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ON THE GEOMETRY OF VECTOR BUNDLES

WITH FLAT CONNECTIONS
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Abstract. Let E → M be an arbitrary vector bundle of rank k over a

Riemannian manifold M equipped with a fiber metric and a compatible
connection DE . R. Albuquerque constructed a general class of (two-

weights) spherically symmetric metrics on E. In this paper, we give a
characterization of locally symmetric spherically symmetric metrics on

E in the case when DE is flat. We study also the Einstein property on

E proving, among other results, that if k ≥ 2 and the base manifold
is Einstein with positive constant scalar curvature, then there is a 1-

parameter family of Einstein spherically symmetric metrics on E, which

are not Ricci-flat.

Introduction and main results

In the framework of Riemannian geometry, many special kinds of vector
bundles have been considered and extensively studied, such as the cotangent
bundle or the tangent bundle the literature of whose is very rich. Indeed, a
wide range of interesting works have been published on the geometry of tangent
bundles endowed with special types of metrics (Sasaki, Cheeger-Gromoll, . . . )
or more generally with g-natural metrics (cf. [1–3], [7]). For the general case of
an arbitrary vector bundle, to the best of our knowledge, the situation becomes
substantially different (cf. [5], [6]).

Let (E, π,M) be a vector bundle equipped with a fiber metric h and a con-
nection DE compatible with h. Classically, the total space E, as a Riemannian
manifold, have been “naturally” equipped with the metric π∗g ⊕ π?h. More
recently, in [4], R. Albuquerque considered a more general class of two-weights
metrics with the weight functions depending on the fibre norm of E, i.e., metrics
of the form

g̃ = e2ϕ1π∗g ⊕ e2ϕ2π?h,

where ϕ1, ϕ2 are smooth scalar functions on E depending only of the norm
r = h(e, e) for e ∈ E, and smooth at r = 0 on the right. He called such metrics

Received October 16, 2018; Revised March 1, 2019; Accepted March 8, 2019.
2010 Mathematics Subject Classification. 53C07, 53C24, 53C25.
Key words and phrases. vector bundle, spherically symmetric metric, curvatures, Einstein

manifold, local symmetry.

c©2019 Korean Mathematical Society

1219



1220 M. T. K. ABBASSI AND I. LAKRINI

spherically symmetric metrics. In this work we shall deal with this class of
metrics, and we will study some problems of heredity and rigidity with respect
to the base metric. Firstly, we shall prove that every spherically symmetric
metric g̃ on E has the following hereditary properties:

Theorem 1. Let g̃ be a spherically symmetric metric on a vector bundle
(E, π,M). If the manifold (E, g̃) is flat, or of constant sectional curvature,
or of constant scalar curvature, or an Einstein manifold, respectively, then the
manifold (M, g) possesses the same property.

In the rest of the paper, we shall assume that dimM ≥ 2 and that the
connection DE is flat. At first, we shall give a characterization of the local
symmetry of (E, g̃). More precisely, we have:

Theorem 2. Let g̃ be a spherically symmetric metric on a vector bundle
(E, π,M) of rank k ≥ 2, equipped with a fiber metric h and a flat connec-
tion DE compatible with h. Then (E, g̃) is locally symmetric if and only if the
following conditions hold

i) ϕ1 is constant;
ii) either ϕ2 is constant or ϕ2(r) = − ln(r + c) for all r ∈ R+, for a

constant c > 0;
iii) (M, g) is locally symmetric.

In particular, (E, g̃) is of constant sectional curvature if and only if ϕ1 and
ϕ2 are constant and (M, g) is of constant sectional curvature.

As concerns the constant sectional curvature property, we have the following
rigidity result:

Theorem 3. Let g̃ be a spherically symmetric metric on a vector bundle
(E, π,M) of rank k ≥ 2, equipped with a fiber metric h and a flat connec-
tion DE compatible with h. Then (E, g̃) is of constant sectional curvature if
and only if ϕ1 and ϕ2 are constant and (M, g) is flat.

In this case, (E, g̃) is also flat.

Then, we will prove that the locally symmetric metrics on E obtained in
Theorem 2 are also Einstein metrics, provided that (M, g) is a locally symmetric
Einstein manifold. More precisely, we have:

Theorem 4. Let (M, g) be a locally symmetric Einstein manifold of positive
constant scalar curvature and (E, π,M) be a vector bundle of rank k ≥ 2,
equipped with a fiber metric h and a flat connection DE compatible with h.
Then there is a 1-parameter family of locally symmetric Einstein metrics, which
are not Ricci-flat.

If we assume that k ≥ 3 and we consider spherically symmetric metrics
such that ϕ1 is constant (in particular if we require π to be a Riemannian
submersion), then we shall prove that the only Einstein spherically symmetric
metrics on E are those of the family of Theorem 4 (Proposition 10).
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Finally, concerning the sectional curvatures, we shall prove that the property
of having a bounded sectional curvature is hereditary and that this not as rigid
as the case of constant sectional curvature. Indeed we shall give an example
where ϕ1 and ϕ2 are not necessarily constant, and where the sectional curvature
of (E, g̃) is bounded if and only if that of (M, g) is bounded.

1. Preliminaries

Unless otherwise stated, the Einstein summation convention is used through-
out the paper. Let (M, g) be a Riemannian manifold, ∇ its Levi-Civita connec-
tion, R its curvature tensor, and Ric its Ricci curvature tensor. Let (E, π,M)
be a vector bundle equipped with a connection DE . Assume h is a fiber metric
on E and that DE is compatible with h, i.e., DEh = 0.

The connection DE allows the splitting of the tangent bundle

TE = H⊕ V,
where V is the vertical sub-bundle defined as V = ∪e∈EVeE, with VeE =
ker(dπ)e is the vertical subspace, which is canonically identified with the pull-
back vector bundle π?E → E, and H is the horizontal sub-bundle with respect
to the connection DE which is also naturally isomorphic to the pullback vector
bundle π∗TM → E. Then

H⊕ V = TE ' π∗TM ⊕ π?E.
The latter splitting gives rise to a splitting of vector fields of E: If Z ∈ X(E),

then Z = ZH + ZV , ZH being the horizontal part and ZV the vertical part.

Remark 1. Hereafter, we shall use the identification of the vertical (resp. the
horizontal) sub-bundle V → E (resp.H → E) with the pull-back bundle π?E →
E (resp. π∗TM → E).

We consider the following tautological section of the vertical sub-bundle
defined by ξe = e ∈ π?E. It is easy to see that ξ satisfies the following result.

Lemma 1. For all X ∈ X(E) we have

(π?DE)Xξ = XV .

We consider the scalar function r =‖ ξ ‖2E= h(ξ, ξ). So dr = 2ξ[ where the
‘[’ is taken with respect to h. As a consequence, we have:

Lemma 2. Let f be a smooth real scalar function. Then, for any horizontal
(resp. vertical) vector XH (resp. Y V ) on E, we have

i) XH(f(r)) = 0;
ii) Y V (f(r)) = 2f ′(r)ξ[(Y V ).

Clearly, E inherits “naturally”, from the metrics g and h, the Riemannian
metric π∗g⊕π?h, which we denote for the sake of simplicity by 〈 , 〉. Throughout
this paper, we will use the following other notations:
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Notations 1. (1) The norm with respect to the metric 〈 , 〉 is denoted by
‖ ‖.

(2) The ‘[’ is taken with respect to 〈 , 〉, in such a way that, for X =
XH +XV ∈ TE, we have ξ[(X) = ξ[(XV ). If we restrict ourselves to
the vertical distribution on E, the ‘[’ in ξ[ is no other than that with
respect to the fiber-metric h.

(3) For X,Y ∈ TeE, e ∈ E (resp. X,Y ∈ X(E)), we denote by (X∧Y ) the
endomorphism on TeE (resp. the (1, 1)-tensor field on E), given by

(X ∧ Y )Z = 〈X,Z〉Y − 〈Y,Z〉X
for all Z ∈ TeE (resp. Z ∈ X(E)).

(4) For all X,Y, Z, T ∈ TeE (resp. X(E)), we denote

〈X ∧ Y, Z ∧ T 〉 = 〈X,Z〉〈Y, T 〉 − 〈X,T 〉〈Y,Z〉
so that ‖X ∧ Y ‖2 := 〈X ∧ Y,X ∧ Y 〉 = ‖X‖2‖Y ‖2 − 〈X,Y 〉2, which
is exactly the squared area of the parallelogram in TeE constituted by
the vectors X and Y .

Now, we endow the manifold E with a class of Riemannian metrics (see [4])
given by

(1.1) g̃ = e2ϕ1π∗g ⊕ e2ϕ2π?h,

where ϕ1, ϕ2 are smooth scalar functions on E depending only of r and smooth
at r = 0 on the right, i.e., ϕi, ϕ

′
i = ∂ϕi

∂r , ϕ′′i , . . . exist and are continuous at
r = 0. Explicitly, for all e ∈ E, we have g̃e(X

H
1 , X

H
2 ) = e2ϕ1g(dπe(X

H
1 ), dπe(X

H
2 )), XH

1 , X
H
2 ∈ He,

g̃e(X
H , Y V ) = 0, XH ∈ He, Y V ∈ Ve,

g̃e(Y
V
1 , Y V2 ) = e2ϕ2π?h(Y V1 , Y V2 ), Y V1 , Y V2 ∈ Ve.

We have a connection D∗∗ = π∗∇⊕π?DE on E which is clearly metric with
respect to g̃ for ϕ1 = ϕ2 = 0. Moreover its torsion is given, in the general
setting, by:

Proposition 1 (See [4]). Let X,Y ∈ X(E). Then

(1) dπ(TD
∗∗

(X,Y )) = 0.
(2) (TD

∗∗
(X,Y ))V = π?RE(X,Y )ξ, where RE is the curvature of DE .

When the connection DE is flat, D∗∗ is torsion-free. But it’s not metric with
respect to g̃. As it was pointed out by R. Albuquerque in [4], we can derive
from a torsion-free connection D∗∗ which is metric with respect to g̃ as follows:

We consider D̃ = D∗∗ + C with C ∈ Ω0(S2(T ∗E)⊗ TE) such that

CXY = a(ξ[(X)Y H + ξ[(Y )XH) + b(ξ[(X)Y V + ξ[(Y )XV )

+ [c1〈XH , Y H〉+ c2〈XV , Y V 〉]ξ

for all X = XH +XV , Y = Y H + Y V ∈ X(E). Here, S2(T ∗E) denotes the set
of symmetric (0, 2)-tensor fields on E.
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Proposition 2 (See [4]). The linear connection D̃ on the Riemannian manifold
E is a metric connection if and only if{

a = 2ϕ′1, c1 = −2ϕ′1e
2(ϕ1−ϕ2),

b = 2ϕ′2, c2 = −2ϕ′2.

So, by choosing the coefficients a, b, c1, c2 of Proposition 2, we get a met-
ric connection with respect to g̃ which is torsion-free. Thus the Levi-Civita
connection of the metric g̃, when DE is flat, is given by

∇̃XY = D∗∗X Y + CXY

for all vector fields X,Y on E.

Remarks 1. From now on, we will suppose the following:

(1) E is endowed with a metric g̃ of the form (1.1);
(2) Unless otherwise stated, the functions ϕ1, ϕ2 and their successive

derivatives are evaluated at r =‖ ξ ‖2E .

Thus, it is easy to see that:

Proposition 3. Assume that DE is flat. Let XH and Y H (resp. ZV and TV )
be two horizontal (resp. vertical) vector fields on E. Then

(1) ∇̃XHY H = (π∗∇)XH Y H − 2ϕ′1e
2(ϕ1−ϕ2)〈XH , Y H〉ξ;

(2) ∇̃XHZV = (π?DE)XHZV + 2ϕ′1ξ
[(ZV )XH ;

(3) ∇̃ZV XH = 2ϕ′1ξ
[(ZV )XH ;

(4) ∇̃XH ξ = 2rϕ′1X
H ;

(5) ∇̃TV ZV = π?DE
TV Z

V + 2ϕ′2(ξ[(TV )ZV + ξ[(ZV )TV − 〈TV , ZV 〉ξ);
(6) ∇̃TV ξ = (1 + 2rϕ′2)TV .

The curvature of the manifold (E, g̃) is computed in [4]:

Proposition 4. Assume that DE is flat, and let X,Y, Z ∈ X(E). Then the
curvature tensor of (E, g̃) is given by:

1. R̃(XH , Y H)ZH = π∗R(XH , Y H)ZH + 4r(ϕ′1)2e2(ϕ1−ϕ2)(XH ∧ Y H)ZH ;

2. R̃(XH , Y H)ZV = 0;

3. R̃(XH , Y V )ZH = e2(ϕ1−ϕ2)〈XH , ZH〉
[
4(ϕ′′1 + (ϕ′1)2 − 2ϕ′1ϕ

′
2)ξ[(Y V )ξ

+ 2(2rϕ′1ϕ
′
2 + ϕ′1)Y V

]
;

4. R̃(XH , Y V )ZV =
[
4(2ϕ′1ϕ

′
2 − (ϕ′1)2 − ϕ′′1)ξ[(Y V )ξ[(ZV )

− 2(2rϕ′1ϕ
′
2 + ϕ′1)〈Y V , ZV 〉

]
XH ;

5. R̃(XV , Y V )ZH = 0;

6. R̃(XV , Y V )ZV = 4(ϕ′′2 − (ϕ′2)2)
[
ξ[(ZV )(XV ∧ Y V )ξ

− 〈XV ∧Y V, ξ ∧ ZV 〉ξ
]
+4(ϕ′2+r(ϕ′2)2)(XV ∧Y V )ZV .
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2. On the heredity of some geometric properties on the vector
bundles

Our purpose, in this section, is to prove Theorem 1. It was proven in [4]
that the curvature tensor, the Ricci tensor and the scalar curvature, restricted
to the zero section of the vector bundle (E, π,M), are given by:

Proposition 5 ([4]). Let us denote OM the zero section of (E, π,M), and let
x ∈M and o ∈ OM such that π(o) = x. Then, for all XH , Y H , ZH ,WH ∈ Ho,
we have

(1) R̃o(X
H , Y H , ZH ,WH) = e2ϕ1(0)〈π∗Rx(XH , Y H)ZH ,WH〉M ,

(2) R̃ico(X
H , Y H) = Ricx(dπ(XH), dπ(Y H))

− 2kϕ′1(0)e2(ϕ1−ϕ2)(0)〈XH , Y H〉M ,
(3) S̃o = e−2ϕ1(0)Sx + 4ke−2ϕ2(0)((1− k)ϕ′2(0)− nϕ′1(0)),

where R̃ic and S̃ (resp. Ric and S) denote the Ricci tensor and the scalar
curvature of (E, g̃) (resp. (M, g)).

Furthermore, we have the following result concerning the sectional curva-
tures.

Proposition 6. For all {XH , Y H} ⊆ Ho an orthonormal system, we have

K̃o(X
H , Y H) = e−2ϕ1(0)Kx(dπ(XH), dπ(Y H)),

where K̃ (resp. K) denote the sectional curvature of (E, g̃) (resp. (M, g)).

Proof. By the first equation of Proposition 5, we have

K̃o(X
H , Y H) = R̃o(X

H , Y H , ZH ,WH)

= e2ϕ1(0)〈π∗Rx(XH , Y H)ZH ,WH〉M
= e−2ϕ1(0)Kx(dπ(XH), dπ(Y H))

because
‖XH ∧ Y H‖2g̃ = e4ϕ1‖XH ∧ Y H‖2.

�

Proof of Theorem 1. Follows from Propositions 5 and 6. �

3. Vector bundles with flat connections

In this section, we shall deal with vector bundles with flat connections, en-
dowed with a spherically symmetric metric of the form (1.1). As a consequence
of Theorem 1, the properties of being flat, of constant sectional curvature,
of constant scalar curvature or Einstein are hereditary on any vector bundle
endowed with a spherically symmetric metric. We shall investigate these prop-
erties and other geometrical properties to treat the converse problem, i.e., to
study sufficient conditions to have such properties on a vector bundle (E, g̃)
with flat connection. Our purpose would be to classify (even partially) metrics
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of the form (1.1) on (E, g̃) having a prescribed geometric property. In many
cases, we will obtain some rigidity results.

3.1. Locally symmetric spherically symmetric metrics on vector bun-
dles

Our purpose is to prove Theorem 2. For this, we need some technical formu-
las and some intermediate results. Long but routine calculation, using Lemma
2 and Propositions 3 and 4, gives the following.

Proposition 7. Let e ∈ E, XH , Y H , ZH , TH ∈ He and XV , Y V , ZV , TV ∈ Ve.
Then

i)
(
∇̃TH R̃

)
(XH , Y H)ZH

= (π∗∇THπ∗R)(XH , Y H)ZH)− 2ϕ′1e
2(ϕ1−ϕ2)

[
π∗R(XH , Y H , ZH , TH)

− 2e2(ϕ1−ϕ2)
(

2r(ϕ′′1 − ϕ′1ϕ′2) + ϕ′1

)
〈XH ∧ Y H , ZH ∧ TH〉

]
ξ;

ii)
(
∇̃TH R̃

)
(XH , Y V )ZV

= 4ϕ′1e
2(ϕ1−ϕ2) [2(r(ϕ′′2 − ϕ′1ϕ′2) + ϕ′2)− ϕ′1)] 〈XH , TH〉(ξ ∧ Y V )ZV ;

iii)
(
∇̃TH R̃

)
(XV , Y V )ZV

= 4ϕ′1
[
−2r(ϕ′′2 − (ϕ′2)2) + ϕ′1(1 + 2rϕ′2)

]
〈XV ∧ Y V , ξ ∧ ZV 〉TH ;

iv)
(
∇̃TV R̃

)
(XV , Y V )ZV

= − 4(ϕ′′2 − (ϕ′2)2)(1 + 2rϕ′2)
[
〈XV ∧ Y V , TV ∧ ZV 〉ξ

+ 〈XV ∧ Y V , ξ ∧ ZV 〉TV − 2ξ[(TV )(XV ∧ Y V )ZV

− ξ[(ZV )(XV ∧ Y V )TV − 〈TV , ZV 〉(XV ∧ Y V )ξ
]

+ 8
[
ϕ
(3)
2 − 2ϕ′2ϕ

′′
2 − 4(ϕ′′2 − (ϕ′2)2)ϕ′2

]
ξ[(TV )

[
ξ[(ZV )(XV ∧ Y V )ξ

− 〈XV ∧ Y V , ξ ∧ ZV 〉ξ
]
.

Proof of Theorem 2. Suppose that (E, g̃) is locally symmetric. Let e ∈ E such
that r = ‖e‖2h 6= 0. Taking at first XV = ZV = TV = ξe and 0 6= Y V ⊥ ξe, in
the fourth formula of Proposition 7, we obtain

0 = r2
{

2(ϕ′′2 − (ϕ′2)2)(1 + 2rϕ′2) + r
[
ϕ
(3)
2 − 2ϕ′2ϕ

′′
2 − 4(ϕ′′2 − (ϕ′2)2)ϕ′2

]}
Y V ,

which gives, by virtue of Y V 6= 0,

(3.1) r(ϕ
(3)
2 − 2ϕ′2ϕ

′′
2) + 2(ϕ′′2 − (ϕ′2)2) = 0

on R∗+ and by continuity on R+. Putting ψ = ϕ′′2 − (ϕ′2)2, equation (3.1) can

be written in the form rψ′ + 2ψ = 0, whose general solution is ψ = A
r2 , where

A ∈ R. Since ϕ2 is C∞ on R+, so is ψ, and consequently A = 0, i.e., ψ = 0. It
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follows that ϕ′′2 − (ϕ′2)2 = 0. Then, by regularity considerations, it is easy to
see that either ϕ′2 vanishes identically on R+ or ϕ′2(r) = − 1

c+r for all r ∈ R+,
where c ∈ R∗+ is a constant.

Case 1: ϕ′2 = 0 identically. In this case, the second equation of Proposition
7 becomes

(3.2)
(
∇̃TH R̃

)
(XH , Y V )ZV = −4(ϕ′1)2e2(ϕ1−ϕ2)〈XH , TH〉(ξ ∧ Y V )ZV .

Putting in (3.2) 0 6= TH = XH and 0 6= Y V = ZV ⊥ ξe, we have

4(ϕ′1)2e2(ϕ1−ϕ2)‖XH‖2‖Y V ‖2ξ2 = 0,

and consequently ϕ′1 = 0.
Case 2: ϕ′2(r) = − 1

c+r for all r ∈ R+, where c ∈ R+ is a constant. In this
case, the third equation of Proposition 7 becomes

(3.3)
(
∇̃TH R̃

)
(XV , Y V )ZV = 4(ϕ′1)2

c− r
c+ r

〈XV ∧ Y V , ξ ∧ ZV 〉TH .

Putting in (3.3) 0 6= XV = ZV ⊥ Y V = ξe, and supposing that TH 6= 0, we
have by local symmetry

0 = r(ϕ′1)2
c− r
c+ r

.

We deduce that ϕ′1 vanishes identically on R+ \ {0, c}, and by continuity on
R+.

In both cases, using the first equation of Proposition 7 and the fact that
ϕ′1 = 0, we deduce from ∇̃TH R̃(XH , Y H)ZH = 0 that (M, g) is also locally
symmetric.

Conversely suppose we have i), ii) and iii) of Theorem 2. Then ϕ′1 = 0
and ϕ′′2 − (ϕ′2)2 = 0. Substituting into i), iii) and iv) of Proposition 7, we find

respectively (∇̃TH R̃)(XH , Y H)ZH = (π∗∇THπ∗R)(XH , Y H)ZH) = 0, by local

symmetry of (M, g), and (∇̃TH R̃)(XV , Y V )ZV = (∇̃TV R̃)(XV , Y V )ZV = 0.
On the other hand, substituting from ϕ′1 = 0 into Proposition 4, we find

R̃(XH , Y H)ZV = R̃(XH , Y V )ZH = R̃(XH , Y V )ZV = R̃(XV , Y V )ZH = 0.

We deduce that ∇̃R̃ = 0, which completes our proof. �

Remark 2. It is worth mentioning that, if we restrict ourselves to functions
defined only on R∗+ instead of R+, then the solution ψ = A

r2 of the differential
equation rψ′+ 2ψ = 0 found in the previous proof, with A 6= 0, gives solutions
of equation (3.1). Indeed, if 0 6= A ≤ 1

4 , the functions of the form

(3.4) ϕ2(r) = ln(arα) for all r ∈ R∗+,

where α = −1±
√
1−4A
2 and a > 0 are solutions of (3.1).

If we consider the “slit” vector bundle E∗ := E \OM of E, where OM is the
zero section of E, and if we extend the notion of spherically symmetric metrics
to E∗ (considering the functions ϕ1 and ϕ2 defined and smooth only on R∗+),
then spherically symmetric metrics on E∗, whose weight functions are given
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by a constant ϕ1 and a ϕ2 of the form (3.4), could give interesting geometric

situations, although such functions don’t annihilates
(
∇̃TV R̃

)
(XV , Y V )ZV

identically, so that E∗ is not locally symmetric as well.

3.2. Ricci curvature

We shall be interested in the Ricci curvature of (E, g̃) and the existence of
Einstein metrics. For this, let e ∈ E and x = π(e). We consider an orthonormal
basis {bi; i = 1, . . . , n} of (TxM, gx) and we denote by bhi the horizontal lift
of bi to E at e, with respect to the flat connection DE , i = 1, . . . , n. Let
{ep; p = 1, . . . , k} be an orthonormal basis of (Ex, hx) and denote evp = π?ep,
p = 1, . . . , k. If we put

(3.5) Ei = e−ϕ1bhi and En+p = e−ϕ2evp; i = 1, . . . , n, p = 1, . . . , k,

then {EI ; I = 1, . . . , n + p} is an orthonormal basis of (TeE, g̃e). Using this
basis, we can compute the Ricci tensor of (E, g̃), as follows: for any X,Y ∈ TeE,
we have

R̃ic(X,Y ) =

n+p∑
I=1

g̃(R̃(X,EI)EI , Y ).

Simple computations, using Proposition 4, give:

Proposition 8. The Ricci curvature of (E, g̃) at an arbitrary point e ∈ E is
totally characterized by

1. R̃ic(XH , Y H) = Ric(X,Y )− 4e2(ϕ1−ϕ2)
[k

2
ϕ′1

+ r
[
ϕ′′1 + n(ϕ′1)2 + (k − 2)ϕ′1ϕ

′
2

]]
g(X,Y ),

2. R̃ic(XH , ZV ) = R̃ic(ZV , XH) = 0,

3. R̃ic(ZV , TV ) = −
[
2n(2rϕ′1ϕ

′
2 + ϕ′1) + 4(k − 1)(ϕ′2 + r(ϕ′2)2)

+ 4r(ϕ′′2 − (ϕ′2)2)
]
〈ZV , TV 〉 −

[
4n(ϕ′′1 + (ϕ′1)2 − 2ϕ′1ϕ

′
2)

+ 4(k − 2)(ϕ′′2 − (ϕ′2)2)
]
ξ[(ZV )ξ[(TV )

for all XH , Y H ∈ He and ZV , TV ∈ Ve, where Ric is the Ricci tensor of
(M, g), X = (dπ)eX

H and Y = (dπ)eY
H .

Now, we shall analyse the formulas of the previous proposition and examine
the existence of Einstein spherically symmetric metrics.

Theorem 5. (E, g̃) is an Einstein manifold with constant µ if and only if

(a) (M, g) is also an Einstein manifold with constant λ,

(b) 2e−2ϕ2

[
n(2rϕ′1ϕ

′
2+ϕ′1)+2(k−1)(ϕ′2+r(ϕ′2)2)+2r(ϕ′′2−(ϕ′2)2)

]
= −µ,

(c) n(ϕ′′1 + (ϕ′1)2 − 2ϕ′1ϕ
′
2) + (k − 2)(ϕ′′2 − (ϕ′2)2) = 0,

(d) e2(ϕ1−ϕ2)
[
4r
[
ϕ′′1 + n(ϕ′1)2] + ϕ′1[2k + (k − 2)rϕ′2]

]
+ µe2ϕ2

]
= λ.
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Proof. Suppose that (E, g̃) is an Einstein manifold with constant µ, i.e., R̃ic =
µg̃. Then by 1. of Proposition 8, we have Ric(X,Y ) = λg(X,Y ) for all x ∈M
and X,Y ∈ TxM , where λ is the function defined, on E, by

(3.6) λ = e2(ϕ1−ϕ2)
[
4r
[
ϕ′′1 + n(ϕ′1)2] + ϕ′1[2k + (k − 2)rϕ′2]

]
+ µe2ϕ2

]
.

Since Ric and g depend only on x, λ will depend only on x, i.e., λ is constant
on each fiber of E. But it is obvious, from (3.6), that λ depends only on r.
Therefore λ is constant, so (M, g) is an Einstein manifold, and (3.6) is exactly
condition (d) of the theorem. On the other hand, taking 0 6= ZV = TV ⊥ ξe
in 3. of Proposition 8, we obtain by virtue of R̃ic(ZV , TV ) = µg̃(ZV , TV ) =
µe2ϕ2〈ZV , TV 〉,

−2
[
n(2rϕ′1ϕ

′
2 + ϕ′1) + 2(k − 1)(ϕ′2 + r(ϕ′2)2) + 2r(ϕ′′2 − (ϕ′2)2)

]
= µe2ϕ2 ,

which gives condition (b) of the theorem. Now, 3. of Proposition 8 becomes,
by virtue of (b) of the theorem

(3.7)
[
4n(ϕ′′1 + (ϕ′1)2 − 2ϕ′1ϕ

′
2) + 4(k − 2)(ϕ′′2 − (ϕ′2)2)

]
ξ[(ZV )ξ[(TV ) = 0

for all ZV , TV ∈ Ve. Taking, in (3.7), ZV = TV = ξe, we obtain the equality
(c) of the theorem on R∗+, and by continuity on R+.

The converse follows immediately from Proposition 8. �

Generally speaking, it is not easy to solve the system of differential equations
under conditions (b), (c) and (d) of Theorem 5. We shall then investigate the
special situations when ϕ1 or ϕ2 are constant.

Case 1: ϕ2 is constant. In this case we have:

Proposition 9. If ϕ2 is constant, then (E, g̃) is Einstein if and only if (E, g̃)
and (M, g) are Ricci-flat, and ϕ1 is constant.

Proof. Since ϕ′2 = 0, then we get, from (b) of Theorem 5, ϕ′1 = −µe2ϕ2

2n . Substi-
tuting into (c) of Theorem 5, we obtain µ = 0, and consequently ϕ′1 = 0. Hence
(d) of Theorem 5 becomes λ = µe2ϕ1 = 0. The converse follows immediately
from Theorem 5. �

Case 2: ϕ1 is constant.
Subcase 2.1: for k 6= 2, (c) of Theorem 5 is equivalent to ϕ′′2 = (ϕ′2)2, whose
solutions are given by ϕ2 is constant and

(3.8) ϕ2(r) = − ln(r + c) for all r ∈ R+, where c > 0 is a constant.

On the other hand, (b) of Theorem 5 is equivalent to

(3.9) 4(1− k)ϕ′2(1 + rϕ′2) = µe2ϕ2 .

If k = 1, then by the preceding equation we have µ = 0, i.e., (E, g̃) is
Ricci-flat, and we deduce from (d) of Theorem 5 that λ = 0.

If k 6= 1, then we have two eventualities:
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• For ϕ2 constant, we obtain µ = λ = 0.
• For ϕ2 given by (3.8), equation (3.9) gives c = µ

4(k−1) . In particular

µ > 0.

Subcase 2.1: for k = 2, it is easy to check that the function ϕ2 given by (3.8)
satisfy conditions (b), (c) and (d) of Theorem 5.

Summarizing, we have just proved the following.

Proposition 10. Let (M, g) be an Einstein manifold with constant λ ≥ 0. Let
(E, π,M) be a vector bundle of rank k, equipped with a fiber metric h and a flat
connection DE compatible with h and consider a spherically symmetric metric
g̃ on E, such that ϕ1 is constant.

(a) If k = 1, then (E, g̃) is Einstein if and only if it is Ricci-flat if and
only if (M, g) is Ricci-flat and

either ϕ2 is constant,
or ϕ2(r) = − ln(r + c) for all r ∈ R+, where c > 0 is a constant.

(b) If k ≥ 3, then (E, g̃) is Einstein with constant µ if and only if
either ϕ2 is constant and (M, g) and (E, g̃) are Ricci-flat.
or µ = λe2ϕ1 > 0 and ϕ2(r) = − ln(r + µ

4(k−1) ) for all r ∈ R+.

(c) If k 6= 1 and ϕ2(r) = − ln(r + c) for all r ∈ R+, with c = λ
4(k−1)e

−2ϕ1 ,

then (E, g̃) is an Einstein manifold, which is not Ricci flat unless (M, g)
is Ricci flat.

Proof of Theorem 4. Follows from Proposition 10 and Theorem 2, taking the

family of metrics g̃a := aπ∗g + 16(k−1)2a2
(4(k−1)ar+λ)2π

∗h, parameterized by a > 0. The

Ricci tensor of g̃a is given by R̃ic = λ
a g̃a, and its scalar curvature is constant

equal to (n+k)λ
a > 0. �

Notice that the metric g̃a depends on the rank k of E. But if we impose the
solutions of the system in Theorem 5 not to depend on the dimension n of M
and the rank k of E, then the only solutions are ϕ1 and ϕ2 are constant.

3.3. Scalar curvature

Fixing e ∈ E and taking the orthonormal basis {EI , I = 1, . . . , n + k} of

TeE, defined by (3.5), the scalar curvature S̃ of (E, g̃) at e is given by

S̃e =

n+k∑
I=1

R̃ic(EI , EI).

A straightforward computation using Proposition 8 yields:

Proposition 11. Let S denote the scalar curvature of (M, g). Then the scalar
curvature of (E, g̃) is given by

S̃ =e−2ϕ1S + e−2ϕ2

{
− 4n

[
r
(
2ϕ′′1 + (n+ 1)(ϕ′1)2 + 2(k − 2)ϕ′1ϕ

′
2

)
+ kϕ′1

]
+ 4(1− k)

[
r
(
2ϕ′′2 + (k − 2)(ϕ′2)2

)
+ kϕ′2

]}
.
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From Theorem 1, if (E, g̃) has constant scalar curvature S̃0, then the scalar
curvature S of (M, g) is constant. In some special cases we have the converse.

Proposition 12. Assume that ϕ1 and ϕ2 are constant. Then S̃ = e−2ϕ1S,
thus S̃ is constant on each fiber of E.

Proof. Proposition 11, for ϕ′1 = ϕ′2 = 0, gives S̃ = e−2ϕ1S. �

Concerning the sign of the scalar curvature of (E, g̃), we can state the fol-
lowing result.

Proposition 13. Assume that ϕ1 (resp. ϕ2) is constant and ϕ2 and ϕ′2 (resp.

ϕ1 and ϕ′1) are increasing functions. If S is negative, then S̃ is negative.

Proof. If ϕ1 (resp. ϕ2) is constant, then Proposition 11 gives the following
equation

S̃ = e−2ϕ1S − 4(k − 1)
[
r
(
2ϕ′′2 + (k − 2)(ϕ′2)2

)
+ kϕ′2

]
(resp. S̃ = e−2ϕ1S − 4n

[
r
(
2ϕ′′1 + (n+ 1)(ϕ′1)2

)
+ kϕ′1

]
)

which implies that, if ϕ′2, ϕ
′′
2 ≥ 0 (resp. ϕ′1, ϕ

′′
1 ≥ 0) and S is negative, then S̃

is negative. �

3.4. Sectional curvatures

Using the formulas of curvature, an easy computation gives:

Proposition 14. Let X,Y ∈ TeE be such that {X,Y } is an orthonormal
system of vectors, and set X = XH +XV , Y = Y H + Y V . Then

K̃(X,Y ) = e2ϕ1
[
K((dπ)eX, (dπ)eY )− 4r(ϕ′1)2e2ϕ1−2ϕ2

]
‖XH ∧ Y H‖2

+ 4(ϕ′′1 + (ϕ′1)2 − 2ϕ′1ϕ
′
2)e2ϕ1

[
2ξ[(XV )ξ[(Y V )〈XH , Y H〉

− (ξ[(Y V ))2‖XH‖2 − (ξ[(XV ))2‖Y H‖2
]

+ 2ϕ′1(1 + rϕ′2)e2ϕ1

[
2〈XV , Y V 〉〈XH , Y H〉

− ‖Y V ‖2‖XH‖2 − ‖XV ‖2‖Y H‖2
]

+ 4(ϕ′′2 − (ϕ′2)2)e2ϕ2
[
2ξ[(XV )ξ[(Y V )〈XV , Y V )ξ,XV )〉

− ξ[(XV )2‖Y V ‖2 − ξ[(Y V )2‖XV ‖2
]

− 4ϕ′2(1 + rϕ′2)e2ϕ2‖XV ∧ Y V ‖2,
where K is the sectional curvature of (M, g).

Note that the orthonormality of {X,Y } is equivalent to the following system:

(3.10)

 e2ϕ1〈XH , Y H〉 = −e2ϕ2〈XV , Y V 〉,
e2ϕ1‖XH‖2 + e2ϕ2‖XV ‖2 = 1,
e2ϕ1‖Y H‖2 + e2ϕ2‖Y V ‖2 = 1.
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Proof of Theorem 3. Suppose that (E, g̃) is of constant sectional curvature K̃.
Then it is locally symmetric. We claim that ϕ2 is constant. If not, by Theorem
2, ϕ2 is constant or ϕ2(r) = − ln(r + c) for all r ∈ R+, for a constant c > 0.
We have also ϕ1 is constant. Using Proposition 14, we have

(3.11) K̃(X,Y )=e2ϕ1K((dπ)eX, (dπ)eY )‖XH ∧ Y H‖2+
4c

(r+c)4
‖XV ∧ Y V ‖2

for any orthonormal system of vectors {X,Y } in TeE. If we suppose X hor-
izontal and Y vertical in (3.11), in such a way that XV = Y H = 0, then we

have K̃ = 0. On the other hand, taking both X and Y vertical in (3.11), in
such a way that (by orthonormality) ‖XV ∧ Y V ‖2 = e−4ϕ2 = (r+ c)4, then we
have c = 0, which is a contradiction. We conclude that ϕ2 is constant, so by
(3.11) we have

(3.12) K̃(X,Y ) = e2ϕ1K((dπ)eX, (dπ)eY )‖XH ∧ Y H‖2.

Using the same arguments as before, we obtain K̃ = 0 and then the sectional
curvature of (M, g) is also constant equal to 0.

The converse in the Theorem is trivial. �

In the remaining of this section, we will be interested in the property for
the sectional curvature of (E, g̃) to be bounded. We start with the following
theorem, whose proof follows by simple computations from Proposition 4.

Theorem 6. If the sectional curvature of (E, g̃) is bounded, then that of (M, g)
is also bounded.

Proof. From Proposition 14, for any orthonormal system {XH , Y H} in He, we
have

(3.13) K̃(XH , Y H) = e−2ϕ1K((dπ)e(X
H), (dπ)e(Y

H))− 4r(ϕ′1)2e−2ϕ2 ,

which, restricted to the zero section, yields

K̃(XH , Y H) = e−2ϕ1(0)K((dπ)0x(XH), (dπ)0x(Y H)),

where ox is the zero vector of Ex, x ∈ M . Using the isomorphism (dπ)0x :

H0x →Mx and the fact that K̃ is bounded, we deduce that K is bounded. �

The converse of Theorem 6 is not true in the general setting, but we shall
prove that it remains true in some situations.

Proposition 15. Assume ϕ2 ≥ 0 is constant and take ϕ1(r) = arctan(r). If
the sectional curvature of (M, g) is bounded, then the sectional curvature of
(E, g̃) is also bounded.

Proof. We assume that K is bounded and |K| ≤ K0. Let X,Y ∈ TeE be such
that {X,Y } is an orthonormal system of vectors, and set X = XH + XV ,
Y = Y H + Y V . Under the condition ϕ′2 = 0, we find that

K̃(X,Y ) = e2ϕ1
[
K((dπ)eX, (dπ)eY )− 4r(ϕ′1)2e2ϕ1−2ϕ2

]
‖XH ∧ Y H‖2
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+ 4(ϕ′′1 + (ϕ′1)2)e2ϕ1

[
2ξ[(XV )ξ[(Y V )〈XH , Y H〉

− (ξ[(Y V ))2‖XH‖2 − (ξ[(XV ))2‖Y H‖2
]

+ 2ϕ′1e
2ϕ1

[
2〈XV , Y V 〉〈XH , Y H〉

− ‖Y V ‖2‖XH‖2 − ‖XV ‖2‖Y H‖2
]
.

Using the orthonormality conditions (3.10), we have

(3.14) ‖XH ∧ Y H‖2 = e−4ϕ1(g̃(XH , XH)g̃(Y H , Y H)− g̃(XH , Y H)2).

By virtue of (1.1), using equalities 1., 2., 3., the Cauchy-Schwartz inequality
with respect to g̃ and the fact that we have 0 ≤ ϕ1 ≤ π

2 , since ϕ1(r) = arctan(r),
we conclude that

(3.15) e2ϕ1‖XH ∧ Y H‖2 ≤ 2e−2ϕ1 ≤ 2.

Using the Cauchy-Schwartz inequality with respect to h and g̃ and the fact
that ϕ1, ϕ2 ≥ 0, we prove easily that

(3.16) |2ξ[(XV )ξ[(Y V )〈XH , Y H〉−(ξ[(Y V ))2‖XH‖2−(ξ[(XV ))2‖Y H‖2| ≤ 4r2,

(3.17) |2〈XV , Y V 〉〈XH , Y H〉 − ‖Y V ‖2‖XH‖2 − ‖XV ‖2‖Y H‖2| ≤ 4,

and

(3.18) e2ϕ1−2ϕ2 ≤ eπ.

So, by virtue of (3.15)–(3.18), we have:

|K̃(X,Y )| ≤2
(
K0 + 4r|ϕ′1|2eπ

)
+ 16(|ϕ′′1 + (ϕ′1)2|)eπr2 + 8|ϕ′1|eπ.(3.19)

Since ϕ1(r) = arctan(r), we have 0 ≤ ϕ1 ≤ π
2 , ϕ′1(r) = 1

1+r2 and ϕ′′1(r) =
−2r

(1+r2)2 . Thus, ϕ′1 ≤ 1, rϕ′1 ≤ 1
2 and |(ϕ′1)2 + ϕ′′1 | ≤ 2. Furthermore, ϕ′′1 +

(ϕ′1)2 = −2r
(1+r2)2 + 1

(1+r2)2 = 1−2r
(1+r2)2 , thus r2(|ϕ′′1 + (ϕ′1)2|) ≤ r2(1+2r)

(1+r2)2 which is

a bounded function since r2(1+2r)
(1+r2)2 → 0 when r → +∞. Denoting by K1 the

bound of the function r 7→ r2(|ϕ′′1 + (ϕ′1)2|), we conclude that

|K̃| ≤ 2K0 + 4eπ(3 + 4K1),

which means that K̃ is bounded. �
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