Browse > Article
http://dx.doi.org/10.11568/kjm.2021.29.3.547

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON  

Dey, Dibakar (Department of Pure Mathematics, University of Calcutta)
Publication Information
Korean Journal of Mathematics / v.29, no.3, 2021 , pp. 547-554 More about this Journal
Abstract
The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.
Keywords
Sasakian 3-manifold; Ricci-Yamabe soliton; Gradient Ricci-Yamabe soliton; Infinitesimal automorphism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Sharma, A 3-dimensional Sasakian metric as a Yamabe soliton, Int. J. Geom. Methods Mod. Phys. 09 (2012), 1220003.   DOI
2 V. Venkatesha and D. M. Naik, Yamabe solitons on 3-dimensional contact metric manifolds with Qϕ = ϕQ, Int. J. Geom. Methods Mod. Phys. 16 (2019), 1950039.   DOI
3 S. Sasaki, Lecture notes on almost contact manifolds-I, Mathematical Institute, Tohoku Univ.(1965)
4 P. Majhi, U. C. De and D. Kar, η-Ricci solitons on Sasakian 3-manifolds, An. Univ. Vest Timis. Ser. Mat.-Inform. LV, 2 (2017), 143-156.
5 J. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theoret. Phys. 38 (1999), 1113-1133.   DOI
6 J. B. Jun and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994), 293-301.
7 S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404.   DOI
8 R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, J. Geom. 89 (2008), 138-147.   DOI
9 M. D. Siddiqi and M. A. Akyol, η-Ricci-Yamabe solitons on Riemannian submersions from Riemannian manifolds, arXiv.2004.14124v1 [math.DG]
10 K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
11 R. S. Hamilton, Ricci flow on surfaces, Contempory Mathematics 71 (1988), 237-261.   DOI
12 R. S. Hamilton, Lectures on geometric flows, 1989 (unpublished).
13 A. Ghosh and R. Sharma, Sasakian metric as a Ricci soliton and related results, J. Geom. Phys. 75 (2014), 1-6.   DOI
14 Y. Akrami, T. S. Koivisto and A. R. Solomon, The nature of spacetime in bigravity: two metrics or none?, Gen. Relativ. and Grav. 47 (2015), 1838.   DOI
15 C. P. Boyer and K. Galicki, On Sasakian Einstein geometry, Int. J. Math. 11 (2000), 873-909.   DOI
16 C. P . Boyer, K. Galicki and P. Matzeu, On η-Einstein Sasakian geometry, Comm. Math. Phys. 262 (2006), 177-208.   DOI
17 W. Boskoff and M. Crasmareanu, A Rosen type bi-metric universe and its physical properties, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850174.   DOI
18 P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum configuration for superstrings, Nuclear Phys. B 258 (1995), 46-74.   DOI
19 G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94.   DOI
20 G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 28 (2017), 337-370.   DOI
21 D. Dey, Almost Kenmotsu metric as Ricci-Yamabe soliton, arXiv:2005.02322v1 [math.DG]
22 S. Guler and M. Crasmareanu, Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy, Turk. J. Math. 43 (2019), 2361-2641.
23 R. S. Hamilton, Three manifold with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306.   DOI
24 S. Tanno, Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416-430.   DOI