*$. Then $\mu_1(a, a) \ge \epsilon > 0$. That is, μ_1 is ϵ -reflexive. By Proposition 2.8, $\bigcup_{n=1}^{\infty} \mu_1^n$ is ϵ -reflexive. Let $x, y \in S$ with $x \ne y$. Since $\theta = \theta^{-1}$, $\theta^* = (\theta^{-1})^* = (\theta^*)^{-1}$ by Proposition 3.5(2). $\mu_1(x, y) = \max[\mu^*(x, y), (\mu^*)^{-1}(x, y), \theta^*(x, y)] = \max[(\mu^*)^{-1}(y, x), \mu^*(y, x), (\theta^*)^{-1}(x, y)]$ $= \max[(\mu^*)^{-1}(y, x), \mu^*(y, x), \theta^*(y, x)] = (\mu^* \cup (\mu^*)^{-1} \cup \theta^*)(y, x) = \mu_1(y, x)$. Thus μ_1 is symmetric. By Proposition 2.6, $\bigcup_{n=1}^{\infty} \mu_1^n$ is symmetric. By Proposition 2.5, $\bigcup_{n=1}^{\infty} \mu_1^n$ is transitive. Hence $\bigcup_{n=1}^{\infty} \mu_1^n$ is a ϵ -fuzzy equivalence relation

containing μ . By Proposition 3.5(2), (4), and (6), $\mu_1^* = (\mu^* \cup (\mu^*)^{-1} \cup \theta^*)^* = (\mu^* \cup (\mu^{-1})^* \cup \theta^*)^* = (\mu^*)^* \cup ((\mu^{-1})^*)^* \cup (\theta^*)^* = \mu^* \cup (\mu^{-1})^* \cup \theta^* = \mu^* \cup (\mu^*)^{-1} \cup \theta^* = \mu_1$. Thus μ_1 is fuzzy left and right compatible by Proposition 3.5(5). By Proposition 2.7, $\bigcup_{n=1}^{\infty} \mu_1^n$ is fuzzy left and right compatible. Thus $\bigcup_{n=1}^{\infty} \mu_1^n$ is an ϵ -fuzzy congruence containing μ . Let ν be an ϵ -fuzzy congruence containing μ . Then $\mu(x,y) \leq \nu(x,y)$, $\mu^{-1}(x,y) = \mu(y,x) \leq \nu(y,x) = \nu(x,y)$, and $\theta(x,y) \leq \mu(x,y) \leq \nu(x,y)$. That is, $(\mu \cup \mu^{-1} \cup \theta)(x,y) \leq \nu(x,y)$ for all $x, y \in S$ such that $x \neq y$. $\nu(a,a) \geq \mu(a,a) = \mu^{-1}(a,a)$ for all $a \in S$. Since $\theta(a,a) = \epsilon$ and $\nu(a,a) \geq \epsilon$ for all $a \in S$, $\theta(a,a) \leq \nu(a,a)$. That is, $(\mu \cup \mu^{-1} \cup \theta)(a,a) \leq \nu(a,a)$ for all $a \in S$. Thus $\mu \cup \mu^{-1} \cup \theta \subseteq \nu$. By Proposition 3.5(2), (4), and (3), $\mu_1 = \mu^* \cup (\mu^*)^{-1} \cup \theta^* = \mu^* \cup (\mu^{-1})^* \cup \theta^* = (\mu \cup \mu^{-1} \cup \theta)^* \subseteq \nu^*$. Since $\nu = \nu^*$ by Proposition 3.5(5), $\mu_1 \subseteq \nu$. Suppose $\mu_1^k \subseteq \nu$. Then $\mu_1^{k+1}(x,y) = (\mu_1^k \circ \mu_1)(x,y) = \underset{z \in X}{\to} \sup\min[\mu_1^k(x,z), \mu_1(z,y)] \leq \underset{z \in X}{\to} \sup\min[\nu(x,z), \nu(z,y)] = (\nu \circ \nu)(x,y)$. Since ν is transitive, $\mu_1^{k+1} \subseteq \nu \circ \nu \subseteq \nu$. By the mathematical induction, $\mu_1^n \subseteq \nu$ for $n = 1, 2, \dots$. Thus $\bigcup_{n=1}^{\infty} [\mu^* \cup (\mu^*)^{-1} \cup \theta^*]^n = \bigcup_{n=1}^{\infty} \mu_1^n = \mu_1 \cup (\mu_1 \circ \mu_1) \cup (\mu_1 \circ \mu_1) \cdots \subseteq \nu$.

4. Lattices of ϵ -fuzzy congruences

In this section we discuss some lattice theoretic properties of ϵ -fuzzy congruences.

Theorem 4.1. Let C(S) be the collection of all ϵ -fuzzy congruences on a semigroup S. Then $(C(S), \leq)$ is a complete lattice, where \leq is a relation on the set of all ϵ -fuzzy congruences on S defined by $\mu \leq \nu$ if and only if $\mu(x, y) \leq \nu(x, y)$ for all $x, y \in S$.

Proof. Clearly ≤ is a partial order relation. It is easy to check that the equality relation σ defined by σ(x, y) = 1 for all $x, y \in S$ is in C(S) and the relation λ defined by λ(x, y) = ε for x = y and λ(x, y) = 0 for $x \neq y$ is in C(S). Also σ is the greatest element and λ is the least element of C(S) with respect to the ordering ≤. Let $\{μ_j\}_{j \in J}$ be a non-empty collection of ε-fuzzy congruences in C(S). Let $μ(x, y) = \xrightarrow{\rightarrow}_{j \in J} \inf μ_j(x, y)$ for all $x, y \in S$. It is easy to see that μ(x, x) ≥ ε for all $x \in S$, $μ = μ^{-1}$, μ(x, y) ≤ μ(zx, zy), and μ(x, y) ≤ μ(zz, yz) for all $x, y, z \in S$. $μ ∘ μ(x, y) = \xrightarrow{\rightarrow}_{z \in X} \sup \min [\xrightarrow{\rightarrow}_{j \in J} \inf μ_j(x, z), \xrightarrow{\rightarrow}_{j \in J} \inf μ_j(z, y)] = \xrightarrow{\rightarrow}_{z \in X} \sup \xrightarrow{\rightarrow}_{j \in J} \inf μ_j(x, y)$ inf $\min [μ_j(x, z), μ_i(z, y)] ≤ \xrightarrow{\rightarrow}_{z \in X} \sup \xrightarrow{\rightarrow}_{j \in J} \inf \min [μ_j(x, z), μ_j(z, y)] ≤ \xrightarrow{\rightarrow}_{z \in X} \inf μ_j(x, y) = μ(x, y)$. That is, $μ \in C(S)$. Since μ is the greatest lower bound of $\{μ_j\}_{j \in J}$, $(C(S), \leq)$ is a complete lattice.

Let $MC(S) = \{\mu \in C(S) : \mu(x, y) \leq \epsilon \text{ for all } x, y \in S \text{ such that } x \neq y\}$. Then it is easy to see that $(MC(S), \leq)$ is a sublattice of $(C(S), \leq)$. We define addition and multiplication on MC(S) by $\mu + \nu = \langle \mu \cup \nu \rangle_c$ and $\mu \cdot \nu = \mu \cap \nu$, where $\langle \mu \cup \nu \rangle_c$ is the ϵ -fuzzy congruence generated by $\mu \cup \nu$.

466

Definition 4.2. A lattice $(L, +, \cdot)$ is called *modular* if $(x + y) \cdot z \leq x + (y \cdot z)$ for all $x, y, z \in L$ with $x \leq z$.

Lemma 4.3. Let μ and ν be ϵ -fuzzy congruences on a semigroup S such that $\mu(x,x) \geq \nu(x,y)$ and $\nu(y,y) \geq \mu(x,y)$ for all $x, y \in S$. If $\mu \circ \nu = \nu \circ \mu$, then $\mu \circ \nu$ is the ϵ -fuzzy congruence on S generated by $\mu \cup \nu$.

 $\begin{array}{ll} Proof. \ (\mu \circ \nu)(x,x) = \mathop{\longrightarrow}\limits_{z \in S} \sup\min[\mu(x,z),\nu(z,x)] \geq \min(\mu(x,x),\nu(x,x)) \geq \epsilon > \\ 0 \ \text{for all } x \in S. \ \text{That is, } \mu \circ \nu \ \text{is ϵ-reflexive. Since μ and ν are symmetric, } \\ (\mu \circ \nu)^{-1} = \nu^{-1} \circ \mu^{-1} = \nu \circ \mu = \mu \circ \nu. \ \text{Thus } \mu \circ \nu \ \text{is symmetric. Since μ and ν are transitive and the operation \circ is associative, } \\ (\mu \circ \nu) \circ (\mu \circ \nu) = \mu \circ (\nu \circ \mu) \circ (\nu \circ \nu) \subseteq \mu \circ \nu. \ \text{Hence } \mu \circ \nu \circ (\mu \circ \nu) = \mu \circ (\nu \circ \mu) \circ \nu = \\ \mu \circ (\mu \circ \nu) \circ \nu = (\mu \circ \mu) \circ (\nu \circ \nu) \subseteq \mu \circ \nu. \ \text{Hence } \mu \circ \nu \ \text{is an ϵ-fuzzy equivalence relation. Since S is a semigroup, } \\ (\mu \circ \nu)(x,y) = \mathop{\longrightarrow}\limits_{a \in S} \sup\min[\mu(x,a),\nu(a,y)] \leq \mathop{\longrightarrow}\limits_{za \in S} \\ \sup\min[\mu(zx,za),\nu(za,zy)] \leq \mathop{\longrightarrow}\limits_{t \in S} \sup\min[\mu(zx,t),\nu(t,zy)] = (\mu \circ \nu)(zx,zy) \\ \text{for all } x,y,z \in S. \ \text{Thus } \mu \circ \nu \ \text{is fuzzy left compatible. Similarly we may} \\ \text{show } \mu \circ \nu \ \text{is fuzzy right compatible. Hence } \mu \circ \nu \ \text{is an ϵ-fuzzy congruence} \\ \text{in S. Since $\nu(y,y) \geq \mu(x,y), $(\mu \circ \nu)(x,y) = \mathop{\longrightarrow}\limits_{z \in S} \sup\min[\mu(x,z),\nu(z,y)] \geq \\ \min(\mu(x,y),\nu(y,y)) = \mu(x,y). \ \text{Since } \mu(x,x) \geq \nu(x,y), $(\mu \circ \nu)(x,y) = \mathop{\longrightarrow}\limits_{z \in S} \\ \sup\min[\mu(x,z),\nu(z,y)] \geq \min(\mu(x,x),\nu(x,y)) = \nu(x,y). \ \text{Thus } (\mu \circ \nu)(x,y) \geq \\ \max(\mu(x,y),\nu(x,y)) = (\mu \cup \nu)(x,y) \ \text{for all } x,y \in S. \ \text{Thus } \mu \circ \nu \ \text{is transitive,} \\ \mu \circ \nu \subseteq (\mu \cup \nu) \circ (\mu \cup \nu) \subseteq \lambda \circ \lambda \subseteq \lambda. \ \text{Thus } \mu \circ \nu \ \text{is transitive,} \\ \mu \circ \nu \subseteq (\mu \cup \nu) \circ (\mu \cup \nu) \subseteq \lambda \circ \lambda \subseteq \lambda. \ \text{Thus } \mu \circ \nu \ \text{is transitive,} \\ \mu \circ \nu \subseteq (\mu \cup \nu) \circ (\mu \cup \nu) \subseteq \lambda \circ \lambda \subseteq \lambda. \ \text{Thus } \mu \circ \nu \ \text{is transitive,} \\ \end{tabular}$

Lemma 4.3 also gives sufficient conditions for the composition $\mu \circ \nu$ of two ϵ -fuzzy congruences μ and ν on a semigroup to be the ϵ -fuzzy congruence generated by $\mu \cup \nu$.

Theorem 4.4. Let S be a semigroup and H be a sublattice of $(MC(S), +, \cdot)$ such that $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in H$. Then H is a modular lattice.

 $\begin{array}{l} \textit{Proof. Let } \mu,\nu,\rho \in H \text{ with } \mu \leq \rho. \text{ Let } x,y \in S. \min[(\mu \circ \nu)(x,y),\rho(x,y)] = \underset{z \in S}{\rightarrow} \\ \text{sup } \min[\mu(x,z),\nu(z,y),\rho(x,y)] \leq \underset{z \in S}{\rightarrow} \text{ sup } \min[\mu(x,z),\rho(x,z),\nu(z,y),\rho(x,y)] \leq \\ \underset{z \in S}{\rightarrow} \text{ sup } \min[\mu(x,z),\nu(z,y),\rho(z,y)] = [\mu \circ \min(\nu,\rho)](x,y). \text{ Thus } (\mu \circ \nu) \cdot \rho \leq \\ \mu \circ (\nu \cdot \rho). \text{ Since } \mu,\nu \in MC(S), \ \mu(x,x) \geq \nu(x,y) \text{ and } \nu(y,y) \geq \mu(x,y) \text{ for all } \\ x,y \in S. \text{ By Lemma 4.3, } \mu \circ \nu \text{ is the } \epsilon\text{-fuzzy congruence generated by } \mu \cup \nu. \\ \text{ That is, } \mu + \nu = \mu \circ \nu. \text{ Similarly we may show } \mu + (\nu \cdot \rho) = \mu \circ (\nu \cdot \rho). \text{ Thus } \\ (\mu + \nu) \cdot \rho \leq \mu + (\nu \cdot \rho). \text{ Hence } H \text{ is modular.} \end{array}$

Proposition 4.5. If S is a group, then $\mu \circ \nu = \nu \circ \mu$ for all $\mu, \nu \in C(S)$. *Proof.* Straightforward.

Corollary 4.6. If S is a group, then $(MC(S), +, \cdot)$ is modular.

Proof. By Theorem 4.4 and Proposition 4.5, $(MC(S), +, \cdot)$ is modular.

References

- [1] J. A. Goguen, *L-fuzzy sets*, J. Math. Anal. Appl. 18 (1967), 145–174.
- [2] K. C. Gupta and R. K. Gupta, *Fuzzy equivalence relation redefined*, Fuzzy Sets and Systems **79** (1996), 227–233.
- [3] V. Murali, Fuzzy equivalence relation, Fuzzy Sets and Systems 30 (1989), 155–163.
- [4] C. Nemitz, Fuzzy relations and fuzzy function, Fuzzy Sets and Systems 19 (1986), 177– 191.
- [5] M. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74 (1993), 165–175.
- [6] E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38–48.
- [7] R. T. Yeh, Toward an algebraic theory of fuzzy relational systems, Proc. Int. Congr. Cybern. (1973), 205-223.
- [8] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS SEOUL WOMEN'S UNIVERSITY SEOUL 139-774, KOREA *E-mail address*: ihchon@swu.ac.kr