DOI QR코드

DOI QR Code

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui (Laboratory of Algebra, Geometry and Arithmetic Department of Mathematics Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdallah) ;
  • Lakrini, Ibrahim (Laboratory of Algebra, Geometry and Arithmetic Department of Mathematics Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdallah)
  • Received : 2018.10.16
  • Accepted : 2019.03.08
  • Published : 2019.09.30

Abstract

Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

Keywords

References

  1. M. T. K. Abbassi, g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds, Note Mat. 28 (2009), [2008 on verso], suppl. 1, 6-35.
  2. M. T. K. Abbassi, Metriques Naturelles Riemanniennes sur le Fibre tangent a une variete Riemannienne, Editions Universitaires Europeennes, Saarbrucken, Germany, 2012.
  3. M. T. K. Abbassi and M. Sarih, On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl. 22 (2005), no. 1, 19-47. https://doi.org/10.1016/j.difgeo.2004.07.003
  4. R. Albuquerque, On vector bundle manifolds with spherically symmetric metrics, Ann. Global Anal. Geom. 51 (2017), no. 2, 129-154. https://doi.org/10.1007/s10455-016-9528-y
  5. I. Belegradek and G. Wei, Metrics of positive Ricci curvature on vector bundles over nilmanifolds, Geom. Funct. Anal. 12 (2002), no. 1, 56-72. https://doi.org/10.1007/s00039-002-8236-x
  6. M. Benyounes, E. Loubeau, and C. M. Wood, Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl. 25 (2007), no. 3, 322-334. https://doi.org/10.1016/j.difgeo.2006.11.010
  7. O. Kowalski and M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. A classification, Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1-29.