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ϵ-FUZZY CONGRUENCES ON SEMIGROUPS

Inheung Chon

Abstract. We define an ϵ-fuzzy congruence, which is a weakened fuzzy
congruence, find the ϵ-fuzzy congruence generated by the union of two

ϵ-fuzzy congruences on a semigroup, and characterize the ϵ-fuzzy congru-
ences generated by fuzzy relations on semigroups. We also show that the
collection of all ϵ-fuzzy congruences on a semigroup is a complete lattice

and that the collection of ϵ-fuzzy congruences under some conditions is a
modular lattice.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([8]). Sub-
sequently, Goguen ([1]) and Sanchez ([6]) studied fuzzy relations in various
contexts. In [4] Nemitz discussed fuzzy equivalence relations, fuzzy functions
as fuzzy relations, and fuzzy partitions. Murali ([3]) developed some proper-
ties of fuzzy equivalence relations and certain lattice theoretic properties of
fuzzy equivalence relations. Samhan ([5]) characterized the fuzzy congruences
generated by fuzzy relations on a semigroup and studied the lattice of fuzzy
congruences on a semigroup. Also Gupta et al. ([2]) proposed a generalized
definition of a fuzzy equivalence relation on a set, which is called a G-fuzzy
equivalence relation, and developed some properties of that relation. The stan-
dard definition of a reflexive fuzzy relation µ on a set X, which Murali ([3]),
Nemitz ([4]), and Samhan ([5]) used in their papers, is µ(x, x) = 1 for all x ∈ X.
Yeh ([7]) weakened the standard reflexive fuzzy relation to µ(x, x) ≥ ϵ > 0 for
all x ∈ X, which is called an ϵ-reflexive fuzzy relation.

We define an ϵ-fuzzy congruence, which is a weakened fuzzy congruence
based on the ϵ-refexive fuzzy relation, and characterize the generated ϵ-fuzzy
congruences on semigroups and some lattice properties of ϵ-fuzzy congruences.
In Section 2 we review some basic definitions and properties of fuzzy relations
and ϵ-fuzzy congruences. In Section 3 we find the ϵ-fuzzy congruence generated
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by the union of two ϵ-fuzzy congruences on a semigroup, find the ϵ-fuzzy con-
gruence generated by a fuzzy relation which is fuzzy left and right compatible
on a semigroup, and find the ϵ-fuzzy congruence generated by a fuzzy relation
on a semigroup. In Section 4 we show that the set C(S) of all ϵ-fuzzy congru-
ences on a semigroup is a complete lattice and every sublattice H of the lattice
{µ ∈ C(S) : µ(x, y) ≤ ϵ for x, y ∈ S and x ̸= y} such that µ ◦ ν = ν ◦ µ for all
µ, ν ∈ H is modular.

2. Preliminaries

In this section we recall some basic definitions and properties of fuzzy rela-
tions and ϵ-fuzzy congruences which will be used in the next section.

Definition 2.1. A function B from a set X to the closed unit interval [0, 1]
in R is called a fuzzy set in X. For every x ∈ B, B(x) is called a membership
grade of x in B.

The standard definition of a reflexive fuzzy relation µ in a set X demands
µ(x, x) = 1 for all x ∈ X. Yeh ([7]) weakened this definition as follows.

Definition 2.2. A fuzzy relation µ in a set X is a fuzzy subset of X × X. µ
is ϵ-reflexive in X if µ(x, x) ≥ ϵ > 0 for all x ∈ X. µ is symmetric in X if
µ(x, y) = µ(y, x) for all x, y in X. The composition λ ◦µ of two fuzzy relations
λ, µ in X is the fuzzy subset of X × X defined by

(λ ◦ µ)(x, y) = →
z∈X

sup min(λ(x, z), µ(z, y)).

A fuzzy relation µ in X is transitive in X if µ◦µ ⊆ µ. A fuzzy relation µ in X is
called ϵ-fuzzy equivalence relation if µ is ϵ-reflexive, symmetric, and transitive.

Example. Let X = {x, y, z} be a set. Let ν be a fuzzy relation in X such that
ν(x, x) = ν(y, y) = ν(z, z) = 1, ν(x, y) = ν(y, x) = 0.2, ν(x, z) = ν(z, x) = 0.1,
and ν(y, z) = ν(z, y) = 0.1. Then ν is a fuzzy equivalence relation in X. Let
µ be a fuzzy relation in X such that µ(x, x) = 0.5, µ(y, y) = 0.3, µ(z, z) =
0.7, µ(x, y) = µ(y, x) = 0.2, µ(x, z) = µ(z, x) = 0.1, and µ(y, z) = µ(z, y) =
0.1. Then µ is an ϵ-fuzzy equivalence relation. That is, µ need not to be
µ(x, x) = µ(y, y) = µ(z, z) = 1.

Let FX be the set of all fuzzy relations in a set X. Then it is easy to see
that the composition ◦ is associative and FX is a monoid under the operation
of composition ◦.

Definition 2.3. Let µ be a fuzzy relation in a set X. µ is called fuzzy left
(right) compatible if µ(x, y) ≤ µ(zx, zy) (µ(x, y) ≤ µ(xz, yz)) for all x, y, z ∈
X. An ϵ-fuzzy equivalence relation on X is called an ϵ-fuzzy left congruence
(right congruence) if it is fuzzy left compatible (right compatible). An ϵ-fuzzy
equivalence relation on X is an ϵ-fuzzy congruence if it is an ϵ-fuzzy left and
right congruence.
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Definition 2.4. Let µ be a fuzzy relation in a set X. µ−1 is defined as a fuzzy
relation in X by µ−1(x, y) = µ(y, x).

It is easy to see that (µ ◦ ν)−1 = ν−1 ◦ µ−1 for fuzzy relations µ and ν.

Proposition 2.5. Let µ be a fuzzy relation on a set X. Then ∪∞
n=1 µn is the

smallest transitive fuzzy relation on X containing µ, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.3 of [5]. ¤
Proposition 2.6. Let µ be a fuzzy relation on a set X. If µ is symmetric, then
so is ∪∞

n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 2.4 of [5]. ¤
Proposition 2.7. If µ is a fuzzy relation on a semigroup S that is fuzzy left
and right compatible, then so is ∪∞

n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. See Proposition 3.6 of [5]. ¤
Proposition 2.8. Let µ be a fuzzy relation on a set S. If µ is ϵ-reflexive, then
so is ∪∞

n=1 µn, where µn = µ ◦ µ ◦ · · · ◦ µ.

Proof. Clearly µ is ϵ-reflexive. Suppose µk is ϵ-reflexive. Then µk+1(x, x) =
(µk ◦µ)(x, x) = →

z∈X
sup min[µk(x, z), µ(z, x)] ≥ min[µk(x, x), µ(x, x)] ≥ ϵ > 0.

By the mathematical induction, µn is ϵ-reflexive for all natural numbers n.
Thus [∪∞

n=1µ
n](x, x) = sup[µ(x, x), (µ ◦ µ)(x, x), . . . ] ≥ ϵ > 0. Hence ∪∞

n=1µ
n

is ϵ-reflexive. ¤
Proposition 2.9. Let µ and each νi be fuzzy relations in a set X for all i ∈ I.
Then µ ◦ (→

i∈I
∩νi) ⊆→

i∈I
∩(µ ◦ νi) and (→

i∈I
∩νi) ◦ µ ⊆→

i∈I
∩(νi ◦ µ).

Proof. Straightforward. ¤

3. ϵ-fuzzy congruences on semigroups

In this section we characterize the generated ϵ-fuzzy congruences on semi-
groups.

Proposition 3.1. Let µ and ν be ϵ-fuzzy congruences in a set X. Then µ ∩ ν
is an ϵ-fuzzy congruence.

Proof. It is clear that µ ∩ ν is ϵ-reflexive and symmetric. By Proposition 2.9,
[(µ∩ν)◦(µ∩ν)] ⊆ [µ◦(µ∩ν)]∩[ν◦(µ∩ν)] ⊆ [(µ◦µ)∩(µ◦ν)]∩[(ν◦µ)∩(ν◦ν)] ⊆
[µ∩ (µ ◦ ν)]∩ [(ν ◦ µ)∩ ν] ⊆ µ∩ ν. That is, µ∩ ν is transitive. Clearly µ∩ ν is
fuzzy left and right compatible. Thus µ ∩ ν is an ϵ-fuzzy congruence. ¤
Example. Let X = {x, y, z} be a semigroup such that xy = y, yx = x, xz =
z, zx = x, yz = z, zy = y. Let µ and ν be fuzzy relations in X such that
µ(x, x) = µ(y, y) = µ(z, z) = 0.8, µ(x, y) = µ(y, x) = 0.4, µ(x, z) = µ(z, x) =
0.2, µ(y, z) = µ(z, y) = 0.2, ν(x, x) = ν(y, y) = ν(z, z) = 0.6, ν(x, y) =
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ν(y, x) = 0.3, ν(x, z) = ν(z, x) = 0.3, ν(y, z) = ν(z, y) = 0.5. Then (µ ∪
ν)(x, x) = (µ ∪ ν)(y, y) = (µ ∪ ν)(z, z) = 0.8, (µ ∪ ν)(x, y) = (µ ∪ ν)(y, x) =
0.4, (µ ∪ ν)(x, z) = (µ ∪ ν)(z, x) = 0.3, and (µ ∪ ν)(y, z) = (µ ∪ ν)(z, y) = 0.5.
It is easily checked that µ and ν are ϵ-fuzzy congruences on X, but µ∪ ν is not
an ϵ-fuzzy congruence on X.

Even though µ and ν are ϵ-fuzzy congruences, µ ∪ ν is not necessarily an
ϵ-fuzzy congruence as shown in the above example. We find the ϵ-fuzzy con-
gruence generated by µ ∪ ν on a semigroup in the following proposition.

Proposition 3.2. Let µ and ν be ϵ-fuzzy congruences on a semigroup S. Then
the ϵ-fuzzy congruence generated by µ∪ν in S is ∪∞

n=1(µ∪ν)n = (µ∪ν)∪ [(µ∪
ν) ◦ (µ ∪ ν)] ∪ · · · .

Proof. Clearly (µ ∪ ν)(x, x) ≥ ϵ > 0. That is, µ ∪ ν is ϵ-reflexive. By Propo-
sition 2.8, ∪∞

n=1(µ ∪ ν)n is ϵ-reflexive. Clearly µ ∪ ν is symmetric. By Propo-
sition 2.6, ∪∞

n=1(µ ∪ ν)n is symmetric. By Proposition 2.5, ∪∞
n=1(µ ∪ ν)n is

transitive. Hence ∪∞
n=1(µ ∪ ν)n is an ϵ-fuzzy equivalence relation containing

µ ∪ ν. It is straightforward to see that µ ∪ ν is fuzzy left and right com-
patible. By Proposition 2.7, ∪∞

n=1(µ ∪ ν)n is fuzzy left and right compatible.
Thus ∪∞

n=1(µ ∪ ν)n is an ϵ-fuzzy congruence containing µ ∪ ν. Let λ be an
ϵ-fuzzy congruence in S containing µ ∪ ν. Then ∪∞

n=1(µ ∪ ν)n ⊆ ∪∞
n=1λ

n =
λ∪ (λ ◦λ)∪ (λ ◦λ ◦λ)∪ · · · ⊆ λ∪λ∪ · · · = λ. Thus ∪∞

n=1(µ∪ ν)n is the ϵ-fuzzy
congruence generated by µ ∪ ν. ¤

We now turn to the characterization of the ϵ-fuzzy congruences generated
by fuzzy relations on semigroups.

Theorem 3.3. Let µ be a fuzzy relation on a semigroup S such that µ is fuzzy
left and right compatible. Then the ϵ-fuzzy congruence generated by µ in S is
∪∞

n=1(µ ∪ µ−1 ∪ θ)n, where θ is a fuzzy relation in S such that θ(a, a) = ϵ for
all a ∈ S and θ(x, y) = θ(y, x) ≤ min[µ(x, y), µ(y, x)] for all x, y ∈ S with
x ̸= y.

Proof. (µ ∪ µ−1 ∪ θ)(a, a) ≥ θ(a, a) = ϵ > 0 for all a ∈ S. Thus µ ∪ µ−1 ∪ θ
is ϵ-reflexive. Let µ1 = µ ∪ µ−1 ∪ θ. By Proposition 2.8, ∪∞

n=1µ
n
1 is ϵ-

reflexive. µ1(x, y) = (µ ∪ µ−1 ∪ θ)(x, y) = max[µ(x, y), µ−1(x, y), θ(x, y)] =
max[µ−1(y, x), µ(y, x), θ(y, x)] = (µ ∪ µ−1 ∪ θ)(y, x) = µ1(y, x). Thus µ1 is
symmetric. By Proposition 2.6, ∪∞

n=1µ
n
1 is symmetric. By Proposition 2.5,

∪∞
n=1µ

n
1 is transitive. Hence ∪∞

n=1µ
n
1 is an ϵ-fuzzy equivalence relation contain-

ing µ. Since θ(x, y) ≤ µ(x, y) ≤ µ(zx, zy), µ1(x, y) = (µ ∪ µ−1 ∪ θ)(x, y) =
max[µ(x, y), µ−1(x, y), θ(x, y)] = max[µ(x, y), µ(y, x), θ(x, y)] ≤ max[µ(zx, zy),
µ(zy, zx), θ(zx, zy)] = max[µ(zx, zy), µ−1(zx, zy), θ(zx, zy)] = (µ∪µ−1∪θ)(zx,
zy) = µ1(zx, zy) for all x, y, z ∈ S such that x ̸= y. Since θ(a, a) = ϵ for all a ∈
S, µ1(x, x) = (µ∪µ−1 ∪ θ)(x, x) = max[µ(x, x), θ(x, x)] ≤ max[µ(zx, zx), θ(zx,
zx)] = (µ ∪ µ−1 ∪ θ)(zx, zx) = µ1(zx, zx) for all x, z ∈ S. Thus µ1 is fuzzy
left compatible. Similarly we may show µ1 is fuzzy right compatible. By
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Proposition 2.7, ∪∞
n=1 µn

1 is fuzzy left and right compatible. Thus ∪∞
n=1 µn

1

is an ϵ-fuzzy congruence containing µ. Let ν be an ϵ-fuzzy congruence con-
taining µ. Then µ(x, y) ≤ ν(x, y), µ−1(x, y) = µ(y, x) ≤ ν(y, x) = ν(x, y),
and θ(x, y) ≤ µ(x, y) ≤ ν(x, y) for all x, y ∈ S such that x ̸= y. That is,
ν(x, y) ≥ (µ ∪ µ−1 ∪ θ)(x, y) for all x, y ∈ S such that x ̸= y. ν(a, a) ≥
µ(a, a) = µ−1(a, a) for all a ∈ S. Since θ(a, a) = ϵ and ν(a, a) ≥ ϵ for all
a ∈ S, θ(a, a) ≤ ν(a, a). That is, µ1(a, a) ≤ ν(a, a) for all a ∈ S. Thus
µ1 = (µ∪µ−1∪θ) ⊆ ν. Suppose µk

1 ⊆ ν. Then µk+1
1 (x, y) = (µk

1◦µ1)(x, y) = →
z∈S

supmin[µk
1(x, z), µ1(z, y)] ≤→

z∈S
sup min[ν(x, z), ν(z, y)] = (ν ◦ ν)(x, y). Since ν

is transitive, µk+1
1 ⊆ ν ◦ ν ⊆ ν. By the mathematical induction, µn

1 ⊆ ν for
n = 1, 2, . . .. Hence ∪∞

n=1µ
n
1 = µ1 ∪ (µ1 ◦ µ1) ∪ (µ1 ◦ µ1 ◦ µ1) ∪ · · · ⊆ ν. ¤

We need the following definition and proposition to find the ϵ-fuzzy congru-
ence generated by a fuzzy relation on a semigroup.

Definition 3.4. Let µ be a fuzzy relation on a semigroup S and let S1 =
S ∪ {e}, where e is the identity of S. We define the fuzzy relation µ∗ on S as

µ∗(c, d) =
∪

x,y∈S1,
xay=c,
xby=d

µ(a, b) for all c, d ∈ S.

Proposition 3.5. Let µ and ν be two fuzzy relations on a semigroup S. Then
(1) µ ⊆ µ∗

(2) (µ∗)−1 = (µ−1)∗

(3) If µ ⊆ ν, then µ∗ ⊆ ν∗

(4) (µ ∪ ν)∗ = µ∗ ∪ ν∗

(5) µ = µ∗ if and only if µ is fuzzy left and right compatible
(6) (µ∗)∗ = µ∗

Proof. See Proposition 3.5 of [5]. ¤

Theorem 3.6. Let µ be a fuzzy relation on a semigroup S. Then the ϵ-fuzzy
congruence generated by µ in S is ∪∞

n=1 [µ∗ ∪ (µ∗)−1 ∪ θ∗]n, where θ is a fuzzy
relation in S such that θ(a, a) = ϵ for all a ∈ S and θ(x, y) = θ(y, x) ≤
min [µ(x, y), µ(y, x)] for all x, y ∈ S with x ̸= y, and µ∗ and θ∗ are fuzzy
relations defined in Definition 3.4.

Proof. Since θ(a, a) = ϵ, θ∗(a, a) ≥ ϵ > 0 for all a ∈ S by Proposition 3.5(1).
Let µ1 = µ∗ ∪ (µ∗)−1 ∪ θ∗. Then µ1(a, a) ≥ ϵ > 0. That is, µ1 is ϵ-
reflexive. By Proposition 2.8, ∪∞

n=1µ
n
1 is ϵ-reflexive. Let x, y ∈ S with x ̸= y.

Since θ = θ−1, θ∗ = (θ−1)∗ = (θ∗)−1 by Proposition 3.5(2). µ1(x, y) =
max[µ∗(x, y), (µ∗)−1(x, y), θ∗(x, y)] = max[(µ∗)−1(y, x), µ∗(y, x), (θ∗)−1(x, y)]
= max[(µ∗)−1(y, x), µ∗(y, x), θ∗(y, x)] = (µ∗ ∪ (µ∗)−1 ∪ θ∗)(y, x) = µ1(y, x).
Thus µ1 is symmetric. By Proposition 2.6, ∪∞

n=1 µn
1 is symmetric. By Proposi-

tion 2.5, ∪∞
n=1 µn

1 is transitive. Hence ∪∞
n=1 µn

1 is an ϵ-fuzzy equivalence relation
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containing µ. By Proposition 3.5(2), (4), and (6), µ∗
1 = (µ∗ ∪ (µ∗)−1 ∪ θ∗)∗ =

(µ∗∪(µ−1)∗∪θ∗)∗ = (µ∗)∗∪((µ−1)∗)∗∪(θ∗)∗ = µ∗∪(µ−1)∗∪θ∗ = µ∗∪(µ∗)−1∪
θ∗ = µ1. Thus µ1 is fuzzy left and right compatible by Proposition 3.5(5). By
Proposition 2.7, ∪∞

n=1 µn
1 is fuzzy left and right compatible. Thus ∪∞

n=1 µn
1 is

an ϵ-fuzzy congruence containing µ. Let ν be an ϵ-fuzzy congruence contain-
ing µ. Then µ(x, y) ≤ ν(x, y), µ−1(x, y) = µ(y, x) ≤ ν(y, x) = ν(x, y), and
θ(x, y) ≤ µ(x, y) ≤ ν(x, y). That is, (µ∪µ−1∪θ)(x, y) ≤ ν(x, y) for all x, y ∈ S
such that x ̸= y. ν(a, a) ≥ µ(a, a) = µ−1(a, a) for all a ∈ S. Since θ(a, a) = ϵ
and ν(a, a) ≥ ϵ for all a ∈ S, θ(a, a) ≤ ν(a, a). That is, (µ ∪ µ−1 ∪ θ)(a, a) ≤
ν(a, a) for all a ∈ S. Thus µ ∪ µ−1 ∪ θ ⊆ ν. By Proposition 3.5(2), (4), and
(3), µ1 = µ∗ ∪ (µ∗)−1 ∪ θ∗ = µ∗ ∪ (µ−1)∗ ∪ θ∗ = (µ ∪ µ−1 ∪ θ)∗ ⊆ ν∗. Since
ν = ν∗ by Proposition 3.5(5), µ1 ⊆ ν. Suppose µk

1 ⊆ ν. Then µk+1
1 (x, y) =

(µk
1 ◦µ1)(x, y) = →

z∈X
supmin[µk

1(x, z), µ1(z, y)] ≤ →
z∈X

supmin[ν(x, z), ν(z, y)] =

(ν ◦ ν)(x, y). Since ν is transitive, µk+1
1 ⊆ ν ◦ ν ⊆ ν. By the mathematical

induction, µn
1 ⊆ ν for n = 1, 2, . . .. Thus ∪∞

n=1 [µ∗∪(µ∗)−1∪θ∗]n = ∪∞
n=1 µ1

n =
µ1 ∪ (µ1 ◦ µ1) ∪ (µ1 ◦ µ1 ◦ µ1) · · · ⊆ ν. ¤

4. Lattices of ϵ-fuzzy congruences

In this section we discuss some lattice theoretic properties of ϵ-fuzzy con-
gruences.

Theorem 4.1. Let C(S) be the collection of all ϵ-fuzzy congruences on a semi-
group S. Then (C(S),≤) is a complete lattice, where ≤ is a relation on the set
of all ϵ-fuzzy congruences on S defined by µ ≤ ν if and only if µ(x, y) ≤ ν(x, y)
for all x, y ∈ S.

Proof. Clearly ≤ is a partial order relation. It is easy to check that the equality
relation σ defined by σ(x, y) = 1 for all x, y ∈ S is in C(S) and the relation λ de-
fined by λ(x, y) = ϵ for x = y and λ(x, y) = 0 for x ̸= y is in C(S). Also σ is the
greatest element and λ is the least element of C(S) with respect to the ordering
≤. Let {µj}j∈J be a non-empty collection of ϵ-fuzzy congruences in C(S). Let
µ(x, y) = →

j∈J
infµj(x, y) for all x, y ∈ S. It is easy to see that µ(x, x) ≥ ϵ for all

x ∈ S, µ = µ−1, µ(x, y) ≤ µ(zx, zy), and µ(x, y) ≤ µ(xz, yz) for all x, y, z ∈ S.
µ ◦ µ(x, y) = →

z∈X
supmin[ →

j∈J
infµj(x, z), →

j∈J
infµj(z, y)] = →

z∈X
sup →

j∈J
inf →

i∈J

inf min[µj(x, z), µi(z, y)] ≤ →
z∈X

sup →
j∈J

inf min[µj(x, z), µj(z, y)] ≤→
j∈J

infµj ◦

µj(x, y) ≤→
j∈J

infµj(x, y) = µ(x, y). That is, µ ∈ C(S). Since µ is the greatest

lower bound of {µj}j∈J , (C(S),≤) is a complete lattice. ¤

Let MC(S) = {µ ∈ C(S) : µ(x, y) ≤ ϵ for all x, y ∈ S such that x ̸= y}.
Then it is easy to see that (MC(S), ≤) is a sublattice of (C(S), ≤). We define
addition and multiplication on MC(S) by µ + ν = ⟨µ ∪ ν⟩c and µ · ν = µ ∩ ν,
where ⟨µ ∪ ν⟩c is the ϵ-fuzzy congruence generated by µ ∪ ν.
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Definition 4.2. A lattice (L,+, ·) is called modular if (x + y) · z ≤ x + (y · z)
for all x, y, z ∈ L with x ≤ z.

Lemma 4.3. Let µ and ν be ϵ-fuzzy congruences on a semigroup S such that
µ(x, x) ≥ ν(x, y) and ν(y, y) ≥ µ(x, y) for all x, y ∈ S. If µ ◦ ν = ν ◦ µ, then
µ ◦ ν is the ϵ-fuzzy congruence on S generated by µ ∪ ν.

Proof. (µ ◦ ν)(x, x) = →
z∈S

sup min[µ(x, z), ν(z, x)] ≥ min(µ(x, x), ν(x, x)) ≥ ϵ >

0 for all x ∈ S. That is, µ ◦ ν is ϵ-reflexive. Since µ and ν are symmetric,
(µ ◦ ν)−1 = ν−1 ◦ µ−1 = ν ◦ µ = µ ◦ ν. Thus µ ◦ ν is symmetric. Since µ and ν
are transitive and the operation ◦ is associative, (µ◦ν)◦(µ◦ν) = µ◦(ν◦µ)◦ν =
µ◦(µ◦ν)◦ν = (µ◦µ)◦(ν ◦ν) ⊆ µ◦ν. Hence µ◦ν is an ϵ-fuzzy equivalence rela-
tion. Since S is a semigroup, (µ ◦ ν)(x, y) = →

a∈S
supmin[µ(x, a), ν(a, y)] ≤ →

za∈S

supmin[µ(zx, za), ν(za, zy)] ≤→
t∈S

sup min[µ(zx, t), ν(t, zy)] = (µ ◦ ν)(zx, zy)

for all x, y, z ∈ S. Thus µ ◦ ν is fuzzy left compatible. Similarly we may
show µ ◦ ν is fuzzy right compatible. Hence µ ◦ ν is an ϵ-fuzzy congruence
in S. Since ν(y, y) ≥ µ(x, y), (µ ◦ ν)(x, y) = →

z∈S
supmin[µ(x, z), ν(z, y)] ≥

min(µ(x, y), ν(y, y)) = µ(x, y). Since µ(x, x) ≥ ν(x, y), (µ ◦ ν)(x, y) = →
z∈S

supmin[µ(x, z), ν(z, y)] ≥ min(µ(x, x), ν(x, y)) = ν(x, y). Thus (µ ◦ ν)(x, y) ≥
max(µ(x, y), ν(x, y)) = (µ ∪ ν)(x, y) for all x, y ∈ S. Thus µ ∪ ν ⊆ µ ◦ ν.
Let λ be an ϵ-fuzzy congruence in S containing µ ∪ ν. Since λ is transitive,
µ ◦ ν ⊆ (µ ∪ ν) ◦ (µ ∪ ν) ⊆ λ ◦ λ ⊆ λ. Thus µ ◦ ν is the ϵ-fuzzy congruence
generated by µ ∪ ν. ¤

Lemma 4.3 also gives sufficient conditions for the composition µ ◦ ν of two
ϵ-fuzzy congruences µ and ν on a semigroup to be the ϵ-fuzzy congruence
generated by µ ∪ ν.

Theorem 4.4. Let S be a semigroup and H be a sublattice of (MC(S), +, ·)
such that µ ◦ ν = ν ◦ µ for all µ, ν ∈ H. Then H is a modular lattice.

Proof. Let µ, ν, ρ ∈ H with µ ≤ ρ. Let x, y ∈ S. min[(µ◦ν)(x, y), ρ(x, y)] = →
z∈S

supmin[µ(x, z), ν(z, y), ρ(x, y)] ≤→
z∈S

supmin[µ(x, z), ρ(x, z), ν(z, y), ρ(x, y)] ≤
→

z∈S
supmin[µ(x, z), ν(z, y), ρ(z, y)] = [µ ◦ min(ν, ρ)](x, y). Thus (µ ◦ ν) · ρ ≤

µ ◦ (ν · ρ). Since µ, ν ∈ MC(S), µ(x, x) ≥ ν(x, y) and ν(y, y) ≥ µ(x, y) for all
x, y ∈ S. By Lemma 4.3, µ ◦ ν is the ϵ-fuzzy congruence generated by µ ∪ ν.
That is, µ + ν = µ ◦ ν. Similarly we may show µ + (ν · ρ) = µ ◦ (ν · ρ). Thus
(µ + ν) · ρ ≤ µ + (ν · ρ). Hence H is modular. ¤
Proposition 4.5. If S is a group, then µ ◦ ν = ν ◦ µ for all µ, ν ∈ C(S).

Proof. Straightforward. ¤
Corollary 4.6. If S is a group, then (MC(S), +, ·) is modular.

Proof. By Theorem 4.4 and Proposition 4.5, (MC(S), +, ·) is modular. ¤
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