Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1262

Scalar Perturbation and Stability of a New Wormhole in Einstein-Born-Infeld Gravity  

Kim, Jin Young (Department of Physics, Gunsan National University)
Abstract
We introduce a new method to construct wormholes without adopting exotic matters in Einstein-Born-Infeld gravity with a negative cosmological constant. Contrary to the conventional method, the throat of the wormhole is located at the point where the metric solutions are joined smoothly. Thus, exotic matters are not needed to sustain the throat. We consider the behavior of a minimally coupled scalar field to study the stability of the new wormhole. If we define the quasinormal mode of the scalar field as the purely ingoing flux at the throat of the wormhole, the stability of wormhole can be discussed in analogy with the argument that we use for the stability of a black hole. Because an analytic solution can not be found, we suggest a formalism to find quasinormal modes numerically. The crucial difference from the black hole case is that the coefficient of the second-order derivative term of the radial equation is expanded from n = -1, which is contrary to the black hole case where it is expanded from n = 0.
Keywords
Wormhole; Einstein-Born-Infeld gravity; Quasinormal mode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Eyer and C. M. Will, Phys. Rev. D 35, 3621 (1987).
2 S. Eyer, Phys. Rev. D 35, 3632 (1987).   DOI
3 B. P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016).   DOI
4 B. P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017).   DOI
5 B. P. Abbott et al., Phys. Rev. Lett. 116, 221101 (2016).   DOI
6 V. Cardoso, E. Franzin, and P. Pani, Phys. Rev. Lett. 116, 171101 (2016); Erratum: Phys. Rev. Lett. 117, 089902 (2016).   DOI
7 A. G. Agnese, M. La Camera, Phys. Rev. D 51, 2011 (1995).   DOI
8 D. Hochberg, Phys. Lett. B 251, 349 (1990).   DOI
9 A. Chodos and S. Detweiler, Gen. Relat. Gravity 14, 879 (1982).   DOI
10 J. Y. Kim, New Phys.: Sae Mulli 66, 82 (2016).   DOI
11 M. B. Cantcheff, N. E. Grandi, and M Sturla, Phys. Rev. D 82, 124034 (2010).   DOI
12 M.-I Park and S. W. Kim, Phys. Lett. B 751, 220 (2015).   DOI
13 J. Y. Kim and M.-I Park, Eur. Phys. J. C 76, 621 (2016).   DOI
14 M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).   DOI
15 T. Damour and S. N. Solodukhin, Phys. Rev. D 76, 024016 (2007).   DOI
16 M. Visser, Nucl. Phys. B 328, 203 (1989).   DOI
17 M. Visser, Lorenzian Wormholes (AIP Press, 1995).
18 G. T. Horowitz and v. E. Hubeny, Phys. Rev. D 62, 024027 (2000).   DOI