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e-FUZZY CONGRUENCES ON SEMIGROUPS

INHEUNG CHON

ABSTRACT. We define an e-fuzzy congruence, which is a weakened fuzzy
congruence, find the e-fuzzy congruence generated by the union of two
e-fuzzy congruences on a semigroup, and characterize the e-fuzzy congru-
ences generated by fuzzy relations on semigroups. We also show that the
collection of all e-fuzzy congruences on a semigroup is a complete lattice
and that the collection of e-fuzzy congruences under some conditions is a
modular lattice.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([8]). Sub-
sequently, Goguen ([1]) and Sanchez ([6]) studied fuzzy relations in various
contexts. In [4] Nemitz discussed fuzzy equivalence relations, fuzzy functions
as fuzzy relations, and fuzzy partitions. Murali ([3]) developed some proper-
ties of fuzzy equivalence relations and certain lattice theoretic properties of
fuzzy equivalence relations. Samhan ([5]) characterized the fuzzy congruences
generated by fuzzy relations on a semigroup and studied the lattice of fuzzy
congruences on a semigroup. Also Gupta et al. ([2]) proposed a generalized
definition of a fuzzy equivalence relation on a set, which is called a G-fuzzy
equivalence relation, and developed some properties of that relation. The stan-
dard definition of a reflexive fuzzy relation p on a set X, which Murali ([3]),
Nemitz ([4]), and Samhan ([5]) used in their papers, is u(z,z) = 1 forallx € X.
Yeh ([7]) weakened the standard reflexive fuzzy relation to p(z,z) > e > 0 for
all z € X, which is called an e-reflexive fuzzy relation.

We define an e-fuzzy congruence, which is a weakened fuzzy congruence
based on the e-refexive fuzzy relation, and characterize the generated e-fuzzy
congruences on semigroups and some lattice properties of e-fuzzy congruences.
In Section 2 we review some basic definitions and properties of fuzzy relations
and e-fuzzy congruences. In Section 3 we find the e-fuzzy congruence generated

Received March 9, 2006.

2000 Mathematics Subject Classification. 03ET72.

Key words and phrases. e-reflexive fuzzy relation, e-fuzzy equivalence relation, e-fuzzy
congruence.

This work was supported by a special research grant from Seoul Women’s University
(2008).

(©2008 The Korean Mathematical Society

461



462 INHEUNG CHON

by the union of two e-fuzzy congruences on a semigroup, find the e-fuzzy con-
gruence generated by a fuzzy relation which is fuzzy left and right compatible
on a semigroup, and find the e-fuzzy congruence generated by a fuzzy relation
on a semigroup. In Section 4 we show that the set C(S) of all e-fuzzy congru-
ences on a semigroup is a complete lattice and every sublattice H of the lattice
{reC(S): ux,y) <eforx,y e S and x#y} such that pov =wv oy for all
w,v € H is modular.

2. Preliminaries

In this section we recall some basic definitions and properties of fuzzy rela-
tions and e-fuzzy congruences which will be used in the next section.

Definition 2.1. A function B from a set X to the closed unit interval [0, 1]
in R is called a fuzzy set in X. For every « € B, B(z) is called a membership
grade of x in B.

The standard definition of a reflexive fuzzy relation p in a set X demands
u(xz,x) =1 for all x € X. Yeh ([7]) weakened this definition as follows.

Definition 2.2. A fuzzy relation p in a set X is a fuzzy subset of X x X. p
is e-reflexive in X if p(z,xz) > € > 0 for all z € X. p is symmetric in X if
w(z,y) = p(y, x) for all 2,y in X. The composition Ao p of two fuzzy relations
A, 1 in X is the fuzzy subset of X x X defined by

(Mo p)(x,y) =2 Sup min(A(z, 2), u(z,y)).

A fuzzy relation p in X is transitive in X if pop C pu. A fuzzy relation pin X is
called e-fuzzy equivalence relation if p is e-reflexive, symmetric, and transitive.

Example. Let X = {z,y, z} be a set. Let v be a fuzzy relation in X such that
v(iz,z) =v(y,y) =v(z,z) =1, v(z,y) =v(y,x) = 0.2, v(z,z) = v(z,z) = 0.1,
and v(y,z) = v(z,y) = 0.1. Then v is a fuzzy equivalence relation in X. Let
u be a fuzzy relation in X such that u(z,z) = 0.5, p(y,y) = 0.3, wu(z,z) =
0.7, plz,y) = ply,z) = 0.2, p(z,2) = p(z,z) = 0.1, and u(y,2) = p(z,y) =
0.1. Then p is an e-fuzzy equivalence relation. That is, u need not to be

wz, ) = ply,y) = p(z,2) = 1.

Let Fx be the set of all fuzzy relations in a set X. Then it is easy to see
that the composition o is associative and Fx is a monoid under the operation
of composition o.

Definition 2.3. Let p be a fuzzy relation in a set X. p is called fuzzy left
(right) compatible if p(x,y) < p(zz,zy) (u(z,y) < p(rz,yz)) for all z,y,z €
X. An e-fuzzy equivalence relation on X is called an e-fuzzy left congruence
(right congruence) if it is fuzzy left compatible (right compatible). An e-fuzzy
equivalence relation on X is an e-fuzzy congruence if it is an e-fuzzy left and
right congruence.
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Definition 2.4. Let p be a fuzzy relation in a set X. p~ " is defined as a fuzzy

relation in X by p~!(z,y) = u(y, ).
It is easy to see that (uov)~!t =v~1opu~! for fuzzy relations pu and v.

Proposition 2.5. Let p be a fuzzy relation on a set X. Then USZ, p™ is the
smallest transitive fuzzy relation on X containing p, where ™ = popo---o u.

Proof. See Proposition 2.3 of [5]. O
Proposition 2.6. Let pu be a fuzzy relation on a set X. If u is symmetric, then
50 48 Us, u™, where u* = popo---op.

Proof. See Proposition 2.4 of [5]. O

Proposition 2.7. If u is a fuzzy relation on a semigroup S that is fuzzy left
and right compatible, then so is U5, pu", where p™* = popo---op.

Proof. See Proposition 3.6 of [5]. O

Proposition 2.8. Let p be a fuzzy relation on a set S. If p is e-reflexive, then

s0 is US, p', where u* = popo---op.

Proof. Clearly y is e-reflexive. Suppose p* is e-reflexive. Then pf*1(z,z) =

(o) () = —_supmin(z, 2), p(z,2)] > minfut(z,2), plr,2)] > € > 0.
ze

By the mathematical induction, p” is e-reflexive for all natural numbers n.

Thus [US, 7] (z, @) = suplju(z, ), (0 1)(w,2),...] > € > 0. Hence U, "

is e-reflexive. O

Proposition 2.9. Let p and each v; be fuzzy relations in a set X for alli € I.
Then po(— Nu;) C— N(pov;) and (— Nuy) o C— N(v; 0 p).
icl iel iel iel

Proof. Straightforward. O

3. e-fuzzy congruences on semigroups

In this section we characterize the generated e-fuzzy congruences on semi-
groups.

Proposition 3.1. Let u and v be e-fuzzy congruences in a set X. Then pNv
is an e-fuzzy congruence.

Proof. Tt is clear that u N v is e-reflexive and symmetric. By Proposition 2.9,
[(unv)o(unv)] C [pe(unv)]N[ve(unv)] C [(wop)N(rov)]N[(vop)N(vov)] C
[N (pov)N[(vop)Nv] C pNv. That is, pNv is transitive. Clearly pNv is
fuzzy left and right compatible. Thus p N v is an e-fuzzy congruence. O

Example. Let X = {z,y, z} be a semigroup such that zy =y, yx =z, rz =
z, zx = x, Yz = 2z, zy = y. Let p and v be fuzzy relations in X such that
w(w,x) = ply,y) = p(z,2) = 08, p(z,y) = ply,x) = 04, p(z,2) = p(z,x) =
0.2, u(y,z) = u(z,y) = 0.2, I/(.T,m) = l/(y,y) = V(sz) = 0.6, I/(:ZZ,y) =
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v(y,x) = 0.3, v(z,2) = v(z,x2) = 0.3, v(y,2) = v(z,y) = 0.5. Then (u U
v)(z,z) = (UV)(y,y) = (UV)(2,2) = 0.8, (UV)(z,y) = (nUV)(y,z) =
0.4, (nUV)(z,2) = (pUv)(z,2) =0.3, and (pUv)(y,2z) = (pUv)(z,y) = 0.5.
It is easily checked that p and v are e-fuzzy congruences on X, but pUwv is not
an e-fuzzy congruence on X.

Even though p and v are e-fuzzy congruences, p U v is not necessarily an
e-fuzzy congruence as shown in the above example. We find the e-fuzzy con-
gruence generated by p U v on a semigroup in the following proposition.

Proposition 3.2. Let u and v be e-fuzzy congruences on a semigroup S. Then
the e-fuzzy congruence generated by pUv in S is US2, (nUv)" = (pUr)U[(pU
v)o (uUp)]U---.

Proof. Clearly (nUv)(z,x) > e > 0. That is, p Uwv is ereflexive. By Propo-
sition 2.8, U, (u U )™ is e-reflexive. Clearly p U v is symmetric. By Propo-
sition 2.6, US4 (p U v)™ is symmetric. By Proposition 2.5, U, (u U v)™ is
transitive. Hence US2;(p U v)™ is an e-fuzzy equivalence relation containing
pwUwv. It is straightforward to see that p U v is fuzzy left and right com-
patible. By Proposition 2.7, U2, (u U v)™ is fuzzy left and right compatible.
Thus U2, (u U )™ is an e-fuzzy congruence containing p U v. Let A be an
e-fuzzy congruence in S containing g U v. Then US2,(u U wv)™ C UX A" =
AUAoAN)UAoAo U - CAUAU--- = A. Thus U2, (pUv)™ is the e-fuzzy
congruence generated by p U v. (]

We now turn to the characterization of the e-fuzzy congruences generated
by fuzzy relations on semigroups.

Theorem 3.3. Let i be a fuzzy relation on a semigroup S such that u is fuzzy
left and right compatible. Then the e-fuzzy congruence generated by p in S is

(Ut UB)"”, where 0 is a fuzzy relation in S such that 6(a,a) = € for
all a € S and 0(x,y) = 0(y,z) < min[u(z,y), uly, x)] for all x,y € S with
T #y.

Proof. (pnUp~tUb)(a,a) > 0(a,a) =¢>0forallae S. Thus puUptud
is ereflexive. Let u1 = p U p~' UO. By Proposition 2.8, U2 ul is e
reflexive. py(w,y) = (U p~' U 6)(w,y) = maxu(a,y), " (2,y). 0z, )] =
max[u_l(%x)7u(y7x)79(y7m)} = (/~L J ;u_l U 9)(3/,:1,‘) = u1(y7m). Thus H1 is
symmetric. By Proposition 2.6, U5 u] is symmetric. By Proposition 2.5,
U pf is transitive. Hence USZ, uf is an e-fuzzy equivalence relation contain-
ing p. Since 0(z,y) < p(x,y) < pew,zy), p(z,y) = (pUp~ ' UO)(z,y) =
max{ju(z, y), p ) (w, ), 0z, y)] = max{u(z, y), u(y, 2), 0(z, )] < max{u(za, zp),
u(zy, 22),0(z, 2y)] = max|(zz, 2y), u~ (22, 2y), (22, 2y)] = (U~ U) (22,
zy) = p1(zx, zy) for all z,y, z € S such that x # y. Since f(a,a) = e for all a €
S, pr(x,z) = (pUptUl)(x, z) = max[u(z, x), 0(z, x)] < max|u(zz, zz), 0(2,
zz)] = (pUp~t U0)(zz,22) = pr(zx, zx) for all z,z € S. Thus py is fuzzy
left compatible. Similarly we may show p is fuzzy right compatible. By
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Proposition 2.7, USe; uf is fuzzy left and right compatible. Thus USZ; uf
is an e-fuzzy congruence containing p. Let v be an e-fuzzy congruence con-
taining p. Then pu(z,y) < v(z,y), p~ ' (z,y) = ply,2) < v(y,2) = v(z,y),
and 0(z,y) < p(z,y) < v(z,y) for all z,y € S such that x # y. That is,
v(z,y) > (pUp tUb)(z,y) for all z,y € S such that z # y. v(a,a) >
w(a,a) = p=Y(a,a) for all @ € S. Since f(a,a) = € and v(a,a) > ¢ for all
a € 8, 0(a,a) < v(a,a). That is, p1(a,a) < v(a,a) for all @ € S. Thus

p = (pUp"U0) C v. Suppose i € v. Then iy (z,y) = (uiom)(w,y) = —

supminyef (v, 2), o1 ()] < =, supminly(z, 2),v(2y)] = (vov)(z,y). Since v

is transitive, ,uk+1 C vov C v. By the mathematical induction, puf' C v for

n=12,.... Hence U2 u% = py U (g op)U(uyopgop)U--- Cu. O

We need the following definition and proposition to find the e-fuzzy congru-
ence generated by a fuzzy relation on a semigroup.

Definition 3.4. Let u be a fuzzy relation on a semigroup S and let S* =
S U {e}, where e is the identity of S. We define the fuzzy relation p* on S as

w(e,d) = U w(a,b) for all ¢,d € S.
z,yesl,

ray=c,
xby=d

Proposition 3.5. Let p and v be two fuzzy relations on a semigroup S. Then
(1) n< n )
(2) (u*)~t=(u"1)"
3) If uCv, thenu cv*
(4) (HUV) =pruv
(5) p=up* zf and only if p is fuzzy left and right compatible
(6) (n)* =

Proof. See Proposition 3.5 of [5]. O

Theorem 3.6. Let pu be a fuzzy relation on a semigroup S. Then the e-fuzzy
congruence generated by pu in S is US| [u* U (u*) "t UO*]™, where 0 is a fuzzy
relation in S such that 0(a,a) = € for all a € S and 0(z,y) = 0(y,z) <
min [p(z,y), 1wy, x)] for all z,y € S with x # y, and p* and 0% are fuzzy
relations defined in Definition 3.4.

Proof. Since 0(a,a) =€, 0*(a,a) > € > 0 for all a € S by Proposition 3.5(1).
Let pp = p* U (p*)"t U @*. Then ui(a,a) > e¢ > 0. That is, p is e
reflexive. By Proposition 2.8, US2,u7 is e-reflexive. Let =,y € S with = # y.
Since § = 071, 0* = (6=1)* = (0*)~! by Proposition 3.5(2). pui(z,y) =
max[p* (,y), (1*) " (@, y), 0% (,y)] = max|(u*) " (y,2), 4" (y, ), (0%) " (2, 9)]
= max|(u*) " (v, 2), 4" (y,2), 0% (y, 2)] = (" U ()P U0 )(y,2) = mly,).
Thus pq is symmetric. By Proposition 2.6, U2, pf is symmetric. By Proposi-
tion 2.5, US2; uf is transitive. Hence U2 p7 is an e-fuzzy equivalence relation
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containing p. By Proposition 3.5(2), (4), and (6), p} = (u* U (u*)~tU*)* =
(W U(p= ) U0 ) = (u*)*U((p 1) ) u(0%)* = pu(p= ") ue* = p*u(p)~tu
0* = py. Thus p, is fuzzy left and right compatible by Proposition 3.5(5). By
Proposition 2.7, US2; pf is fuzzy left and right compatible. Thus U2, pf is
an e-fuzzy congruence containing p. Let v be an e-fuzzy congruence contain-
ing pi. Then p(z,y) < v(z,y), p~'(z,y) = ply,z) < v(y,z) = v(z,y), and
O(x,y) < p(x,y) < v(z,y). Thatis, (nUp=tU0)(z,y) < v(x,y) forallz,y € S
such that = # y. v(a,a) > u(a,a) = p~(a,a) for all a € S. Since 6(a,a) = €
and v(a,a) > e for all a € S, 6(a,a) < v(a,a). That is, (uUp~t UO)(a,a) <
v(a,a) for all @ € S. Thus pU p~tUH C v. By Proposition 3.5(2), (4), and
(3), pp = p* U (")t U0 = U () U0 = (nUp tUO)" C v*. Since
v = v* by Proposition 3.5(5), u1 C v. Suppose p¥ C v. Then p# ! (z,y) =
(1 o 11)(r,y) = = supminluf (2, =), (2,9)] < = supminu(a, ), (2, y)] =

(vov)(z,y). Since v is transitive, ™' C vov C v. By the mathematical
induction, u Cvforn=1,2,.... Thus U3 [p*U(p*)"tUo*|" = U2, u" =
pa U (propr)U(uroprop) - Cu. O

4. Lattices of e-fuzzy congruences

In this section we discuss some lattice theoretic properties of e-fuzzy con-
gruences.

Theorem 4.1. Let C(S) be the collection of all e-fuzzy congruences on a semi-
group S. Then (C(S), <) is a complete lattice, where < is a relation on the set
of all e-fuzzy congruences on S defined by p < v if and only if u(x,y) < v(z,y)
forallxz,y € S.

Proof. Clearly < is a partial order relation. It is easy to check that the equality
relation o defined by o(z,y) = 1 for all z,y € Sisin C(S) and the relation A de-
fined by A(z,y) = € for £ = y and A(z,y) = 0 for © # y is in C(S). Also o is the
greatest element and A is the least element of C'(.S) with respect to the ordering
<. Let {u;};es be a non-empty collection of e-fuzzy congruences in C(S). Let
w(z,y) :jz] infp;(z,y) for all x,y € S. It is easy to see that u(x,z) > € for all

reS, p=p"" plr,y) < plze,zy), and p(z,y) < p(ez,yz) for all z,y,z € S.

wo u(x,y) =% 5P min[jz] infp;(z, 2), jz} infp;(z,y)] =) Sup jz} inf gt

inf minly; (2, 2), pi(2,9)] < = sup et inf min{u; (z, 2), 1; (2, y)] <.z, mfp; o

iz, y) < = infu;(z,y) = p(z,y). That is, p € C(S). Since p is the greatest
JE
lower bound of {y;};cs, (C(S),<) is a complete lattice. O

Let MC(S) = {pu € C(S) : u(x,y) < e for all z,y € S such that z # y}.
Then it is easy to see that (M C(S), <) is a sublattice of (C(5), <). We define
addition and multiplication on MC(S) by p+v = {(uUv). and p-v =puNw,
where (U ). is the e-fuzzy congruence generated by p U v.
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Definition 4.2. A lattice (L,+, ) is called modular if (x 4+ y) -z < x+ (y - 2)
for all x,y,z € L with = < z.

Lemma 4.3. Let p and v be e-fuzzy congruences on a semigroup S such that
wlx,z) > v(z,y) and v(y,y) > p(x,y) for allx,y € S. If pov = vou, then
wov is the e-fuzzy congruence on S generated by pUwv.

Proof. (o)(z,2) = — swpminfu(z, 2), v(z,2)] = win(u(e, 2), v(z,2)) > € >

0 for all z € S. That is, o v is e-reflexive. Since p and v are symmetric,
(pov)™'=v=ltopu ' =vop=pov. Thus pov is symmetric. Since y and v
are transitive and the operation o is associative, (pov)o(puov) = po(vou)ov =
po(pov)ov = (pop)o(vov) C pov. Hence pov is an e-fuzzy equivalence rela-

tion. Since S is a semigroup, (uov)(z,y) = —, Sup minfu(z, a), v(a,y)] < =
ac zae

sup minlu(zz, 2a), v(za, 2y)] < = supminfu(zz,t),v(t, 2y)] = (u o v)(zz, zy)
€
for all z,y,z € S. Thus po v is fuzzy left compatible. Similarly we may
show p o v is fuzzy right compatible. Hence p o v is an e-fuzzy congruence
in 5. Since v(y.9) = u(e.y). (uo v)(wy) == supminfule, ). v(zy)] >
S
min(p(z,y),v(y,y)) = plx,y). Since p(z,z) = v(z,y), (kov)(z,y) ==
supmin{u(z, 2), (2, )] > min(u(z, 2), v(z,y)) = v(z,y). Thus (pov)(z,y) >
max(p(z,y), v(z,y)) = (pUv)(z,y) for all z,y € S. Thus pUv C pow.
Let A be an e-fuzzy congruence in S containing p U v. Since A is transitive,
pov C (pUv)o(pUv) C Ao C A Thus pov is the e-fuzzy congruence
generated by p U v. O

Lemma 4.3 also gives sufficient conditions for the composition p o v of two
e-fuzzy congruences p and v on a semigroup to be the e-fuzzy congruence
generated by p U wv.

Theorem 4.4. Let S be a semigroup and H be a sublattice of (MC(S),+,")
such that pov =vopu for all p,v € H. Then H is a modular lattice.

Proof. Let p,v,p € H with p < p. Let 2,y € S. min[(uov)(z,y), p(z,y)] = =
z

sup minfp(z, 2), v(2,), p(x, y)] < = supminfu(z, 2), p(z, 2), v(2,y), p(z, y)] <

—, supmini(z, 2. 1(2,9). p(z.)] = 1 o min(y: p)(x.0). Thus (uov) - p <

pwo (v-p). Since p,v € MC(S), p(x,x) > v(z,y) and v(y,y) > p(z,y) for all
z,y € S. By Lemma 4.3, pov is the e-fuzzy congruence generated by p U v.
That is, 4 + v = p o v. Similarly we may show u+ (v-p) = po (v - p). Thus
(u+v) - p<p+(v-p). Hence H is modular. O

Proposition 4.5. If S is a group, then pov =vopu for all p,v € C(S).
Proof. Straightforward. (I
Corollary 4.6. If S is a group, then (MC(S),+,-) is modular.

Proof. By Theorem 4.4 and Proposition 4.5, (M C(S),+,-) is modular. O
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