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LEFT INVARIANT LORENTZIAN METRICS AND

CURVATURES ON NON-UNIMODULAR LIE GROUPS

OF DIMENSION THREE

Ku Yong Ha and Jong Bum Lee

Abstract. For each connected and simply connected three-dimensional
non-unimodular Lie group, we classify the left invariant Lorentzian met-

rics up to automorphism, and study the extent to which curvature can be

altered by a change of metric. Thereby we obtain the Ricci operator, the
scalar curvature, and the sectional curvatures as functions of left invariant

Lorentzian metrics on each of these groups.
Our study is a continuation and extension of the previous studies

done in [3] for Riemannian metrics and in [1] for Lorentzian metrics on

unimodular Lie groups.

1. Introduction

Let G be a connected and simply connected, three-dimensional Lie group.
The classification of all left invariant Riemannian metrics on G up to automor-
phism of G is completely carried out in [3]. For the Lorentzian case, a complete
classification is done in [1] when G is unimodular.

We continue and extend the study in [1] to all non-unimodular Lie groups G.
So, our basic references are [3] and [1]. We also refer to [8] for the classification
of left invariant Riemannian metrics on 4-dimensional unimodular Lie groups.
In this article, we will be concerned with two main problems:

(1) to classify all the left invariant Lorentzian metrics on each connected,
simply connected three-dimensional non-unimodular Lie group G up
to automorphism, and

(2) to study the extent to which curvature can be altered by a change of
left-invariant Lorentzian metric.
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There are uncountably many nonisomorphic, connected and simply con-
nected three-dimensional non-unimodular Lie groups. These are all solvable
and of the form R2 oϕ R where R acts on R2 via a linear map ϕ, see Sec-
tion 2.2. Let G be such a Lie group. Let M(G) be the space of left invariant
Lorentzian metrics on G. Then there is a natural action of Aut(G) on the space
M(G). Our first goal is determine the moduli space M(G)/Aut(G).

Let h ∈ M(G) and let B be an orthonormal basis for the Lie algebra g of
G with respect to h. By [5], there is a unique linear transformation L : g→ g
satisfying the formula [u, v] = L(u × v) for all u, v ∈ g, and G is unimodular
if and only if such a linear transformation L is self adjoint, i.e., h(L(u), v) =
h(u, L(v)) for all u, v ∈ g. In this case, the matrix [L]B is Lorentzian symmetric;
that is, [L]tB = J [L]BJ , where J = J2,1 = diag{1, 1,−1}. The authors in [1]
give a complete computation of the moduli space Aut(G)\M(G) using these
Lorentzian symmetric matrices. However, this procedure is possible only when
G is unimodular. In this article, for this reason, we shall give a complete
computation of the moduli space M(G)/Aut(G) in a direct way since G is
non-unimodular.

In Section 2.1, we review some properties related to the left invariant Loren-
tzian metric on a connected Lie group. In Section 2.2, we recall the three-
dimensional non-unimodular Lie algebras and their groups of automorphisms
([3]).

In Section 3, we classify all the left invariant Lorentzian metrics on the
three-dimensional non-unimodular Lie group up to automorphism.

In Section 4, we review Ricci operator and curvatures, sectional curvatures,
and scalar curvatures of the left invariant Lorentzian metric on a connected Lie
group. We find out the relationship between the Ricci curvature and the Ricci
operator. Furthermore, we find an identity which is the Lorentzian version of
the formula given by ([5, p. 306]) about sectional curvature κ(u, v) associated
with u and v. In particular, we classify explicitly three-dimensional Lorentzian
non-unimodular Lie groups whose metrics have constant sectional curvatures.

All the calculations were done using the program MATHEMATICA and
hand-checked.

2. Preliminaries

2.1. Left invariant Lorentzian metrics on Lie groups

Let h be a Lorentzian metric on a connected Lie group G. That is, for each
point p ∈ G, hp is a nondegenerate symmetric bilinear form on the tangent
space TpG and one can find a basis e1, . . . , en of TpG such that[

hp(ei, ej)
]

=
[
h(ei, ej)p

]
= J.

A Lorentzian inner product on R3 is a bilinear product such that

〈x,y〉 = xtJy
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for all x,y ∈ R3.
From now on, G is a connected and simply connected non-unimodular Lie

group of dimension three. A Lorentzian metric on g is a Lorentzian inner
product on g. That is, there exists a linear basis B0 = {e1, e2, e3} for g with
respect to which 〈x,y〉 = xtJy for all x,y ∈ g. Once Lorentzian inner product
is given on g, it can be extended to the whole group G by (the left translations):

〈x,y〉a = 〈(`a)−1∗ x, (`a)−1∗ y〉

for all a ∈ G and x,y ∈ TaG, where the right hand side is the Lorentzian inner
product on g. This is a left invariant Lorentzian metric on G.

We now consider the totality of left invariant Lorentzian metrics on G. For
any linear basis B = {x1, x2, x3} for g, one can declare it be an orthonormal
basis. That is, [

〈xi, xj〉′
]

= J.

The new inner product is denoted by 〈 , 〉′. Clearly, this gives rise to a new
left invariant Lorentzian metric h on G. Let P be a transition matrix from the
basis B0 to the basis B. Then

h(ei, ej) = 〈ei, ej〉′ = (P t JP )(i,j), (i, j)-component of P t JP .

Hence [h] = [h]B0
= P t JP .

Therefore, with the fixed basis B0, and varying P ∈ GL(3,R), we get the new
metric P tJP . Notice that some P ’s are redundant. For example, if P ∈ O(2, 1),
then clearly P tJP = J . Let

M(G) = {P tJP : P ∈ GL(3,R)}.

Then the symmetric matrix P tJP = [hij ] is a left-invariant Lorentzian metric
h defined by:

h(x,y) = [x]t(P tJP )[y]

for all x,y ∈ g, where [x] = [x]B0
. Note that B′ := P−1B0 = {y1, y2, y3} is an

h-orthonormal basis for g, because

[h]B′ =
[
h(yi, yj)

]
=
[
[yi]

t
B0

(P tJP )[yj ]B0

]
=
[
(P−1[ei]B0

)t(P tJP )(P−1[ej ]B0
)
]

= J.

This is equivalent to: B0 yields global vector fields (by `a) and its dual
forms ωi. Then use the formula h =

∑
hij ωi ⊗ ωj so that the 2-form h

is globally defined. This way, for any P ∈ GL(3,R), P tJP becomes a left-
invariant Lorentzian metric on G.

From these observations, we have the following:

Theorem 2.1. Let [hij ] be a symmetric, nondegenerate matrix, and let h =∑
hij ωi ⊗ ωj. In order for h to be a left invariant Lorentzian metric, it is

necessary and sufficient that there exists P ∈ GL(3,R) for which [hij ] = P tJP .
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We remark that each left invariant Lorentzian metric on G is determined by
an inner product at the tangent space TeG = g and the inner product is given
by a symmetric, nondegenerate matrix of the form P tJP , where P ∈ GL(3,R).

Notice that if θ : G → G is a diffeomorphism on G, then θ induces a
Lorentzian metric on G by the rule hθ(x, y)p = h(θ−1∗ (x), θ−1∗ (y))θ−1(p), p ∈
G, x, y ∈ TpG, where θ∗ is the differential of θ. Even though h is left invariant,
the induced metric hθ is not necessarily left invariant.

Now consider two actions by GL(3,R) on M(G). First, the group GL(3,R)
acts on M(G) (of course, from the left) by:

For A ∈ GL(3,R) and P tJP ∈M(G),

µ(A)(P tJP ) := (AP )tJ(AP ) (left multiplication by A on P -factor).

Then clearly, µ(AB) = µ(A) ◦ µ(B). Notice that, this action is transitive and
the isotropy subgroup is

GL(3,R)P tJP = {A ∈ GL(3,R) | µ(A)P tJP = P tJP}
= {A ∈ GL(3,R) | µ(A)J = J} = O(2, 1).

On the other hand, Aut(G) = Aut(G) is also a subset of GL(3,R), and it
acts on M(G) as follows:

For ϕ ∈ Aut(G), and P tJP ∈M(G),

ξ(ϕ)(P tJP ) := [ϕ−1]t(P tJP )[ϕ−1]

= (P [ϕ−1])tJ(P [ϕ−1])

(right multiplication by [ϕ−1] on P -factor),

where [ϕ−1] = [ϕ−1]B0
. Then clearly, ξ(ψ ◦ϕ) = ξ(ψ)◦ξ(ϕ) for ϕ,ψ ∈ Aut(G).

Furthermore, these two actions (being left/right multiplications) commute
each other:

M(G)
µ(A)−−−−→ M(G)

ξ(ϕ)

y yξ(ϕ)
M(G)

µ(A)−−−−→ M(G)

P tJP −−−−→ (AP )tJ(AP )y y
[ϕ−1]t(P tJP )[ϕ−1] −−−−→ [ϕ−1]t((AP )tJ(AP ))[ϕ−1]

= (AP [ϕ−1])tJ(AP [ϕ−1])

If we write the metric P tJP simply by P ∈ GL(3,R), then the above diagram
becomes:

GL(3,R)
µ(A)−−−−→ GL(3,R)

ξ(ϕ−1)

y yξ(ϕ−1)

GL(3,R)
µ(A)−−−−→ GL(3,R)

P
`A−−−−→ AP

r[ϕ−1]

y r[ϕ−1]

y
P [ϕ−1]

`A−−−−→ (AP )[ϕ−1] = A(P [ϕ−1])

Then we must calculate the quotient

O(2, 1)\GL(3,R)/Aut(G) = M(G)/Aut(G).
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Now we describe explicitly the action of Aut(G) = Aut(g) on M(G). Let h
be a left invariant Lorentzian metric on G and ϕ ∈ Aut(G). Define a metric
hϕ on G by

hϕ(x, y)p = h(ϕ−1(x), ϕ−1(y))ϕ−1(p), p ∈ G, x, y ∈ TpG.

Then for x, y ∈ Gp,

hϕ((`ϕ(a))
−1
∗ (x), (`ϕ(a))

−1
∗ (y))ϕ(a−1)p

= h(ϕ−1(`ϕ(a))
−1
∗ (x), ϕ−1(`ϕ(a))

−1
∗ (y))ϕ−1(ϕ(a−1)p) (by definition of hϕ)

= h((`a)−1∗ ϕ−1(x), (`a)−1∗ ϕ−1(y))a−1ϕ−1(p) (from ϕ ◦ `a = `ϕ(a) ◦ ϕ)

= h(ϕ−1(x), ϕ−1(y))ϕ−1(p) (h is left-invariant)

= hϕ(x, y)p (by definition of hϕ again).

Thus, hϕ is also left-invariant.
We remark that if [h] = P tJP for some P ∈ GL(3,R), then

[hϕ] = (P [ϕ−1])tJ(P [ϕ−1]) = [ϕ−1]t[h][ϕ−1].

A left invariant Lorentzian metric h′ on G is equivalent up to automorphism
to a left invariant Lorentzian metric h if there exists ϕ ∈ Aut(g) such that
h′ = hϕ−1 , or equivalently, [h′] = [ϕ]t[h][ϕ]. In this case we write h′ ∼ h or
[h′] ∼ [h], and we say that [h′] is equivalent up to automorphism to [h].

2.2. The three-dimensional non-unimodular Lie algebras

There are uncountably many nonisomorphic three-dimensional non-unimo-
ular, solvable Lie algebras and a basis may be chosen so that

(a) [x, y] = 0, [z, x] = x, [z, y] = y, or

(b) [x, y] = 0, [z, x] = y, [z, y] = −cx+ 2y,

where c ∈ R. Note that ad(z) =
[
0 −c
1 2

]
has trace 2 and determinant c. A

reference is [3]. Such a Lie algebra is isomorphic to either gI or gc for some
c ∈ R where

gI ∼= R2 oσ
I
R, where σ

I
(t) =

[
t 0
0 t

]
;

gc ∼= R2 oσc R, where σ
c
(t) =

[
0 −ct
t 2t

]
with a “natural” basis

x =

([
1
0

]
, 0

)
, y =

([
0
1

]
, 0

)
, z =

([
0
0

]
, 1

)
.

Then they satisfy Lie bracket conditions (a) or (b), respectively.
For any non-unimodular solvable Lie algebra g, its group of automorphisms

is given as follows:
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(1) The Lie group Aut(gI) is isomorphic to{[
GL(2,R) ∗

0 1

] ∣∣∣∣ ∗ ∈ R2

}
.

(2) For each c ∈ R, the Lie group Aut(gc) is isomorphic to
β − α −cα ∗

α β + α ∗
0 0 1

 ∣∣∣∣ α, β, ∗ ∈ R,β2 + (c− 1)α2 6= 0

 .

The three-dimensional non-unimodular Lie algebra gI or gc is the Lie algebra
of the connected and simply connected three-dimensional Lie group

GI ∼= R2 oϕ
I
R, where ϕ

I
(t) =

[
et 0
0 et

]
, or

Gc ∼= R2 oϕc R, where

ϕ
c
(t) =


et e

wt+e−wt

2

[
1 0

0 1

]
+ et e

wt−e−wt
2w

[
−1 −c
1 1

]
if w =

√
1− c 6= 0,

et

[
1 0

0 1

]
+ ett

[
−1 −1

1 1

]
if c = 1.

Note that ϕc(t) is real even when c > 1.

3. Left invariant Lorentzian metrics

In this section, we will compute the moduli space M(G)/Aut(G) for the
three-dimensional non-unimodular Lie groups G.

3.1. The case of GI

Recalling from Section 2.2 that

Aut(gI) =

{[
GL(2,R) ∗

0 1

] ∣∣∣∣ ∗ ∈ R2

}
,

we obtain the following result.

Theorem 3.1. Any left invariant Lorentzian metric on GI is equivalent up to
automorphism to a metric whose associated matrix (P tJP = [hij ]) is one of
the following forms:1 0 0

0 −1 0
0 0 µ

 ,
1 0 0

0 1 0
0 0 −µ

 ,
1 0 0

0 0 1
0 1 0

 ,
where µ > 0.
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Proof. Let h be a left invariant Lorentzian metric on GI . Then [h] = [hij ] is
a symmetric and non-degenerate real 3× 3 matrix. Since [h] is symmetric and[
SO(2) 0

0
0 0 1

]
⊂ Aut(g), we may assume that h12 = 0. First assume h11h22 6=

0. Then C =

[
1 0 −h13h11

0 1 −h23h22
0 0 1

]
∈ Aut(gI) and CtBt[h]BC = diag{h11, h22, µ}.

Since only one of h11, h22 and µ is negative, either h11h22 < 0, µ > 0 or
h11 > 0, h22 > 0, µ < 0. If h11h22 < 0 and µ > 0, then we may assume
that h11 > 0 and h22 < 0. Let D = diag{ 1√

h11
, 1√
−h22

, 1} ∈ Aut(gI). Then

DtCtBt[h]BCD = diag{1,−1, µ}. If h11 > 0, h22 > 0 and µ < 0, then
D = diag{ 1√

h11
, 1√

h22
, 1} ∈ Aut(gI) and DtCtBt[h]BCD = diag{1, 1, µ}.

Now assume h11h22 = 0. Since one of h11 and h22 is non-zero, we may
assume h11 6= 0 and h22 = 0. Since det[h] = −h11h223 < 0, we have h11 > 0

and h23 6= 0. Let C =

[
1√
h11

0 −h13h11

0 1 0
0 0 1

]
∈ Aut(gI). Then CtBt[h]BC =

[ 1 0 0
0 0 µ
0 µ ν

]
.

Since det(CtBt[h]BC) = −µ2 < 0, we have µ 6= 0. Let D =

[
1 0 0
0 1
µ −

ν
µ

0 0 1

]
∈

Aut(gI). Then DtCtBt[h]BCD =
[
1 0 0
0 0 1
0 1 0

]
.

Finally it is easy to see that any three such distinct matrices are not equiv-
alent. �

3.2. The case of Gc, c > 1

Recalling from Section 2.2 that

Aut(gc) =


β − α −cα ∗

α β + α ∗
0 0 1

 ∣∣∣∣ α, β, ∗ ∈ R,β2 + (c− 1)α2 6= 0

 ,

we obtain the following result.

Theorem 3.2. Any left invariant Lorentzian metric on Gc with c > 1 is
equivalent up to automorphism to a metric whose associated matrix (P tJP =
[hij ]) is one of the following forms:µ 0 0

0 0 1
0 1 0

 ,
1 1 0

1 τ 0
0 0 µ

 ,
1 1 0

1 ν 0
0 0 −µ

 ,
where µ > 0, τ < 1 and 1 < ν ≤ c.

Proof. Let h be a left invariant Lorentzian metric on Gc with c > 1. Then
[h] = [hij ] is a symmetric and non-degenerate real 3× 3 matrix.

First suppose h11h22 − h212 = 0. If h12 6= 0, then h11 6= 0, h22 6= 0. Since

(h11 − h12)2 + (c− 1)h211 > 0, B =
[ −h12 −c h11 0

h11 2h11−h12 0
0 0 1

]
∈ Aut(gc) and Bt[h]B =

[h′ij ], where h′11 = h′12 = 0, h′13 6= 0 and h′22 6= 0. Thus we may assume
that h12 = 0. Then either h11 6= 0, h22 = 0 or h11 = 0, h22 6= 0. Suppose
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h11 = 0 and h22 6= 0. Since B =
[ −2 −c 0

1 0 0
0 0 1

]
∈ Aut(gc) and Bt[h]B = [h′ij ],

where h′11 = h22 6= 0 and h′12 = h′22 = 0, we may assume that h11 6= 0 and

h22 = 0. Then we have h23 6= 0, C =

[
1
h23

0 −h13h11

0 1
h23

h213−h11h33
2h11h23

0 0 1

]
∈ Aut(gc) and

Ct[h]C =
[
µ 0 0
0 0 1
0 1 0

]
, where µ > 0.

Now suppose h11h22 − h212 6= 0. First we may assume that h13 = h23 = 0

because B =

 1 0
h13h22−h12h23
h212−h11h22

0 1
h11h23−h12h13
h212−h11h22

0 0 1

 ∈ Aut(gc) and Bt[h]B = [h′], where h′13 =

h′23 = 0.
If h11 6= h12, then the quadratic equation

(h11 − h12)z2 + ((c− 2)h11 + 2h12 − h22)z − (c− 1)(h11 − h12) = 0

has a real root, say β, because −(c−1)(h11−h12)2 < 0. Then B =
[ β−1 −c 0

1 β+1 0
0 0 1

]
∈ Aut(gc) and Bt[h]B = [h′], where h′11 = h′12 and h′13 = h′23 = 0. Thus we
may also assume that h11 = h12. Since det[hij ] = −h11h33(h11 − h22) < 0, we
have h11 6= 0. Let B = diag{ 1√

|h11|
, 1√
|h11|

, 1} ∈ Aut(gc). Then Bt[h]B is of

the form 1 1 0
1 τ 0
0 0 µ

 ,
−1 −1 0
−1 −τ 0

0 0 µ

 ,
where µ(τ − 1) < 0.

Now consider equivalences up to automorphism between the following three
types of left invariant Lorentzian metrics:

Type 1.

µ 0 0
0 0 1
0 1 0

 , Type 2.

1 1 0
1 τ 0
0 0 µ

 , Type 3.

−1 −1 0
−1 −τ 0

0 0 µ


(1) Two different matrices of type 1 are not equivalent. And every matrix

of type 1 is not equivalent to that of type 2 or type 3.

(2) Suppose [h] =
[
1 1 0
1 τ 0
0 0 µ

]
, [h′] =

[
1 1 0
1 τ ′ 0
0 0 µ′

]
and [h] ∼ [h′]. Then Bt[h]B =

[h′] for some B =
[ β−α −cα x

α β+α y
0 0 1

]
∈ Aut(gc). Thus we have

βx+ (β + α(τ − 1))y = 0,(i)

(β + α− cα)x+ ((β + α)τ − cα)y = 0,(ii)

β2 − α2 + τα2 = 1,(iii)

β2 − α2 + τα2 + αβ(τ − c) = 1,(iv)

τβ2 + 2(τ − c)αβ + (c2 − 2c+ τ)α2 = τ ′,
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µ+ x2 + 2xy + τy2 = µ′.

Considering the linear system of equations in the variables x, y given by
(i), (ii), the determinant of the coefficient matrix is (β2+(c−1)α2)(τ−
1) 6= 0. This implies x = y = 0 and µ′ = µ. Using (iii) and (iv), we
have αβ(τ − c) = 0.

• If β = 0, then τ > 1 and α = ± 1√
τ−1 and τ ′ = 1 + (c−1)2

τ−1 .

• If α = 0, then β = ±1 and τ ′ = τ .
• If τ = c, then β2 + (c− 1)α2 = 1 and τ ′ = τ = c.

Hence we have1 1 0
1 τ 0
0 0 µ

 ∼
1 1 0

1 τ ′ 0
0 0 µ′


⇐⇒ µ′ = µ, τ ′ =

{
τ, if τ < 1,

1 + (c−1)2
τ−1 , if τ > 1.

(3) Similarly, we have−1 −1 0
−1 −τ 0

0 0 µ

 ∼
−1 −1 0
−1 −τ ′ 0
0 0 µ′


⇐⇒ µ′ = µ, τ ′ =

{
τ, if τ < 1,

1 + (c−1)2
τ−1 , if τ > 1.

(4) Suppose [h] =
[ −1 −1 0
−1 −τ 0

0 0 µ

]
, [h′] =

[
1 1 0
1 τ ′ 0
0 0 µ′

]
and [h] ∼ [h′]. Then there

is B =

β − α −cα x
α β + α y

0 0 1

 ∈ Aut(gc) such that Bt[h]B = [h′]. That is,

βx+ (β + α(τ − 1))y = 0,

(β + α− cα)x+ ((β + α)τ − cα)y = 0,

− β2 + α2 − τα2 = 1,

− β2 + α2 − τα2 − αβ(τ − c) = 1,

− τβ2 − 2(τ − c)αβ − (c2 − 2c+ τ)α2 = τ ′,

µ− x2 − 2xy − τy2 = µ′.

This implies x = y = 0, µ′ = µ and αβ(τ − c) = 0.

• If β = 0, then τ < 1 and α = ± 1√
1−τ and τ ′ = 1− (c−1)2

1−τ .

• If α = 0, then β2 + 1 = 0, which is a contradiction.
• If τ = c, then −β2 − (c− 1)α2 = 1, which is a contradiction.
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Hence we have −1 −1 0
−1 −τ 0

0 0 µ

 ∼
1 1 0

1 τ ′ 0
0 0 µ′


⇐⇒ τ < 1, µ′ = µ, τ ′ = 1− (c− 1)2

1− τ
.

(5) Suppose [h] =
[ −1 −1 0
−1 −τ 0

0 0 −µ

]
with 1 < τ ≤ c and µ > 0. Let

y1 = x, y2 =
1√
ρ− 1

(x− y), y3 =
1
√
µ
z.

Then B = {y1, y2, y3} is a basis of the Lie algebra of Gc such that
[h]B = diag{−1,−1,−1}, which is a contradiction.

Hence the proof is completed. �

3.3. The case of Gc, c = 1

Instead of the basis {x, y, z} for g1 given in Section 2.2, we choose a new
basis {x1, x2, x3} for g1 by putting x1 = −x+ y, x2 = −x+ 2y, x3 = z. Then
they satisfy

[x1, x2] = 0, [x3, x1] = x1, [x3, x2] = x1 + x2.

With respect to this new basis, the Lie group Aut(g1) is isomorphic to
γ δ ∗

0 γ ∗
0 0 1

 ∣∣∣∣ γ, δ, ∗ ∈ R, γ 6= 0

 .

In fact, given γ, δ,−2 −1 0
1 1 0
0 0 1

−1 γ δ ∗
0 γ ∗
0 0 1

−2 −1 0
1 1 0
0 0 1

 =

γ − δ −δ ∗
δ γ + δ ∗
0 0 1

 ,
where [id]{x,y,z},{x1,x2,x3} =

[ −2 −1 0
1 1 0
0 0 1

]
.

Theorem 3.3. Any left invariant Lorentzian metric on G1 is equivalent up to
automorphism to a metric whose associated matrix (P tJP = [hij ]) is one of
the following forms: −2 −1 0

1 1 0
0 0 1

−1M
−2 −1 0

1 1 0
0 0 1

 ,
where M is of the form0 0 1

0 µ 0
1 0 0

 ,
µ 0 0

0 0 1
0 1 0

 ,
1 0 0

0 −ν 0
0 0 µ

 ,
1 0 0

0 ν 0
0 0 −µ

 ,
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0 ν 0
0 0 µ

 ,
0 1 0

1 0 0
0 0 µ

 ,
 0 −1 0
−1 0 0

0 0 µ

 ,
where µ > 0 and ν > 0.

Proof. Let {x1, x2, x3} be the basis for gc given by

x1 = −x+ y, x2 = −x+ 2y, x3 = z.

Then
[x1, x2] = 0, [x3, x1] = x1, [x3, x2] = x1 + x2

and the Lie group Aut(g1) is isomorphic to

{[
γ δ ∗
0 γ ∗
0 0 1

] ∣∣∣∣ γ, δ, ∗ ∈ R, γ 6= 0

}
.

Let h be a left invariant Lorentzian metric on G1. Then with respect to
the basis {x1, x2, x3}, [h] = [hij ] is a symmetric and non-degenerate real 3× 3
matrix.

First assume that h11h22 − h212 = 0. If h12 6= 0, then h11 6= 0, h22 6= 0. Let

B =
[
h11 −h12 0
0 h11 0
0 0 1

]
∈ Aut(gc). Then Bt[h]B = [h′ij ], where h′12 = 0. Thus we

may assume that h12 = 0. Then either h11 = 0, h22 6= 0 or h11 6= 0, h22 = 0.
When h11 = 0 and h22 6= 0, det([h]) = −h22h213 < 0 and so we have h22 > 0

and h13 6= 0. Let B =

[
1
h13

0 0

0 1
h13
−h23h22

0 0 1

]
∈ Aut(gc). Then Bt[h]B =

[
0 0 1
0 µ 0
1 0 ν

]
.

Let C =
[
1 0 − ν2
0 1 0
0 0 1

]
∈ Aut(gc). Then CtBt[h]BC =

[
0 0 1
0 µ 0
1 0 0

]
, where µ > 0.

Similarly, when h11 6= 0 and h22 = 0, then h23 6= 0, B =

[
1
h23

0 −h13h11

0 1
h23

0

0 0 1

]
∈

Aut(gc) and Bt[h]B =
[
µ 0 0
0 0 1
0 1 ν

]
. And let C =

[ 1 0 0
0 1 − ν2
0 0 1

]
∈ Aut(gc). Then

CtBt[h]BC =
[
µ 0 0
0 0 1
0 1 0

]
, where µ > 0.

Next suppose that h11h22 − h212 6= 0. Then we may assume that h13 =

h23 = 0 because B =

 1 0
h13h22−h12h23
h212−h11h22

0 1
h11h23−h12h13
h212−h11h22

0 0 1

 ∈ Aut(gc) and Bt[h]B = [h′], where

h′13 = h′23 = 0.

If h11 6= 0, then B =
[
h11 −h12 0
0 h11 0
0 0 1

]
∈ Aut(gc) and Bt[h]B = diag{d1, d2, d3}

where d1d2d3 < 0. Since only one of d1, d2, d3 is negative, either d1d2 < 0,
λ > 0 or d1 > 0, d2 > 0, λ < 0. Let C = diag{ 1√

|d1|
, 1√
|d1|

, 1} ∈ Aut(gc). Then

CtBt[h]BC is of the form1 0 0
0 −ν 0
0 0 µ

 ,
1 0 0

0 ν 0
0 0 −µ

 ,
−1 0 0

0 ν 0
0 0 µ

 ,
where µ > 0 and ν > 0.
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If h11 = 0, then det([h]) = −h33(h12)2. Thus h33 > 0 and h12 6= 0. Let

B = diag{ 1√
|h12|

, 1√
|h12|

, 1} ∈ Aut(gc). Then Bt[h]B =
[ 0 ±1 0
±1 ν 0

0 0 µ

]
. Let C =[

1 ∓ ν2 0
0 1 0
0 0 1

]
∈ Aut(gc). Then CtBt[h]BC is of the form0 1 0

1 0 0
0 0 µ

 ,
 0 −1 0
−1 0 0

0 0 µ

 ,
where µ > 0. Finally it is easy to see that any four such distinct matrices are
not equivalent. �

3.4. The case of Gc, c < 1

Instead of the basis {x, y, z} for gc given in Section 2.2, we choose a new basis
{x1, x2, x3} for gc by putting x1 = −(1−w)x+ y, x2 = −(1 +w)x+ y, x3 = z
where w =

√
1− c. Then they satisfy

[x1, x2] = 0, [x3, x1] = (1 + w)x1, [x3, x2] = (1− w)x2.

With respect to this new basis, the Lie group Aut(gc) is isomorphic to
γ 0 ∗

0 δ ∗
0 0 1

 ∣∣∣∣ γ, δ, ∗ ∈ R, γδ 6= 0

 .

In fact, given γ, δ, 1
2w

1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

−1 γ 0 ∗
0 δ ∗
0 0 1

 1
2w

1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

 =

β − α −cα ∗
α β + α ∗
0 0 1

 ,
where α = δ−γ

2z , β = δ+γ
2 and [id]{x,y,z},{x1,x2,x3} =

[
1

2w
1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

]
.

Theorem 3.4. Any left invariant Lorentzian metric on Gc with c < 1 is
equivalent up to automorphism to a metric whose associated matrix (P tJP =
[hij ]) is one of the following forms: 1

2w
1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

−1M
 1

2w
1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

 ,
where M is of the form0 0 1

0 1 0
1 0 0

 ,
1 0 0

0 0 1
0 1 0

 ,
1 1 0

1 1 µ
0 µ 0

 ,
1 0 0

0 1 0
0 0 −µ

 ,
1 0 0

0 −1 0
0 0 µ

 ,
−1 0 0

0 1 0
0 0 µ

 ,
0 1 0

1 0 0
0 0 µ

 ,
0 1 0

1 1 0
0 0 µ

 ,
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1 −1 0
0 0 µ

 ,
1 1 0

1 τ 0
0 0 ν

 ,
−1 1 0

1 −η 0
0 0 µ

 ,
where w =

√
1− c, µ > 0, ν(τ − 1) < 0 and η < 1.

Proof. Let {x1, x2, x3} be the basis for gc given by

x1 = (−1 + w)x+ y, x2 = −(1 + w)x+ y, x3 = z,

where w =
√

1− c. Then

[x1, x2] = 0, [x3, x1] = (1 + w)x1, [x3, x2] = (1− w)x2

and the Lie group Aut(gc) is isomorphic to

{[
γ 0 ∗
0 δ ∗
0 0 1

] ∣∣∣∣ γ, δ, ∗ ∈ R, γδ 6= 0

}
.

Let h be a left invariant Lorentzian metric on Gc with c < 1. Then with
respect to the basis {x1, x2, x3}, [h] = [hij ] is a symmetric and non-degenerate
real 3× 3 matrix.

First assume that h11h22 − h212 = 0 and h12 = 0. Then either h11 = 0,
h22 6= 0 or h11 6= 0, h22 = 0. Assume h11 = 0 and h22 6= 0. Since det([h]) =

−h22h213 < 0, we have h22 > 0 and h13 6= 0. Let B =

[
1
h13

0 0

0 1
h13
−h23h22

0 0 1

]
∈

Aut(gc). Then Bt[h]B =
[
0 0 1
0 µ 0
1 0 ν

]
. Since det(Bt[h]B) = −µ < 0, we have

µ > 0. Let C =

[
1 0 − ν2
0 1√

µ 0

0 0 1

]
∈ Aut(gc). Then CtBt[h]BC =

[
0 0 1
0 1 0
1 0 0

]
. Similarly,

when h11 6= 0 and h22 = 0, then h23 6= 0, B =

[
1
h23

0 −h13h11

0 1
h23

0

0 0 1

]
∈ Aut(gc)

and Bt[h]B =
[
µ 0 0
0 0 1
0 1 ν

]
. Since det(Bt[h]B) = −µ < 0, we have µ > 0. Let

C =

[ 1√
µ 0 0

0 1 − ν2
0 0 1

]
∈ Aut(gc). Then CtBt[h]BC =

[
1 0 0
0 0 1
0 1 0

]
.

Now assume that h11h22 − h212 = 0 and h12 6= 0. Then h11 6= 0, h22 6=

0. Let B =

[
h12
h11

0 0

0 1 0
0 0 1

]
∈ Aut(gc). Then Bt[h]B =

[
h22 h22 h

′
13

h22 h22 h
′
23

h′13 h
′
23 h

′
33

]
. Since

det(Bt[h]B) = −h22(h′13− h′23)2 < 0, we have h22 > 0 and h′13 6= h′23. Let C =

diag{ 1√
h22

, 1√
h22

, 1} ∈ Aut(gc). Then CtBt[h]BC =
[
1 1 ν
1 1 λ
ν λ µ

]
, where−(ν−λ)2 <

0. Let D =

[
1 0 ν2−2νλ+µ

2(λ−ν)

0 1 ν2−µ
2(λ−ν)

0 0 1

]
∈ Aut(gc). Then DtCtBt[h]BCD =

[ 1 1 0
1 1 µ
0 µ 0

]
, where

µ 6= 0. Let E = diag{−1,−1, 1} ∈ Aut(gc). Then EtDtCtBt[h]BCDE =[ 1 1 0
1 1 −µ
0 −µ 0

]
.
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Next suppose that h11h22 − h212 6= 0. Then we may assume that h13 =

h23 = 0 because B =

 1 0
h13h22−h12h23
h212−h11h22

0 1
h11h23−h12h13
h212−h11h22

0 0 1

 ∈ Aut(gc) and Bt[h]B = [h′], where

h′13 = h′23 = 0.
If h12 = 0, then h11 6= 0 and h22 6= 0. Let B = diag{ 1√

|h11|
, 1√
|h22|

, 1} ∈

Aut(gc). Then Bt[h]B is of the form1 0 0
0 1 0
0 0 −µ

 ,
1 0 0

0 −1 0
0 0 µ

 ,
−1 0 0

0 1 0
0 0 µ

 ,
where µ > 0.

Now assume h12 6= 0. When h11 = h22 = 0, B = diag{ 1
h12

, 1, 1} ∈ Aut(gc)

and Bt[h]B =
[
0 1 0
1 0 0
0 0 µ

]
, where µ > 0. When h11 = 0 and h22 6= 0, B =

diag{
√
|h22|
h12

, 1√
|h22|

, 1} ∈ Aut(gc) and Bt[h]B =
[
0 1 0
1 ±1 0
0 0 µ

]
, where µ > 0. When

h11 6= 0, B = diag{ 1√
|h11|

,

√
|h11|
h12

, 1} ∈ Aut(gc) and Bt[h]B is of the form1 1 0
1 τ 0
0 0 ν

 ,
−1 1 0

1 −τ 0
0 0 ν

 ,
where ν(τ − 1) < 0.

Suppose [h] =
[ −1 1 0

1 −τ 0
0 0 ν

]
with 1 < τ and ν < 0. Let

y1 = x1, y2 =
1√
τ − 1

(x1 + x2), y3 =
1√
−ν

x3.

Then B = {y1, y2, y3} is a basis of the Lie algebra of Gc such that [h]B =
diag{−1,−1,−1}, which is a contradiction.

Finally it is easy to see that any eleven such distinct matrices are not equiv-
alent. �

4. Curvatures of left invariant Lorentzian metrics

In this section, we study the extent to which curvature can be altered by
a change of left invariant metric. Given a left invariant Lorentzian metric on
G = GI or Gc, we shall compute the following associated curvatures

(1) Ricci operator and curvature,
(2) sectional curvature,
(3) scalar curvature.

Let ϕ ∈ Aut(g). Let h′ = hϕ and let ∇′ be the Levi-Civita connection associ-
ated to (G, h′). Then for all u, v, w ∈ g, we have

2h′(∇′ϕ(u)ϕ(v), ϕ(w)) = h′([ϕ(u), ϕ(v)], ϕ(w)) + h′([ϕ(w), ϕ(u)], ϕ(v))
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+ h′([ϕ(w), ϕ(v)], ϕ(u))

= h′(ϕ([u, v]), ϕ(w)) + h′(ϕ([w, u]), ϕ(v))

+ h′(ϕ([w, v]), ϕ(u))

= h([u, v], w) + h([w, u], v) + h([w, v], u)

= 2h(∇uv, w)

= 2h′(ϕ(∇uv), ϕ(w)).

This reduces to ∇′ϕ(u)ϕ(v) = ϕ(∇uv), or the following diagram is commutative:

g× g
∇−−−−→ g

ϕ×ϕ
y yϕ

g× g
∇′−−−−→ g

Therefore, the classification of the left invariant Lorentzian metrics up to au-
tomorphism leads to the study of the left invariant Lorentzian metrics which
leave all the curvature properties invariant.

We will begin with some necessary definitions. Let ∇ : g × g → g be the
Levi-Civita connection associated to (G, h). This is characterized by Koszul
formula

2h(∇uv, w) = h([u, v], w) + h([w, u], v) + h([w, v], u).

The Riemann curvature tensor of (G, h) is defined associated to each u, v ∈ g
to be the linear transformation

Ruv = ∇[u,v] − [∇u,∇v].

The Ricci curvature ric is the symmetric tensor defined, for any u, v ∈ g, as
the trace of the linear transformation w 7−→ Ruwv. Notice that The Riemann
curvature tensor is completely determined by the Ricci curvature ric. The Ricci
operator Ric : g → g is given the relation h(Ric(u), v) = ric(u, v). Because of
the symmetries of the Ricci curvature, the Ricci operator Ric is h-self adjoint.
The scalar curvature ρ is the trace of the Ricci operator. If u, v ∈ g are linearly
independent, the number

κ(u, v) =
h(Ruvu, v)

h(u, u)h(v, v)− h(u, v)2

is called the sectional curvature associated with u, v.
For an explicit computation, we fix an orthonormal basis B = {yi} for g with

respect to h. So, h(y1, y1) = h(y2, y2) = 1, h(y3, y3) = −1 and h(yi, yj) = 0 for
i 6= j. From definitions, we immediately obtain

κ(y1, y2) = h(Ry1y2y1, y2),

κ(y1, y3) = −h(Ry1y3y1, y3),

κ(y2, y3) = −h(Ry2y3y2, y3),
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and

ric(u, v) = h(Ruy1v, y1) + h(Ruy2v, y2)− h(Ruy3v, y3).

Remark 4.1. We recall that the Ricci curvature r(u) and the Ricci transforma-
tion r̂ : g→ g are given in the Riemannian case as follows

r(u) = g(Ruy1u, y1) + g(Ruy2u, y2) + g(Ruy3u, y3),

= g

(∑
i

Ryiuyi, u

)
,

r̂(u) =
∑
i

Ryiuyi.

From the definition h(Ric(u), v) = ric(u, v), we remark that ric(u, u) and Ric
are the Lorentzian versions of r(u) and r̂, respectively.

Let [
Ric
]
{yi}

=
[
Rij

]
.

Then

Rij = h(Ric(yj), yi) = ric(yj , yi) = ric(yi, yj) = Rji for i, j = 1, 2,

R3j = −h(Ric(yj), y3) = −ric(yj , y3) = −ric(y3, yj) = −Rj3 for j = 1, 2.

This means that the matrix of the h-self adjoint operator Ric[
Ric
]

=

 R11 R12 R13

R12 R22 R23

−R13 −R23 R33


is Lorentzian symmetric.

Proposition 4.2 ([7, Ex. 19 (p. 261)]). Let V be a real vector space with
Lorentzian inner product h of signature (2, 1). Every self adjoint operator T
on V has a matrix of exactly one of the following four types:
Relative to an h-orthonormal basis,a 0 0

0 b 0
0 0 c

 , or

a 0 0
0 α β
0 −β α

 (β 6= 0);

Relative to a basis {e, u, v} with non-trivial products h(u, v) = 1 = h(e, e),a 0 0
0 b ε
0 0 b

 (ε = ±1), or

a 0 1
1 a 0
0 0 a

 .
The vectors

e1 = e, e2 = 1√
2
(u+ v), e3 = 1√

2
(u− v)
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form an h-orthonormal basis with respect to which the last two matrices become
respectivelya 0 0

0 b+ ε
2 − ε

2
0 ε

2 b− ε
2

 (ε = ±1), or

 a 1√
2
− 1√

2
1√
2

a 0
1√
2

0 a

 .
These four types are called O’Neill type or Segré type {11, 1}, {1zz̄}, {21} and
{3}, respectively. Note that the O’Neill type {21} is of the forma 0 0

0 b± 1 ∓1
0 ±1 b∓ 1

 ∼
a 0 0

0 b± 1 1
0 −1 b∓ 1

 ,
because a 0 0

0 b± 1
2 ∓ 1

2
0 ± 1

2 b∓ 1
2

 ∼
a 0 0

0 b± 1 ∓1
0 ±1 b∓ 1


via

[
1 0 0
0 cosh(− ln

√
2) sinh(− ln

√
2)

0 sinh(− ln
√
2) cosh(− ln

√
2)

]
∈ O(2, 1). Notice further that

[
a 0 0
0 b+1 1
0 −1 b−1

]
�[

a 0 0
0 b−1 1
0 −1 b+1

]
. The O’Neill type {3} is of the form

a 1 −1
1 a 0
1 0 a

 =

1 0 0
0 3

2
√
2
− 1

2
√
2

0 − 1
2
√
2

3
2
√
2

−1
 a − 1√

2
1√
2

1√
2

a 0
1√
2

0 a


1 0 0

0 3
2
√
2
− 1

2
√
2

0 − 1
2
√
2

3
2
√
2

.
Thus we can always construct an orthonormal basis B for g such that [Ric]B

takes exactly one of the four O’Neill types. The O’Neill type {11, 1} (the comma
is used to separate the spacelike and timelike eigenvectors) denotes a diagonal-
izable self adjoint operator. The O’Neill type {1zz̄} denotes a self adjoint
operator with one real and two complex conjugate eigenvalues. A self adjoint
operator of O’Neill type {21} has two eigenvalues (one of which has multiplicity
two), each associated to a one-dimensional eigenspace. A self adjoint operator
of O’Neill type {3} has three equal eigenvalues associated to a one-dimensional
eigenspace. The eigenvalues of [Ric] are called the Ricci eigenvalues. Hence, the
O’Neill type of Ric is determined by its eigenvalues with associated eigenspaces.

Remark 4.3. In the Riemannian case, since [r̂] is symmetric, the eigenvalues
of [r̂] are real, called the principal Ricci curvatures, and the signature of the
symmetric matrix [r̂] is well-defined, called the signature of the Ricci curvature.
However, in the Lorentzian case, the Lorentzian version [Ric] of r̂ may have
complex eigenvalues. In fact, complex eigenvalues occur only in the following
cases:

• Gc with c > 1, [h] =
[
1 1 0
1 τ 0
0 0 µ

]
with µ > 0, τ < 1, (c− τ)2 − 4c < 0;
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• G1, [h] =
[ −2 −1 0

1 1 0
0 0 1

]−1 [ 1 0 0
0 −ν 0
0 0 µ

] [ −2 −1 0
1 1 0
0 0 1

]
or[ −2 −1 0

1 1 0
0 0 1

]−1 [ −1 0 0
0 ν 0
0 0 µ

] [ −2 −1 0
1 1 0
0 0 1

]
with µ > 0, ν > 1

4 ;

• Gc with c < 1, [h] =

[
1

2w
1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

]−1 [
1 1 0
1 τ 0
0 0 ν

] [ 1
2w

1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

]
with ν > 0,

τ < 1, τ(τ − c) < 0 or

[
1

2w
1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

]−1 [ −1 1 0
1 −η 0
0 0 µ

] [
1

2w
1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

]
with

µ > 0, η < 1, η(η − c) < 0, where w =
√

1− c.
As a result, the principal Ricci curvatures are defined always and the signature
of the Ricci curvature is defined whenever the eigenvalues are real numbers.

Note also that the matrix of ric with respect to the orthonormal basis {yi}
is [

ric
]
{yi}

= J2,1

[
Ric
]
{yi}

=

R11 R12 R13

R12 R22 R23

R13 R23 −R33

(4.1)

and the scalar curvature ρ is

(4.2)

ρ = trace(Ric) = R11 +R22 +R33

= ric(y1, y1) + ric(y2, y2)− ric(y3, y3)

= 2 (κ(y1, y2) + κ(y1, y3) + κ(y2, y3)) .

Clearly, the Ricci eigenvalues of curvature operator Ric are independent of
the choice of basis for g. Now show that the signature of the Ricci curvature
tensor ric is independent of the choice of basis for g. Let {x1, x2, x3} be another,
not necessarily orthonormal, basis for g. By writing xj =

∑
i aijyi for some

aij , we have

ric(xi, xj) = ric(
∑
k

akiyk,
∑
`

a`jy`)

=
∑
k,`

aki · ric(yk, y`) · a`j .

Hence [
ric
]
{xi}

= At ·
[
ric
]
{yi}
·A,(4.3)

where A = (aij) is the associated transition matrix [id]{xi},{yi}. This implies
that [ric]{xi} and [ric]{yi} have the determinants of same sign, hence the prod-
ucts of their eigenvalues have the same sign. Moreover, we obtain[

Ric
]
{xi}

= A−1
[
Ric
]
{yi}

A = A−1J2,1

[
ric
]
{yi}

A = A−1J2,1(A−1)t
[
ric
]
{xi}

.

Lemma 4.4. [ric]{xi} and [ric]{yi} have the same signature. Consequently, the
signature of [ric] is defined.
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Proof. Suppose [ric]{yi} has the signature (0, 0, 0). Since [ric]{yi} = O is sym-
metric, [ric]{xi} = At[ric]{yi}A = O. Hence [ric]{xi} and [ric]{yi} have the same
signature (0, 0, 0). Now assume that the signature of [ric]{yi} is not (0, 0, 0).
Since A is invertible and [ric]{xi} = At[ric]{yi}A, [ric]{xi} is positive (negative)
definite if and only if [ric]{yi} is positive (negative) definite if and only if all the
eigenvalues of [ric]{yi} are positive (negative). It follows that the result holds
when the signatures are (+,+,+), (−,−,−), (+,+,−), (+, 0,−) and (+,−,−).

If λ = 0 is an eigenvalue of [ric]{yi}, then [ric]{yi}x = 0 for some x 6= 0.

Thus A−1x 6= 0 and

[ric]{xi}(A
−1x) = (At[ric]{yi}A)(A−1x) = At[ric]{yi}x = 0.

It follows that 0 is an eigenvalue of [ric]{xi}. If x and y are linearly inde-

pendent eigenvectors of [ric]{yi} corresponding to the eigenvalue 0, then A−1x

and A−1y are linearly independent eigenvectors of [ric]{xi} corresponding to
the eigenvalue 0. Based on this fact, the result holds when the signatures are
(+,+, 0), (+, 0, 0), (0, 0, 0), (0, 0,−) and (0,−,−). �

Let g be a left invariant Riemannian metric on a connected Lie group G of
dimension three. Let ρ denote the sectional curvature, and let r denote the
Ricci curvature of (G, g). For any orthogonal vectors u and v, the sectional
curvature κ(u, v) associated with u and v is given by the formula ([5, p. 306])

κ(u, v) = ||u× v||2 ρ
2
− r(u× v).

Now, we give its Lorentzian version. Let h be a left-invariant Lorentzian
inner product on a Lie algebra g of dimension three. We fix an orthonormal
basis {y1, y2, y3} with respect to h. The Lorentzian cross product is defined as
follows:

y1 × y2 = −y3, y2 × y3 = y1, y3 × y1 = y2.

Let u and v be orthogonal vectors, i.e., h(u, v) = 0. Write

u =
∑
i

uiyi, v =
∑
i

viyi.

Since the cross product is bilinear and skew-symmetric, we see that

u× v =
∑
i

wiyi,

||u× v||2 = w2
1 + w2

2 − w2
3,

where w1 = u2v3 − u3v2, w2 = u3v1 − u1v3, w3 = −(u1v2 − u2v1).
Further, we have

ric(u× v, u× v) = ric

(∑
i

wiyi,
∑
i

wiyi

)
=
∑
i,j

wiwj (h(Ryiy1yj , y1) + h(Ryiy2yj , y2)− h(Ryiy3yj , y3))
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= w2
1 (h(Ry1y2y1, y2)− h(Ry1y3y1, y3))

+ w2
2 (h(Ry1y2y1, y2)− h(Ry2y3y2, y3))

+ w2
3 (h(Ry1y3y1, y3) + h(Ry2y3y2, y3))

− 2w1w2 h(Ry1y3y2, y3)− 2w1w3 h(Ry1y2y2, y3)

+ 2w2w3 h(Ry1y2y1, y3).

Hence, by substituting with (4.2), we get

||u× v||2 ρ

2
− ric(u× v, u× v)

= − w2
3 h(Ry1y2y1, y2)− w2

2 h(Ry1y3y1, y3)− w2
1 h(Ry2y3y2, y3)

+ 2w1w2 h(Ry1y3y2, y3) + 2w1w3 h(Ry1y2y2, y3)− 2w2w3 h(Ry1y2y1, y3).

On the other hand, we have

h(Ruvu, v) =
∑
i,j,k,`

uivjukv` h(Ryiyjyk, y`)

=
∑

i<j,k<`

(uivj − ujvi)(ukv` − u`vk)h(Ryiyjyk, y`)

= −
(
||u× v||2 ρ

2
− ric(u× v, u× v)

)
.

In conclusion, we have the following result.

Lemma 4.5. Let h be a left invariant Lorentzian metric on a connected Lie
group G of dimension three. If u and v are orthogonal vectors, then

h(u, u)h(v, v)κ(u, v) = −
(
||u× v||2 ρ

2
− ric(u× v, u× v)

)
.(4.4)

In particular,

κ(y1, y2) =
ρ

2
+ ric(y3, y3) =

1

2
(R11 +R22 −R33),

κ(y2, y3) =
ρ

2
− ric(y1, y1) =

1

2
(−R11 +R22 +R33),

κ(y3, y1) =
ρ

2
− ric(y2, y2) =

1

2
(R11 −R22 +R33).

When the Ricci operator Ric is computed, (4.1) yields the Ricci curvature
tensor ric, (4.2) yields the scalar curvature ρ, and Lemma 4.5 gives rise to the
sectional curvatures κ(yi, yj). For this reason, only the Ricci operator will be
described in the following sections.

Procedure of calculating Ricci operators

The Ricci operator was calculated as follows: Let h be a left invariant
Lorentzian metric on G = GI or G = Gc. Choose an orthonormal basis
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B = {y1, y2, y3} for g such that h(y1, y1) = h(y2, y2) = 1 and h(y3, y3) = −1.
Write

[yi, yj ] =
∑
k

ξijkyk, ∇yiyj =
∑
k

Γkijyk.

Then the Christoffel symbols Γkij is obtained by the identity

Γkij = h(yk, yk) · 1

2

(
h([yi, yj ], yk)− h([yj , yk], yi) + h([yk, yi], yj)

)
.

From the definition of the Riemann curvature tensor, we have

h(Ryiykyj , yk)

= h
(
∇[yi,yk]yj −∇yi∇ykyj +∇yk∇yiyj , yk

)
= h

(∑
`

ξik`
∑
n

Γn`jyn −
∑
`

Γ`kj
∑
n

Γni`yn +
∑
`

Γ`ij
∑
n

Γnk`yn, yk

)
= h(yk, yk) ·

∑
`

(
ξik`Γ

k
`j − Γ`kjΓ

k
i` + Γ`ijΓ

k
k`

)
.

The Ricci curvature ric(yi, yj) and the Ricci operator Ric are given by

ric(yi, yj) =
∑
k

h(yk, yk) · h(Ryiykyj , yk),[
Ric
]
{yi}

=
[
Rij

]
, whereRij = h(yj , yj) · ric(Yi, Yj).

We state the curvature results in the case GI . For each left invariant
Lorentzian metric h on GI whose associated matrix is given in Theorem 3.1,
we obtain an orthonormal basis {yi} as follows:

(1) If [h] =
[
1 0 0
0 −1 0
0 0 µ

]
with µ > 0,

y1 = x, y2 =
1
√
µ
z, y3 = y;

[y1, y2] = − 1
√
µ
y1, [y2, y3] =

1
√
µ
y3, [y3, y1] = 0.

(2) If [h] =
[
1 0 0
0 1 0
0 0 −µ

]
with µ > 0,

y1 = x, y2 = y, y3 =
1
√
µ
z;

[y1, y2] = 0, [y2, y3] = − 1
√
µ
y2, [y3, y1] =

1
√
µ
y1.

(3) If [h] =
[
1 0 0
0 0 1
0 1 0

]
,

y1 = x, y2 =
1√
2

(y + z), y3 =
1√
2

(y − z);
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[y1, y2] = − 1√
2
y1, [y2, y3] =

1√
2

(y2 + y3), [y3, y1] = − 1√
2
y1.

With respect to the orthonormal basis {yi}, we have the following:

Theorem 4.6. The Ricci operator Ric of the metric h on GI is expressed as
follows:

(1) If [h] =
[
1 0 0
0 −1 0
0 0 µ

]
with µ > 0,

[Ric]{yi} = diag
{
− 2

µ
,− 2

µ
,− 2

µ

}
(O’Neill type {11, 1}).

(2) If [h] =
[
1 0 0
0 1 0
0 0 −µ

]
with µ > 0,

[Ric]{yi} = diag
{ 2

µ
,

2

µ
,

2

µ

}
(O’Neill type {11, 1}).

(3) If [h] =
[
1 0 0
0 0 1
0 1 0

]
,

[Ric]{yi} = diag{0, 0, 0} (flat) (O’Neill type {11, 1}).

All the other cases of Gc can be argued similarly. More details can be found
in [4].

Remark 4.7. Three-dimensional Lie groups, having a flat Lorentzian metric,
have been classified in [2] and [6]. We classify explicitly three-dimensional
Lorentzian non-unimodular Lie groups whose metrics have constant sectional
curvatures.

Let (G, h) be a connected, simply connected three-dimensional Lorentzian
non-unimodular Lie group G. Then we have:

(1) (G, h) is flat if and only if h is equivalent up to automorphism to a
metric whose associated matrix is of the form

(a)
[
1 0 0
0 0 1
0 1 0

]
on GI ;

(b)
[ −2 −1 0

1 1 0
0 0 1

]−1 [ 0 0 1
0 µ 0
1 0 0

] [ −2 −1 0
1 1 0
0 0 1

]
with µ > 0 on G1;

(c)

[
1
2 1 0

− 1
2 0 0
0 0 1

]−1 [
0 0 1
0 1 0
1 0 0

] [ 1
2 1 0

− 1
2 0 0
0 0 1

]
on G0.

(2) (G, h) has positive constant sectional curvature if and only if h is equiv-
alent up to automorphism to a metric whose associated matrix is of the
form 1 0 0

0 1 0
0 0 −µ

with µ > 0 on GI .
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(3) (G, h) has negative constant sectional curvature if and only if h is
equivalent up to automorphism to a metric whose associated matrix
is of the form

(a)
[
1 0 0
0 −1 0
0 0 µ

]
with µ > 0 on GI ;

(b)

[
1

2w
1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

]−1 [
0 1 0
1 0 0
0 0 µ

] [ 1
2w

1+w
2w 0

− 1
2w

w−1
2w 0

0 0 1

]
with µ > 0 on Gc, c < 1, where w =

√
1− c.
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