• Title/Summary/Keyword: Semiconductor integrated circuit

Search Result 212, Processing Time 0.024 seconds

Fabrication of High Aspect Ratio Micro Structure for fine pitch probe production (Fine pitch probe 제작을 위한 고세장비 마이크로 구조물 제작)

  • Lee, S.I.;Kim, W.K.;Pyo, C.R.;Kim, D.Y.;Yang, S.J.;Ko, K.H.;Kim, H.J.;Jeon, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.356-359
    • /
    • 2007
  • Continuing improvements in integrated circuit chip density and functionality have mostly contributed toward a very large-scale integrated circuit(VLSI) and display device. In order to test (pass or fail) all of the high integrated semiconductor chip and display device, fine pitch probes are used. Fine pitch probes are manufactured by electroforming process of a Ni alloy in an electrolytic bath. In this paper, we expect that the electric field in bath with the Finite Element Method and applying the FEM result. So, we can obtained the probes that have high aspect ratio of 10 : 1

  • PDF

Analysis of the LIGBT-based ESD Protection Circuit with Latch-up Immunity and High Robustness (래치-업 면역과 높은 감내 특성을 가지는 LIGBT 기반 ESD 보호회로에 대한 연구)

  • Kwak, Jae Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.686-689
    • /
    • 2014
  • Electrostatic discharge has been considered as a major reliability problem in the semiconductor industry. ESD reliability is an important issue for these products. Therefore, each I/O (Input/Output) PAD must be designed with a protection circuitry that creates a low impedance discharge path for ESD current. This paper presents a novel Lateral Insulated Gate Bipolar (LIGBT)-based ESD protection circuit with latch-up immunity and high robustness. The proposed circuit is fabricated by using 0.18 um BCD (bipolar-CMOS-DMOS) process. Also, TLP (transmission line pulse) I-V characteristic of proposed circuit is measured. In the result, the proposed ESD protection circuit has latch-up immunity and high robustness. These characteristics permit the proposed circuit to apply to power clamp circuit. Consequently, the proposed LIGBT-based ESD protection circuit with a latch-up immune characteristic can be applied to analog integrated circuits.

Statistical Analysis on Critical Dimension Variation for a Semiconductor Fabrication Process (반도체 제조공정의 Critical Dimension 변동에 대한 통계적 분석)

  • Park, Sung-Min;Lee, Jeong-In;Kim, Byeong-Yun;Oh, Young-Sun
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.344-351
    • /
    • 2003
  • Critical dimension is one of the most important characteristics of up-to-date integrated circuit devices. Hence, critical dimension control in a semiconductor wafer fabrication process is inevitable in order to achieve optimum device yield as well as electrically specified functions. Currently, in complex semiconductor wafer fabrication processes, statistical methodologies such as Shewhart-type control charts become crucial tools for practitioners. Meanwhile, given a critical dimension sampling plan, the analysis of variance technique can be more effective to investigating critical dimension variation, especially for on-chip and on-wafer variation. In this paper, relating to a typical sampling plan, linear statistical models are presented for the analysis of critical dimension variation. A case study is illustrated regarding a semiconductor wafer fabrication process.

Compact Modeling for Nanosheet FET Based on TCAD-Machine Learning (TCAD-머신러닝 기반 나노시트 FETs 컴팩트 모델링)

  • Junhyeok Song;Wonbok Lee;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.136-141
    • /
    • 2023
  • The continuous shrinking of transistors in integrated circuits leads to difficulties in improving performance, resulting in the emerging transistors such as nanosheet field-effect transistors. In this paper, we propose a TCAD-machine learning framework of nanosheet FETs to model the current-voltage characteristics. Sentaurus TCAD simulations of nanosheet FETs are performed to obtain a large amount of device data. A machine learning model of I-V characteristics is trained using the multi-layer perceptron from these TCAD data. The weights and biases obtained from multi-layer perceptron are implemented in a PSPICE netlist to verify the accuracy of I-V and the DC transfer characteristics of a CMOS inverter. It is found that the proposed machine learning model is applicable to the prediction of nanosheet field-effect transistors device and circuit performance.

  • PDF

Estimation of Transferred Power from a Noise Source to an IC with Forwarded Power Characteristics

  • Pu, Bo;Kim, Taeho;Kim, SungJun;Kim, Jong-Hyeon;Kim, SoYoung;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • This paper proposes an accurate approach for predicting transferred power from a noise source to integrated circuits based on the characteristics of the power transfer network. A power delivery trace on a package and a printed circuit board are designed to transmit power from an external source to integrated circuits. The power is demonstrated between an injection terminal on the edge of the printed circuit board and integrated circuits, and the power transfer function of the power distribution network is derived. A two-tier calibration is applied to the test, and scattering parameters of the network are measured for the calculation of the power transfer function. After testing to obtain the indispensable parameters, the real received and tolerable power of the integrated circuits can be easily achieved. Our proposed estimation method is an enhancement of the existing the International Electrotechnical Commission standard for precise prediction of the electromagnetic immunity of integrated circuits.

A High Density MIM Capacitor in a Standard CMOS Process

  • Iversen, Christian-Rye
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.189-192
    • /
    • 2001
  • A simple metal-insulator-metal (MIM) capacitor in a standard $0.25{\;}\mu\textrm{m}$ digital CMOS process is described. Using all six interconnect layers, this capacitor exploits both the lateral and vertical electrical fields to increase the capacitance density (capacitance per unit area). Compared to a conventional parallel plate capacitor in the four upper metal layers, this capacitor achieves lower parasitic substrate capacitance, and improves the capacitance density by a factor of 4. Measurements and an extracted model for the capacitor are also presented. Calculations, model and measurements agree very well.

  • PDF

A Study on the Design of a Pulse-Width Modulation DC/DC Power Converter

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • DC/DC Switching power converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. A switching converter utilizes one or more energy storage elements such as capacitors, or transformers to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter studied here consists of a power metal-oxide semiconductor field effect transistor switch, an inductor, a capacitor, a diode, and a pulse-width modulation circuit with oscillator, amplifier, and comparator. A buck converter containing a switched-mode power supply is also studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by simulation program with integrated circuit emphasis (SPICE). Furthermore, power efficiency was analyzed based on the specifications of each component.

A Semi-analytical Model for Depletion-mode N-type Nanowire Field-effect Transistor (NWFET) with Top-gate Structure

  • Yu, Yun-Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.152-159
    • /
    • 2010
  • We propose a semi-analytical current conduction model for depletion-mode n-type nanowire field-effect transistors (NWFETs) with top-gate structure. The NWFET model is based on an equivalent circuit consisting of two back-to-back Schottky diodes for the metal-semiconductor (MS) contacts and the intrinsic top-gate NWFET. The intrinsic top-gate NWFET model is derived from the current conduction mechanisms due to bulk charges through the center neutral region as well as of accumulation charges through the surface accumulation region, based on the electrostatic method, and thus it includes all current conduction mechanisms of the NWFET operating at various top-gate bias conditions. Our previously developed Schottky diode model is used for the MS contacts. The newly developed model is integrated into ADS, in which the intrinsic part of the NWFET is developed by utilizing the Symbolically Defined Device (SDD) for an equation-based nonlinear model. The results simulated from the newly developed NWFET model reproduce considerably well the reported experimental results.

Time-Domain Analog Signal Processing Techniques

  • Kang, Jin-Gyu;Kim, Kyungmin;Yoo, Changsik
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.2
    • /
    • pp.64-73
    • /
    • 2020
  • As CMOS technology scales down, the design of analog signal processing circuit becomes far more difficult because of steadily decreasing supply voltage and smaller intrinsic gain of transistors. With sub-1V supply voltage, the conventional analog signal processing relying on high-gain amplifiers is not an effective solution and different approach has to be sought. One of the promising approaches is "time-domain analog signal processing" which exploits the improving switching speed of transistors in a scaled CMOS technology. In this paper, various time-domain analog signal processing techniques are explained with some experimental results.

Assembly Modeling Framework for Thin-Film Transistors (조립형 박막 트랜지스터 모델링 프레임워크)

  • Jung, Taeho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2017
  • As the demand on displays increases, new thin-film transistors such as metal oxide transistor are continuously being invented. When designing a circuit consisting of such new transistors, a new transistor model based on proper charge transport mechanisms is needed for each of them. In this paper, a modeling framework which enables to choose charge transport mechanisms that are limited to certain operation regions and assemble them into a transistor model instead of making an integrated transistor model dedicated to each transistor. The framework consists of a graphic user interface to choose charge transport models and a current calculation part, which is also implemented in AIM-SPICE for circuit simulation.

  • PDF