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SOME PROPERTIES OF CRITICAL POINT EQUATIONS

METRICS ON THE STATISTICAL MANIFOLDS

Hajar Ghahremani-Gol and Mohammad Amin Sedghi

Abstract. The aim of this paper is to investigate some properties of the

critical points equations on the statistical manifolds. We obtain some geo-
metric equations on the statistical manifolds which admit critical point

equations. We give a relation only between potential function and differ-
ence tensor for a CPE metric on the statistical manifolds to be Einstein.

1. Introduction

Let M be an n-dimensional compact (without boundary) oriented Riemann-
ian manifold with dimension at least three. As we know the total scalar cur-
vature functional R : M → R is as follows:

R(g) =

∫
M

sgdvolg,

where sg is the scalar curvature and M is the space of Riemannian metrics on
the manifold M . The Euler-Lagrangian equation of the total scalar curvature
functional restricted to the space of metrics with constant scalar curvature of
unitary volume is given by

(1.1) Ric− sg
n
g = Hess(f)− (Ric− sg

n− 1
g)f,

where Ric and Hess stand, respectively, for the Ricci tensor, and the Hessian
form on Mn [4, 6]. We recall the definition of critical point equations (CPE
metrics).

Definition 1.1 ([2]). A CPE metric is a 3-tuple (Mn, g, f), where (Mn, g)
is a compact oriented Riemannian manifold of dimension at least three with
constant scalar curvature and f : Mn → R is a non-constant smooth function
satisfying equation (1.1). Such a function f is called a potential.
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Considering R̊ic = Ric− sg
n g, the equation (1.1) yields

(1.2) (1 + f)R̊ic = ∇2f +
sgf

n(n− 1)
g.

Also, in local coordinates, we have

(1.3) (1 + f)R̊ij = ∇i∇jf +
sgf

n(n− 1)
gij .

Computing the trace in (1.3) gives

(1.4) −∆f =
sgf

(n− 1)
.

In 1987, Besse proposed a conjecture in [6] that the critical point metrics of
the total scalar curvature functional R restricted to the space of constat scalar
curvatures metrics, i.e., C = {g | sg is constant} are Einstein. The conjecture
with the notations of some papers have been presented in the following way [4].

Conjecture 1.2 ([4, 6]). A CPE metric is always Einstein.

There are many researches around critical point equations. For example,
you can see [3, 5, 8, 11] and references therein. In [8] provided a necessary and
sufficient condition on the norm of the gradient of the potential function for a
CPE metric to be Einstein as follows:

Theorem 1.3 ([8]). Let (M, g, f) be an n-dimensional CPE metric. Then M
is Einstein if and only if

(1.5) |∇f |2 + sgf
2

n(n− 1)
= Λ,

where Λ is a constant.

On the other hand the statistical manifolds have been the subject of many
investigations in the recent years. We first recall some notions and definitions of
them. For more details, see [1,7,9]. Let (M, g) be an n-dimensional Riemannian

manifold with Levi-Civita connection ∇̂ and ∇ as affine connection.

Definition 1.4. A pair (∇, g) is called a statistical structure on M , when ∇ is
a torsion-free affine connection and ∇ satisfies the following Codazzi condition

(1.6) (∇Xg)(Y,Z) = (∇Y g)(X,Z)

for all vector fields X,Y, Z ∈ TM .

A Riemannian manifold (M, g) with statistical structure (∇, g) is called a
Riemannian statistical manifold.

The conjugate (dual) connection ∇̄ of any connection ∇ relative to metric
g has been defined by the following formula

(1.7) X(g(Y, Z)) = g(∇XY,Z) + g(Y, ∇̄XZ).
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It is easy to see that if (g,∇) is a statistical structure, then (g, ∇̄) is also
statistical structure. In this paper we assume that ∇ is the statistical connec-
tion. The difference tensor K between statistical connection ∇ and Levi-Civita
connection ∇̂ is that

(1.8) ∇XY = ∇̂XY +KXY,

therefore we have

(1.9) ∇̄XY = ∇̂XY −KXY.

The notation K(X,Y ) := KXY is used for the difference tensor. It is known

that since ∇, ∇̂ are torsion free K is a (1, 2) symmetric tensor. A statistical

structure (g,∇) is trace-free if trgK(,̇)̇ = 0 (equivalently trgKX = 0 for every

vector filed X on M). If we let R, R̄, R̂ as curvature tensors of statistical

connection∇, its dual connection ∇̄ and Levi-Civita connection ∇̂, respectively,
then relations between curvature tensors have been expressed as the following
equations [10]:

(1.10) R(X,Y ) = R̂(X,Y ) + (∇̂XK)Y − (∇̂Y K)X + [KX ,KY ].

Writing the same equality for ∇̄ and adding both equalities gives

(1.11) R(X,Y ) + R̄(X,Y ) = 2R̂(X,Y ) + 2[KX ,KY ].

Now, if R = R̄, then

(1.12) R(X,Y ) = R̂(X,Y ) + [KX ,KY ].

Also the following equation is satisfied [9]

(1.13) g(R(X,Y )Z,W ) = −g(R̄(X,Y )W,Z).

Then, we have

(1.14) R̄ic(Y,W ) = −trgg(R(·, Y )·,W ),

where R̂ic is the Ricci tensor of ∇̂. If the statistical structure (g,∇) is trace-free
and using (1.12), the following equation will get [9]:

(1.15) Ric(Y,Z) + R̄ic(Y,Z) = 2R̂ic(Y,Z)− 2g(KY ,KZ).

It is important that the condition R = R̄ gives the symmetry of Ric. If we
denote the scalar curvatures of (g, ∇̄) and (g, ∇̂), by s̄g and ŝg, respectively,
then according to sg = trgRic(·, ·) and equation (1.14) we have

(1.16) sg = s̄g.

Taking the trace relative to g on both sides of (1.15), one gets

(1.17) ŝg = sg + ∥K∥2

for a trace-free statistical structure, [10].
The authors studied the critical point equation metrics on three-dimensional

cosymplectic manifolds [12]. The aim of this paper is to investigate some prop-
erties of the critical points equations on the statistical manifolds. In the next
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section, we obtain some geometric equations on the statistical manifolds which
admit critical point equations. We give a relation only between potential func-
tion f and difference tensor K for a CPE metric on the statistical manifolds
to be Einstein.

2. Theorems and results

In this section we investigate some properties of metrics on the statistical
manifolds. Let (g,∇) be a statistical structure and (g, ∇̄) be its dual structure

on the Riemannian manifold (M, g) with Levi-Civita Connection ∇̂. From now
we assume that the statistical structure is trace-free and R = R̄. If g is a
critical point equation metrics on the M with potesioal function f , then the
equation (1.1) in terms of the above notation is as follows:

(2.18) R̂ic− ŝg
n
g = ˆHessf −

(
R̂ic− ŝg

n− 1
g

)
f.

Proposition 2.1. If (g,∇) is a trace-free statistical structure on the Riemann-
ian manifold (M, g), then critical point equation on the M is as follows:

(1 + f) (Ric(X,Y ) + g(KX ,KY ))−
sg + ∥K∥2

n
g

= Hessf + (KXY )f −

(
sg + ∥K∥2

n− 1
g

)
f.(2.19)

Proof. Since the statistical structure (g,∇) is trace-free and R = R̄ applying
in the equation (1.15), we have

(2.20) Ric(X,Y ) = R̂ic(X,Y )− g(KX ,KY ).

Now substituting the relations of (1.17), (2.20) in the equation (2.18), we
have

Ric(X,Y ) + g(KX ,KY )−
sg + ∥K∥2

n
g

= Hessf(X,Y ) + df (K(X,Y ))−

(
Ric(X,Y ) + g(KX ,KY )−

sg + ∥K∥2

n− 1
g

)
f.

Consequently

(1 + f) (Ric(X,Y ) + g(KX ,KY ))−
sg + ∥K∥2

n
g

= Hessf + (KXY )f −

(
sg + ∥K∥2

n− 1
g

)
f.

□

Now in the following theorem we show that the scalar curvature of a statis-
tical structure on the CPE metric is related to tensor K.
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Theorem 2.2. If (g,∇) is a trace-free statistical structure on the Riemannian
manifold (M, g) with CPE metric g, then the scalar curvature sg satisfies in
the following equation:

(2.21) sg =
n∥K∥2(f − 1)

f
.

Proof. Taking the trace with respect to g on both sides of (2.19) and taking
into account that trgK = 0, we get

∥K∥2 = ∆f − sgf − nsgf + n∥K∥2f
n− 1

⇒ ∆f =
2n− 1

n(n− 1)
sgf + ∥K∥2 − n

n− 1
∥K∥2f.(2.22)

On the other hand applying (1.17) in the equation (1.4) we have

(2.23) −∆f =
(sg + ∥K∥2)f

n− 1
,

using now formulas (2.22) and (2.23) we see that

Rc

n− 1
f +

∥K∥2

n− 1
f = − 2n− 1

n(n− 1)
Rcf − ∥K∥2 + n

n− 1
∥K∥2f

⇒ 1

n
Rcf = ∥K∥2(f − 1).(2.24)

Hence,

sg =
n∥K∥2(f − 1)

f
. □

Remark 2.3. Note that KX is a (1, 1)-tensor for any X ∈ TM , and it can be
considered as an endomorphism of the vector space TxM . That is,

KX ∈ T 1
1 (TM ⊗ T ∗M)

also
KX = (KX)mn dxn ⊗ ∂m.

Therefore, in coordinate we have

KX(∂n) = ∇X(∂n)− ∇̂X(∂n)

= ∇Xi∂i
(∂n)− ∇̂Xi∂i

(∂n)

= Xi∇∂i
(∂n)−Xi∇̂∂i

(∂n)

= XiΓm
in(∂m)−XiΓ̂m

in(∂m).

Hence

(2.25) KX = (XiΓm
in −XiΓ̂m

in)dx
n ⊗ ∂m.

Theorem 2.4. Let (M, g, f) be a CPE metric and (∇, g) a statistical (trace-
free) structure. If M is Einstein, then statistical connection ∇ is the Levi-Civita
connection.
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Proof. According to (1.15) and Ric = R̄ic, since M is Einstein, we have

(2.26) Ric = λg − g(KX ,KY ).

Equation (2.19) can be rewritten as follows:

Ric− sg + ∥K∥2

n
g +Ricf −

(
sg + ∥K∥2

n
g

)
f

= − g(KX ,KY )− g(KX ,KY )f +

(
sg + ∥K∥2

n(n− 1)
g

)
f

+Hessf + (KXY )f.(2.27)

Therefore, substituting (2.26) into (2.27) we infer
(2.28)

(1 + f)

(
λg − sg + ∥K∥2

n
g

)
=

(
λg − sg + ∥K∥2

n(n− 1)
g

)
f +Hessf + (KXY )f.

Since M is assumed to be Einstein from (1.17), we have:

(2.29) sg = nλ− ∥K∥2.

Using formula (2.28) in (2.29) we get

(2.30) 0 =
λf

n− 1
g +Hessf + (KXY )f.

Proceeding, in local coordinates and applying (2.25), we have

(2.31) 0 =
λf

n− 1
gij +∇i∇jf + (Γl

ij − Γ̂l
ij)∂lf.

Taking the trace of (2.31), one yields

0 = gij
λf

n− 1
gij + gij∇i∇jf + gij(Γl

ij − Γ̂l
ij)∂lf

=
nλf

n− 1
+ ∆f + gij(Γl

ij − Γ̂l
ij)∂lf.

Now, it follows from (2.23) that

0 =
nλf

n− 1
− (Rc + ∥K∥2)f

n− 1
+ gij(Γl

ij − Γ̂l
ij)∂lf.

Hence, from (1.17) we have

(2.32) 0 = gij(Γl
ij − Γ̂l

ij) = KXY.

Finally, from (1.8), we conclude

∇XY = ∇̂XY.

This completes the proof of theorem. □
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Theorem 2.5. Let (M, g, f) be a CPE metric and (∇, g) a statistical (trace-
free) structure. Then M is Einstein when the following equation is satisfied:

(2.33) Hessf =
sg + ∥K∥2

n(n− 1)
g − fK.

Proof. Considering assumption of theorem, the equation (2.19) is equivalent to
(2.34)

Ric = −g(KX ,KY ) +
sg + ∥K∥2

n
g +

f

1 + f
(
sg + ∥K∥2

n(n− 1)
g +K) +

1

1 + f
Hessf.

Applying (2.33), we get

Ric = −g(KX ,KY ) +
sg + ∥K∥2

n
g +

sg + ∥K∥2

n(n− 1)
g

= −g(KX ,KY ) +
sg + ∥K∥2

n− 1
g,

now, let λ :=
sg+∥K∥2

n−1 and λ as a constant. Hence we have

(2.35) Ric = λg − g(KX ,KY ).

According to (2.26), the manifold M is Einstein. □

Corollary 2.6. Let (M, g, f) be a CPE metric and (∇, g) a statistical (trace-
free) structure. Then M is Einstein if and only if

(2.36) |∇f |2 + (sg + ∥K∥2)f2

n(n− 1)
= Λ,

where Λ is a constant.

Proof. Substituting formula (1.17) in the conditions that proved by Neto in
(1.5), we get

|∇f |2 + (sg + ∥K∥2)f2

n(n− 1)
= Λ. □
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