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SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN

METRICS AS CRITICAL POINTS FOR QUADRATIC

CURVATURE FUNCTIONALS

Guangyue Huang, Bingqing Ma, and Jie Yang

Abstract. We study rigidity results for the Einstein metrics as the crit-
ical points of a family of known quadratic curvature functionals involving

the scalar curvature, the Ricci curvature and the Riemannian curvature

tensor, characterized by some pointwise inequalities involving the Weyl
curvature and the traceless Ricci curvature. Moreover, we also provide a

few rigidity results for locally conformally flat critical metrics.

1. Introduction

A well-known example of a Riemannian functional is the Einstein-Hilbert
functional

H =

∫
M

R

on M1(Mn), where R denotes the scalar curvature and M1(Mn) is the space
of equivalence classes of smooth Riemannian metrics of volume one on closed
Riemannian manifold Mn, n ≥ 3. Furthermore, it is easy to see that Einstein
metrics are critical for the functional H (see [3, 11]). In this paper, we are
interested in studying the functional

(1.1) Ft,s(g) =

∫
M

|Ric|2 + t

∫
M

R2 + s

∫
M

|Rm|2,

where t, s are real constants, Ric and Rm denote the Ricci curvature and the
Riemannian curvature tensor, respectively. It is easy to observe from (2.4) that
every Einstein metric is critical for Ft,0. In [6], Catino considered the curvature
functional Ft,0 and obtained some conditions on the geometry of Mn such that
critical metrics of Ft,0 are Einstein. Certainly, there exist critical metrics which
are not necessarily Einstein (for instance, see [3, Chapter 4] and [19]). For some
development in this direction, see [1,5,9,10,12,13,15,18,22] and the references
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therein. Therefore, it is natural to ask that under what conditions a critical
metric for the functionals Ft,s(s 6= 0) must be an Einstein one.

Barros and Da Silva in [2] show that locally conformally flat critical metrics
for Ft,s with n+4(n−1)t+4s = 0 (when n ≥ 5) and some additional conditions
are space form metrics (see [2, Theorem 3]). In this paper, we give some new
characterizations, by some pointwise inequalities involving the Weyl curvature
and the traceless Ricci curvature, on critical metrics for Ft,s on M1(Mn) with
n + 4(n − 1)t + 4s 6= 0. In order to state our results, throughout this paper,

we denote by R̊ic and W the traceless Ricci tensor and the Weyl curvature,
respectively. We denote by ©∧ the Kulkarni-Nomizu product.

Our main results are stated as follows:

Theorem 1.1. Let Mn be a closed manifold of dimension n ≥ 5 with positive
scalar curvature and g be a critical metric for Ft,s on M1(Mn). Suppose that∣∣∣W − (n− 4)[4s+ (n− 2)]√

2n(n− 2)(8s+ n− 2)
R̊ic©∧ g

∣∣∣|R̊ij |+

√
2(n− 1)2

n(n− 2)

∣∣∣ 2(n− 2)s

8s+ n− 2

∣∣∣|W |2
< −

√
2(n− 2)

n− 1

[3n− 4 + 2n(n− 1)t+ 8s]

n(8s+ n− 2)
R|R̊ij |,(1.2)

where t, s satisfy

(1.3)


s ≥ − 1

4

n+ 4(n− 1)t+ 4s ≤ 0

3n− 4 + 2n(n− 1)t+ 8s < 0

or

(1.4)


s < −n−2

8

n+ 4(n− 1)t+ 4s ≥ 0

3n− 4 + 2n(n− 1)t+ 8s > 0.

Then Mn is Einstein.

Theorem 1.2. Let Mn be a closed manifold of dimension n ≥ 5 with positive
scalar curvature and g be a critical metric for Ft,s on M1(Mn). Suppose that∣∣∣W − (n− 4)[4s+ (n− 2)]√

2n(n− 2)(8s+ n− 2)
R̊ic©∧ g

∣∣∣|R̊ij |+

√
2(n− 1)2

n(n− 2)

∣∣∣ 2(n− 2)s

8s+ n− 2

∣∣∣|W |2
<

√
2(n− 2)

n− 1

[3n− 4 + 2n(n− 1)t+ 8s]

n(8s+ n− 2)
R|R̊ij |,(1.5)

where t, s satisfy

(1.6)


−n−2

8 < s ≤ − 1
4

n+ 4(n− 1)t+ 4s ≥ 0

3n− 4 + 2n(n− 1)t+ 8s > 0.
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Then Mn is Einstein.

Theorem 1.3. Let Mn be a closed manifold of dimension n ≥ 5 with positive
scalar curvature and g be a critical metric for Ft,s on M1(Mn), where 1 + 2t+
2s = 0. Suppose that∣∣∣W+

2s(n2 − 3n+ 4) + 2(n− 2)√
2n(n− 2)[(n− 2) + 2ns]

R̊ic©∧ g
∣∣∣|R̊ij |+

√
2(n−1)2

n(n−2)

∣∣∣ (n−2)s

(n−2)+2ns

∣∣∣|W |2
≤
√

2(n−2)

n−1

[n2 − 3n+ 4 + 2(n2 + n− 4)s]

2n[(n− 2) + 2ns]
R|R̊ij |,(1.7)

where s satisfy

(1.8) s > −1

4
or

(1.9) s < −n− 2

2n
.

Then Mn is Einstein as long as there exists a point such that the inequality in
(1.7) is strict.

Theorem 1.4. Let Mn be a closed manifold of dimension n ≥ 5 with positive
scalar curvature and g be a critical metric for Ft,s on M1(Mn), where 1 + 2t+
2s = 0. Suppose that∣∣∣W+

2s(n2 − 3n+ 4) + 2(n− 2)√
2n(n− 2)[(n− 2) + 2ns]

R̊ic©∧ g
∣∣∣|R̊ij |+

√
2(n−1)2

n(n−2)

∣∣∣ (n−2)s

(n−2)+2ns

∣∣∣|W |2
≤ −

√
2(n− 2)

n− 1

[n2 − 3n+ 4 + 2(n2 + n− 4)s]

2n[(n− 2) + 2ns]
R|R̊ij |,(1.10)

where s satisfy

(1.11) − n− 2

2n
< s < − n2 − 3n+ 4

2(n2 + n− 4)
.

Then Mn is Einstein as long as there exists a point such that the inequality in
(1.10) is strict.

Theorem 1.5. Let Mn be a locally conformally flat closed manifold of dimen-
sion n ≥ 4 with positive scalar curvature and g be a critical metric for Ft,s on
M1(Mn).

(1) If n = 4 and 3t + s + 1 6= 0, then M4 is of positive constant sectional
curvature;

(2) If n ≥ 5 and t, s satisfy

(1.12)


s ≥ −n−2

4

(n− 1)(n− 2)t+ 2s+ (n− 2) < 0

2n(n− 1)t+ 4(n− 2)s+ (n2 − 3n+ 4) ≤ 0
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or

(1.13)


s ≤ −n−2

4

(n− 1)(n− 2)t+ 2s+ (n− 2) > 0

2n(n− 1)t+ 4(n− 2)s+ (n2 − 3n+ 4) ≥ 0,

then Mn is of positive constant sectional curvature.

Taking s = −n−2
4 in (1.12) and (1.13), respectively, we obtain the following.

Corollary 1.6. Let Mn be a locally conformally flat closed manifold of dimen-
sion n ≥ 5 with positive scalar curvature and g be a critical metric for Ft,s

on M1(Mn). If s = −n−2
4 and t 6= − 1

2(n−1) , then Mn is of positive constant

sectional curvature.

Next, we give some rigidity results for n = 3:

Theorem 1.7. Let M3 be a closed manifold with positive scalar curvature and
g be a critical metric for Ft,s on M1(M3), where t, s satisfy

(1.14)


s ≤ − 1

4

2t+ 2s+ 1 < 0

3t+ s+ 1 ≤ 0

or

(1.15)


s ≥ − 1

4

2t+ 2s+ 1 > 0

3t+ s+ 1 ≥ 0.

Suppose that the divergence of Cotton tensor is zero (that is, Cijk,i = 0). Then
M3 is of positive constant sectional curvature.

Taking s = − 1
4 in (1.14) and (1.15), respectively, we obtain the following.

Corollary 1.8. Let M3 be a closed manifold with positive scalar curvature and
g be a critical metric for Ft,s on M1(M3), where s = − 1

4 and t 6= − 1
4 . Then

M3 is of positive constant sectional curvature provided that the divergence of
Cotton tensor is zero.

Remark 1.9. In particular, when n = 3, we have W = 0 automatically. Hence it
is seen from (2.1) that an Einstein manifold M3 with positive scalar curvature
must be of positive constant sectional curvature.

Remark 1.10. When s = 0, it is easy to check that our Theorems 1.1 and 1.3
become Theorems 1.1 and 1.3 of [21], respectively.

Remark 1.11. For n ≥ 4, the Bach tensor is defined (see [4, 16]) by

(1.16) Bij =
1

n− 3
Wikjl,lk +

1

n− 2
WikjlR

kl.
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By virtue of (2.3), we have that (1.16) can be written as

(1.17) Bij =
1

n− 2
(Ckij,k +WikjlR

kl).

Therefore, we can define the Bach tensor on M3 by

(1.18) Bij = Ckij,k.

Thus, when n = 3, Cijk,i = 0 is equivalent to Bij = 0. In [22], Sheng and Wang
studied the case that the critical metrics are Bach-flat (that is, Bij = 0). Our
Theorem 1.7 generalizes partially the results of Sheng and Wang in [22].

Remark 1.12. Corollary 1.6 is exactly Theorem 4 with positive scalar curvature
of Barros and Da Silva [2]. Therefore, our Theorem 1.5 generalizes Theorem
4 of Barros and Da Silva [2]. Moreover, for n = 3, 4, our Theorem 1.5 and
Corollary 1.8 can be seen as a supplement to Theorem 4 of Barros and Da
Silva in [2].

Remark 1.13. By the definition of the Cotton tensor given by (2.2), we have∫
M

Cijk,iRjk = −
∫
M

CijkRjk,i = −1

2

∫
M

|Cijk|2,(1.19)

which shows that if Cijk,i = 0, then we have Cijk = 0. Therefore, if we add
the assumption on Cijk,i = 0 for Theorem 1.1, then Mn is Einstein as long as
we replace (1.3) with

(1.20)


s > −n−2

8

n+ 4(n− 1)t+ 4s ≤ 0

3n− 4 + 2n(n− 1)t+ 8s < 0.

Similarly, if we add the assumption on Cijk,i = 0 for Theorem 1.2, then Mn is
Einstein as long as we replace (1.6) with

(1.21)


s < −n−2

8

n+ 4(n− 1)t+ 4s ≤ 0

3n− 4 + 2n(n− 1)t+ 8s < 0;

or

(1.22)


s > −n−2

8

n+ 4(n− 1)t+ 4s ≥ 0

3n− 4 + 2n(n− 1)t+ 8s > 0.

Acknowledgment. We would like to thank the referee for suggestions which
make the paper more readable.
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2. Preliminaries

For n ≥ 3, it is well-known that the Weyl curvature tensor and the Cotton
tensor are defined by

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk)

= Rijkl −
1

n− 2
(R̊ikgjl − R̊ilgjk + R̊jlgik − R̊jkgil)

− R

n(n− 1)
(gikgjl − gilgjk),(2.1)

and

Cijk = Rkj,i −Rki,j −
1

2(n− 1)
(R,igjk −R,jgik)

= R̊kj,i − R̊ki,j +
n− 2

2n(n− 1)
(R,igjk −R,jgik),(2.2)

respectively. Here R̊ij = Rij− 1
nRgij denotes the traceless Ricci tensor and the

indices after a comma denote the covariant derivatives. From the definition of
the Cotton tensor, it is easy to see

Cijk = −Cjik, gijCijk = gikCijk = gjkCijk = 0

and

Cijk,k = 0, Cijk + Cjki + Ckij = 0.

For n ≥ 4, the divergence of the Weyl curvature tensor is related to the Cotton
tensor by

(2.3) − n− 3

n− 2
Cijk = Wijkl,l.

Moreover, Wijkl = 0 holds naturally on (M3, g), and (M3, g) is locally confor-
mally flat if and only if Cijk = 0. For n ≥ 4, (Mn, g) is locally conformally flat
if and only if Wijkl = 0.

It has been proved by Catino in [6] (see [6, Proposition 6.1]) that a metric
g is critical for Ft,s on M1(Mn) if and only if it satisfies the equations

(1 + 4s)∆R̊ij = (1 + 2t+ 2s)R,ij −
1 + 2t+ 2s

n
(∆R)gij − 2(1 + 2s)RikjlR̊kl

− 2 + 2nt− 4s

n
RR̊ij +

2

n
(|R̊ij |2 + s|Rm|2)gij

− 2sRikpqRjkpq + 4sR̊ikR̊jk(2.4)

and

[n+ 4(n− 1)t+ 4s]∆R = (n− 4)(|Rij |2 + tR2 + s|Rm|2 − λ)
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= (n− 4)
[
s|W |2 +

n− 2 + 4s

n− 2
|R̊ij |2

+
n− 1 + n(n− 1)t+ 2s

n(n− 1)
R2 − λ

]
,(2.5)

where λ = Ft,s(g) and we used the fact

|Rm|2 = |W |2 +
4

n− 2
|R̊ij |2 +

2

n(n− 1)
R2(2.6)

from (2.1).
Using the formula (2.1), we can also derive

R̊klRikjl = R̊klWikjl +
1

n− 2
(|R̊ij |2gij − 2R̊ikR̊jk)− 1

n(n− 1)
RR̊ij(2.7)

and

RikpqRjkpq = WikpqWjkpq +
4

n− 2
WikjlR̊kl +

2(n− 4)

(n− 2)2
R̊ikR̊jk

+
2

(n− 2)2
|R̊ij |2gij +

2

n2(n− 1)
R2gij +

4

n(n− 1)
RR̊ij .(2.8)

Therefore, (2.4) can be written as

(1 + 4s)∆R̊ij = (1 + 2t+ 2s)R̊,ij − 2(1 + 2s)RikjlR̊kl

− 2 + 2nt− 4s

n
RR̊ij +

2

n
(|R̊ij |2 + s|Rm|2)gij

− 2sRikpqRjkpq + 4sR̊ikR̊jk

= (1 + 2t+ 2s)R̊,ij −
2(n− 2) + 4ns

n− 2
WikjlR̊kl − 2sWikpqWjkpq

+
[
− 4s(n2 − 3n+ 4) + 4(n− 2)

n(n− 2)2
|R̊ij |2 +

2s

n
|W |2

]
gij

+
4s(n2 − 3n+ 4) + 4(n− 2)

(n− 2)2
R̊ikR̊jk

+
4− 2n− 2n(n− 1)t+ 4(n− 2)s

n(n− 1)
RR̊ij ,(2.9)

where R̊,ij = R,ij − 1
n (∆R)gij . It follows from (2.9) that

1 + 4s

2
∆|R̊ij |2 = (1 + 4s)|∇R̊ij |2 + (1 + 4s)R̊ij∆R̊ij

= (1 + 4s)|∇R̊ij |2 + (1 + 2t+ 2s)R,ijR̊ij

− 2(n− 2) + 4ns

n− 2
WikjlR̊klR̊ij − 2sWikpqWjkpqR̊ij

+
4s(n2 − 3n+ 4) + 4(n− 2)

(n− 2)2
R̊ikR̊kjR̊ji
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+
4− 2n− 2n(n− 1)t+ 4(n− 2)s

n(n− 1)
R|R̊ij |2.(2.10)

Integrating both sides of (2.10) yields

0 = (1 + 4s)

∫
M

|∇R̊ij |2 +

∫
M

(
− (n− 2)(1 + 2t+ 2s)

2n
|∇R|2

− 2(n− 2) + 4ns

n− 2
WikjlR̊klR̊ij − 2sWikpqWjkpqR̊ij

+
4s(n2 − 3n+ 4) + 4(n− 2)

(n− 2)2
R̊ikR̊kjR̊ji

+
4− 2n− 2n(n− 1)t+ 4(n− 2)s

n(n− 1)
R|R̊ij |2

)
,(2.11)

where we used the second Bianchi identity R̊kj,k = n−2
2n R,j . Hence, we obtain

the following result:

Lemma 2.1. Let Mn be a closed manifold and g be a critical metric for Ft,s

on M1(Mn). Then

(1 + 4s)

∫
M

|∇R̊ij |2 =

∫
M

( (n− 2)(1 + 2t+ 2s)

2n
|∇R|2

+
2(n− 2) + 4ns

n− 2
WikjlR̊klR̊ij + 2sWikpqWjkpqR̊ij

− 4s(n2 − 3n+ 4) + 4(n− 2)

(n− 2)2
R̊ikR̊kjR̊ji

− 4− 2n− 2n(n− 1)t+ 4(n− 2)s

n(n− 1)
R|R̊ij |2

)
.(2.12)

For any closed manifold, we also have the following result (see [21, Lemma
2.2])

Lemma 2.2. Let Mn be a closed manifold. Then∫
M

|∇R̊ij |2 =

∫
M

(
WijklR̊jlR̊ik −

n

n− 2
R̊ijR̊jkR̊ki

− 1

n− 1
R|R̊ij |2 +

(n− 2)2

4n(n− 1)
|∇R|2 +

1

2
|Cijk|2

)
.(2.13)

The next lemma comes from [8,14,20] (for the case of λ = 2
n−2 , see [7]):

Lemma 2.3. For every Riemannian manifold (Mn, g) and any λ ∈ R, the
following estimate holds∣∣∣−WijklR̊jlR̊ik + λR̊ijR̊jkR̊ki

∣∣∣
≤

√
n− 2

2(n− 1)

(
|W |2 +

2(n− 2)λ2

n
|R̊ij |2

) 1
2 |R̊ij |2
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=

√
n− 2

2(n− 1)

∣∣∣W +
λ√
2n

R̊ic©∧ g
∣∣∣|R̊ij |2.(2.14)

3. Proof of main results

3.1. Proof of Theorem 1.1

Notice that (2.13) can be written as

(1 + 4s)

∫
M

|∇R̊ij |2 = (1 + 4s)

∫
M

(
WijklR̊jlR̊ik −

n

n− 2
R̊ijR̊jkR̊ki

− 1

n− 1
R|R̊ij |2 +

(n− 2)2

4n(n− 1)
|∇R|2 +

1

2
|Cijk|2

)
.(3.1)

Combining (3.1) with (2.12), we have

0 =

∫
M

[n− 2 + 8s

n− 2
WijklR̊jlR̊ik +

(n− 4)[4s+ (n− 2)]

(n− 2)2
R̊ijR̊jkR̊ki

+ 2sWikpqWjkpqR̊ij +
3n− 4 + 2n(n− 1)t+ 8s

n(n− 1)
R|R̊ij |2

+
(n− 2)[n+ 4(n− 1)t+ 4s]

4n(n− 1)
|∇R|2 − 1 + 4s

2
|Cijk|2

]
,(3.2)

which is equivalent to

0 =

∫
M

[
−WijklR̊jlR̊ik −

(n− 4)[4s+ (n− 2)]

(n− 2)(8s+ n− 2)
R̊ijR̊jkR̊ki −

2(n− 2)s

8s+ n− 2

×WikpqWjkpqR̊ij −
(n− 2)[3n− 4 + 2n(n− 1)t+ 8s]

n(n− 1)(8s+ n− 2)
R|R̊ij |2

− (n− 2)2[n+ 4(n− 1)t+ 4s]

4n(n− 1)(8s+ n− 2)
|∇R|2 +

(n− 2)(1 + 4s)

2(8s+ n− 2)
|Cijk|2

]
(3.3)

as long as 8s+ n− 2 6= 0. Substituting the estimate (2.14) with

λ = − (n− 4)[4s+ (n− 2)]

(n− 2)(8s+ n− 2)

and

|WikpqWjkpqR̊ij | ≤
√
n− 1

n
|W |2|R̊ij |(3.4)

into (3.3) gives

0 ≥
∫
M

[
−

√
n− 2

2(n− 1)

∣∣∣W − (n− 4)[4s+ (n− 2)]√
2n(n− 2)(8s+ n− 2)

R̊ic©∧ g
∣∣∣|R̊ij |2

−
√
n− 1

n

∣∣∣ 2(n− 2)s

8s+ n− 2

∣∣∣|W |2|R̊ij | −
(n−2)[3n−4+2n(n−1)t+8s]

n(n−1)(8s+n−2)
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×R|R̊ij |2 −
(n− 2)2[n+ 4(n− 1)t+ 4s]

4n(n− 1)(8s+ n− 2)
|∇R|2

+
(n− 2)(1 + 4s)

2(8s+ n− 2)
|Cijk|2

]
.(3.5)

For the proof of (3.4), we refer to [17, Lemma 2.4]. Noticing that if t, s satisfy
(1.3), then we have

(3.6)


1 + 4s ≥ 0

8s+ n− 2 > 0

n+ 4(n− 1)t+ 4s ≤ 0

3n− 4 + 2n(n− 1)t+ 8s < 0.

Therefore, applying (1.2) and (3.6) into (3.5) gives

0 ≥
∫
M

[
−

√
n− 2

2(n− 1)

∣∣∣W − (n− 4)[4s+ (n− 2)]√
2n(n− 2)(8s+ n− 2)

R̊ic©∧ g
∣∣∣|R̊ij |2

−
√
n− 1

n

∣∣∣ 2(n− 2)s

8s+ n− 2

∣∣∣|W |2|R̊ij | −
(n−2)[3n−4+2n(n−1)t+8s]

n(n−1)(8s+n−2)

×R|R̊ij |2 −
(n− 2)2[n+ 4(n− 1)t+ 4s]

4n(n− 1)(8s+ n− 2)
|∇R|2

+
(n− 2)(1 + 4s)

2(8s+ n− 2)
|Cijk|2

]
≥ 0,(3.7)

which shows R̊ij = 0 and hence Mn is Einstein.
Similarly, if t, s satisfy (1.4), then we have

(3.8)


1 + 4s ≤ 0

8s+ n− 2 < 0

n+ 4(n− 1)t+ 4s ≥ 0

3n− 4 + 2n(n− 1)t+ 8s > 0.

Therefore, applying (1.2) and (3.8) into (3.5) also yields the estimate (3.7) and
the desired Theorem 1.1 follows.

3.2. Proof of Theorem 1.2

When 8s+n−2 6= 0, inserting the estimate (2.14) with λ = − (n−4)[4s+(n−2)]
(n−2)(8s+n−2)

and (3.4) into (3.3), we deduce

0 ≤
∫
M

[√
n− 2

2(n− 1)

∣∣∣W − (n− 4)[4s+ (n− 2)]√
2n(n− 2)(8s+ n− 2)

R̊ic©∧ g
∣∣∣|R̊ij |2

+

√
n− 1

n

∣∣∣ 2(n− 2)s

8s+ n− 2

∣∣∣|W |2|R̊ij | −
(n−2)[3n−4+2n(n−1)t+8s]

n(n−1)(8s+ n− 2)
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×R|R̊ij |2 −
(n− 2)2[n+ 4(n− 1)t+ 4s]

4n(n− 1)(8s+ n− 2)
|∇R|2

+
(n− 2)(1 + 4s)

2(8s+ n− 2)
|Cijk|2

]
.(3.9)

If t, s satisfy (1.6), then we have

(3.10)


1 + 4s ≤ 0

8s+ n− 2 > 0

n+ 4(n− 1)t+ 4s ≥ 0

3n− 4 + 2n(n− 1)t+ 8s > 0.

Applying (3.10) and (1.5) into (3.9) also yields the following estimate

0 ≤
∫
M

[√
n− 2

2(n− 1)

∣∣∣W − (n− 4)[4s+ (n− 2)]√
2n(n− 2)(8s+ n− 2)

R̊ic©∧ g
∣∣∣|R̊ij |2

+

√
n− 1

n

∣∣∣ 2(n− 2)s

8s+ n− 2

∣∣∣|W |2|R̊ij | −
(n−2)[3n−4+2n(n−1)t+8s]

n(n− 1)(8s+ n− 2)

×R|R̊ij |2 −
(n− 2)2[n+ 4(n− 1)t+ 4s]

4n(n− 1)(8s+ n− 2)
|∇R|2

+
(n− 2)(1 + 4s)

2(8s+ n− 2)
|Cijk|2

]
≤ 0,(3.11)

and the desired Theorem 1.2 follows.

3.3. Proof of Theorem 1.3

When t, s satisfy 1 + 2t+ 2s = 0, then the formula (2.10) becomes

1 + 4s

2
∆|R̊ij |2 = (1 + 4s)|∇R̊ij |2 −

2(n− 2) + 4ns

n− 2
WikjlR̊klR̊ij

− 2sWikpqWjkpqR̊ij +
4s(n2 − 3n+ 4) + 4(n− 2)

(n− 2)2
R̊ikR̊kjR̊ji

+
4− 2n− 2n(n− 1)t+ 4(n− 2)s

n(n− 1)
R|R̊ij |2,(3.12)

which gives

(n− 2)(1 + 4s)

4[(n− 2) + 2ns]
∆|R̊ij |2

=
(n−2)(1+4s)

2[(n−2)+2ns]
|∇R̊ij |2−WikjlR̊klR̊ij −

(n−2)s

(n−2)+2ns
WikpqWjkpqR̊ij

+
2s(n2 − 3n+ 4) + 2(n− 2)

(n− 2)[(n− 2) + 2ns]
R̊ikR̊kjR̊ji
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+
(n− 2)[2− n− n(n− 1)t+ 2(n− 2)s]

n(n− 1)[(n− 2) + 2ns]
R|R̊ij |2

≥ (n−2)(1+4s)

2[(n−2)+2ns]
|∇R̊ij |2−

√
n−2

2(n−1)

∣∣∣W+
2s(n2−3n+4)+2(n−2)√

2n(n−2)[(n−2)+2ns]

× R̊ic©∧ g
∣∣∣|R̊ij |2 −

√
n− 1

n

∣∣∣ (n− 2)s

(n− 2) + 2ns

∣∣∣|W |2|R̊ij |

+
(n− 2)[2− n− n(n− 1)t+ 2(n− 2)s]

n(n− 1)[(n− 2) + 2ns]
R|R̊ij |2(3.13)

provided n− 2 + 2ns 6= 0. Noticing that

−n− 2

2n
< − n2 − 3n+ 4

2(n2 + n− 4)
< −1

4

and if s satisfy (1.8), then we have

(3.14)


1 + 4s > 0

n− 2 + 2ns > 0

2− n− n(n− 1)t+ 2n(n− 2)s > 0.

Similarly, if t, s satisfy (1.9), then also we have

(3.15)


1 + 4s < 0

n− 2 + 2ns < 0

2− n− n(n− 1)t+ 2n(n− 2)s < 0.

Clearly, if (3.14) or (3.15) holds, then from (3.13) and (1.7) we both have

(n− 2)(1 + 4s)

4[(n− 2) + 2ns]
∆|R̊ij |2 ≥ 0,(3.16)

which shows that |R̊ij |2 is subharmonic on Mn. Using the maximum principle,

we obtain that |R̊ij |2 is constant and ∇R̊ij = 0, implying that the Ricci cur-
vature is parallel and the scalar curvature R is constant. In particular, (3.13)
becomes

0 =

[
−

√
n− 2

2(n− 1)

∣∣∣W +
2s(n2 − 3n+ 4) + 2(n− 2)√

2n(n− 2)[(n− 2) + 2ns]

× R̊ic©∧ g
∣∣∣|R̊ij | −

√
n− 1

n

∣∣∣ (n− 2)s

(n− 2) + 2ns

∣∣∣|W |2
+

(n− 2)[2− n− n(n− 1)t+ 2(n− 2)s]

n(n− 1)[(n− 2) + 2ns]
R|R̊ij |

]
|R̊ij |.(3.17)

If there exists a point p such that the inequality (1.7) is strict, then from (3.17)

we have |R̊ij |(p) = 0 which with the fact that |R̊ij | constant shows that R̊ij = 0,
that is, Mn is Einstein, completing the proof of Theorem 1.3.
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3.4. Proof of Theorem 1.4

When 1 + 2t+ 2s = 0, (3.12) can also be written as

− (n− 2)(1 + 4s)

4[(n− 2) + 2ns]
∆|R̊ij |2 = − (n− 2)(1 + 4s)

2[(n− 2) + 2ns]
|∇R̊ij |2 +WikjlR̊klR̊ij

+
(n− 2)s

(n− 2) + 2ns
WikpqWjkpqR̊ij

− 2s(n2 − 3n+ 4) + 2(n− 2)

(n− 2)[(n− 2) + 2ns]
R̊ikR̊kjR̊ji

− (n− 2)[2− n− n(n− 1)t+ 2(n− 2)s]

n(n− 1)[(n− 2) + 2ns]
R|R̊ij |2.(3.18)

Thus, we obtain

− (n− 2)(1 + 4s)

4[(n− 2) + 2ns]
∆|R̊ij |2

≥ − (n−2)(1+4s)

2[(n−2)+2ns]
|∇R̊ij |2−

√
n−2

2(n−1)

∣∣∣W+
2s(n2−3n+4)+2(n−2)√

2n(n−2)[(n−2)+2ns]

× R̊ic©∧ g
∣∣∣|R̊ij |2 −

√
n− 1

n

∣∣∣ (n− 2)s

(n− 2) + 2ns

∣∣∣|W |2|R̊ij |

− (n− 2)[2− n− n(n− 1)t+ 2(n− 2)s]

n(n− 1)[(n− 2) + 2ns]
R|R̊ij |2.(3.19)

If t, s satisfy (1.11), then we have

(3.20)


1 + 4s < 0

n− 2 + 2ns > 0

2− n− n(n− 1)t+ 2(n− 2)s < 0.

Therefore, applying (3.20) and (1.10) into (3.19) yields the estimate

− (n− 2)(1 + 4s)

4[(n− 2) + 2ns]
∆|R̊ij |2 ≥ 0.(3.21)

Then following the proof of Theorem 1.3 line by line we finish the proof of
Theorem 1.4.

3.5. Proof of Theorem 1.5

When Wijkl = 0, (2.12) becomes

(1 + 4s)

∫
M

|∇R̊ij |2 =

∫
M

( (n− 2)(1 + 2t+ 2s)

2n
|∇R|2

− 4s(n2 − 3n+ 4) + 4(n− 2)

(n− 2)2
R̊ikR̊kjR̊ji
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− 4− 2n− 2n(n− 1)t+ 4(n− 2)s

n(n− 1)
R|R̊ij |2

)
(3.22)

and (2.13) becomes∫
M

|∇R̊ij |2 =

∫
M

(
− n

n− 2
R̊ijR̊jkR̊ki −

1

n− 1
R|R̊ij |2

+
(n− 2)2

4n(n− 1)
|∇R|2 +

1

2
|Cijk|2

)
,(3.23)

respectively. Thus, combining (3.22) with (3.23), we obtain

0 =
(n− 4)[(n− 2) + 4s]

n− 2

∫
M

|∇R̊ij |2

− 2n[(n− 1)(n− 2)t+ 2s+ (n− 2)]

(n− 1)(n− 2)

∫
M

R|R̊ij |2

− (n− 2)[2n(n− 1)t+ 4(n− 2)s+ (n2 − 3n+ 4)]

2n(n− 1)

∫
M

|∇R|2

+
2[(n− 2) + (n2 − 3n+ 4)s]

n− 2

∫
M

|Cijk|2.(3.24)

For n ≥ 4, from (2.3) we have Cijk = 0 coming from Wijkl = 0. In particular,
when n = 4, (3.24) becomes

0 =(3t+ s+ 1)

∫
M

(4R|R̊ij |2 + |∇R|2),(3.25)

which shows that if 3t + s + 1 6= 0, then we have R̊ij = 0 and hence M4

is Einstein. This combining with (2.1) gives that M4 is of positive constant
sectional curvature.

When n ≥ 5, if t, s satisfy (1.12), then (3.24) yields

0 =
(n− 4)[(n− 2) + 4s]

n− 2

∫
M

|∇R̊ij |2

− 2n[(n− 1)(n− 2)t+ 2s+ (n− 2)]

(n− 1)(n− 2)

∫
M

R|R̊ij |2

− (n− 2)[2n(n− 1)t+ 4(n− 2)s+ (n2 − 3n+ 4)]

2n(n− 1)

∫
M

|∇R|2 ≥ 0,(3.26)

which concludes that Mn is Einstein. Similarly, if (1.13) is satisfied, we also
have that Mn is Einstein and hence Mn is of positive constant sectional cur-
vature.

3.6. Proof of Theorem 1.7

When n = 3, (3.24) becomes

0 = (1 + 4s)

∫
M

|∇R̊ij |2 + 3(2t+ 2s+ 1)

∫
M

R|R̊ij |2



SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN METRICS 1381

+
3t+ s+ 1

3

∫
M

|∇R|2 − 2(1 + 4s)

∫
M

|Cijk|2.(3.27)

If Cijk,i = 0, then (1.19) shows that Cijk = 0 and (3.27) becomes

0 = (1 + 4s)

∫
M

|∇R̊ij |2 + 3(2t+ 2s+ 1)

∫
M

R|R̊ij |2

+
3t+ s+ 1

3

∫
M

|∇R|2.(3.28)

Therefore, if t, s satisfy (1.14) or (1.15), we have R̊ij = 0 and hence M3 is of
positive constant sectional curvature. The proof of Theorem 1.7 is finished.
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