• Title/Summary/Keyword: Scalar metric

Search Result 93, Processing Time 0.021 seconds

JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS

  • Kim, Jung-Hwa;Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.507-528
    • /
    • 2006
  • In this paper we show that the Koecher's Jordan automorphic generators of one variable on an irreducible symmetric cone are enough to determine the elements of scalar multiple of the Jordan identity on the attached simple Euclidean Jordan algebra. Its various geometric, Jordan and Lie theoretic interpretations associated to the Cartan-Hadamard metric and Cartan decomposition of the linear automorphisms group of a symmetric cone are given with validity on infinite-dimensional spin factors

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui;Lakrini, Ibrahim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1219-1233
    • /
    • 2019
  • Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

SIMPLY CONNECTED MANIFOLDS OF DIMENSION 4k WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES

  • KIM, JONGSU
    • The Pure and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.359-364
    • /
    • 2015
  • We present smooth simply connected closed 4k-dimensional manifolds N := Nk, for each k ∈ {2, 3, ⋯}, with distinct symplectic deformation equivalence classes [[ωi]], i = 1, 2. To distinguish [[ωi]]’s, we used the symplectic Z invariant in [4] which depends only on the symplectic deformation equivalence class. We have computed that Z(N, [[ω1]]) = ∞ and Z(N, [[ω2]]) < 0.

SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN METRICS AS CRITICAL POINTS FOR QUADRATIC CURVATURE FUNCTIONALS

  • Huang, Guangyue;Ma, Bingqing;Yang, Jie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1367-1382
    • /
    • 2020
  • We study rigidity results for the Einstein metrics as the critical points of a family of known quadratic curvature functionals involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor, characterized by some pointwise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moreover, we also provide a few rigidity results for locally conformally flat critical metrics.

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON

  • Dey, Dibakar
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.547-554
    • /
    • 2021
  • The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.

LEFT INVARIANT LORENTZIAN METRICS AND CURVATURES ON NON-UNIMODULAR LIE GROUPS OF DIMENSION THREE

  • Ku Yong Ha;Jong Bum Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.143-165
    • /
    • 2023
  • For each connected and simply connected three-dimensional non-unimodular Lie group, we classify the left invariant Lorentzian metrics up to automorphism, and study the extent to which curvature can be altered by a change of metric. Thereby we obtain the Ricci operator, the scalar curvature, and the sectional curvatures as functions of left invariant Lorentzian metrics on each of these groups. Our study is a continuation and extension of the previous studies done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on unimodular Lie groups.

SOLITON FUNCTIONS AND RICCI CURVATURES OF D-HOMOTHETICALLY DEFORMED f-KENMOTSU ALMOST RIEMANN SOLITONS

  • Urmila Biswas;Avijit Sarkar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1215-1231
    • /
    • 2023
  • The present article contains the study of D-homothetically deformed f-Kenmotsu manifolds. Some fundamental results on the deformed spaces have been deduced. Some basic properties of the Riemannian metric as an inner product on both the original and deformed spaces have been established. Finally, applying the obtained results, soliton functions, Ricci curvatures and scalar curvatures of almost Riemann solitons with several kinds of potential vector fields on the deformed spaces have been characterized.

SOME PROPERTIES OF CRITICAL POINT EQUATIONS METRICS ON THE STATISTICAL MANIFOLDS

  • Hajar Ghahremani-Gol;Mohammad Amin Sedghi
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.471-478
    • /
    • 2024
  • The aim of this paper is to investigate some properties of the critical points equations on the statistical manifolds. We obtain some geometric equations on the statistical manifolds which admit critical point equations. We give a relation only between potential function and difference tensor for a CPE metric on the statistical manifolds to be Einstein.

Scalar Perturbation and Stability of a New Wormhole in Einstein-Born-Infeld Gravity (아인슈타인-본-인펠트 중력 이론에서 새로운 웜홀의 스칼라장 섭동과 안정성)

  • Kim, Jin Young
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1262-1267
    • /
    • 2018
  • We introduce a new method to construct wormholes without adopting exotic matters in Einstein-Born-Infeld gravity with a negative cosmological constant. Contrary to the conventional method, the throat of the wormhole is located at the point where the metric solutions are joined smoothly. Thus, exotic matters are not needed to sustain the throat. We consider the behavior of a minimally coupled scalar field to study the stability of the new wormhole. If we define the quasinormal mode of the scalar field as the purely ingoing flux at the throat of the wormhole, the stability of wormhole can be discussed in analogy with the argument that we use for the stability of a black hole. Because an analytic solution can not be found, we suggest a formalism to find quasinormal modes numerically. The crucial difference from the black hole case is that the coefficient of the second-order derivative term of the radial equation is expanded from n = -1, which is contrary to the black hole case where it is expanded from n = 0.