• Title/Summary/Keyword: Sasakian

Search Result 177, Processing Time 0.019 seconds

EXISTENCE OF PROPER CONTACT CR PRODUCT AND MIXED FOLIATE CONTACT CR SUBMANIFOLDS OF E2m+1(-3)

  • Kim, Hyang Sook;Pak, Eunmi;Pak, Jin Suk
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • The first purpose of this paper is to study contact CR submanifolds of Sasakian manifolds and investigate some properties concernig with ${\phi}$-holomorphic bisectional curvature. The second purpose is to show an existence theorem of mixed foliate proper contact CR submanifolds in the standard Sasakian space form $E^{2m+1}$(-3) with constant ${\phi}$-sectional curvature -3.

Lightlike Hypersurfaces of an Indefinite Nearly Trans-Sasakian Manifold with an (ℓ, m)-type Connection

  • Lee, Chul Woo;Lee, Jae Won
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.223-238
    • /
    • 2020
  • We study a lightlike hypersurface M of an indefinite nearly trans-Sasakian manifold ${\bar{M}}$ with an (ℓ, m)-type connection such that the structure vector field ζ of ${\bar{M}}$ is tangent to M. In particular, we focus on such lightlike hypersurfaces M for which the structure tensor field F is either recurrent or Lie recurrent, or such that M itself is totally umbilical or screen totally umbilical.

THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

  • Kim, Eui Chul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.431-440
    • /
    • 2013
  • Let ($M^3$, $g$) be a 3-dimensional closed Sasakian spin manifold. Let $S_{min}$ denote the minimum of the scalar curvature of ($M^3$, $g$). Let ${\lambda}^+_1$ > 0 be the first positive eigenvalue of the Dirac operator of ($M^3$, $g$). We proved in [13] that if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$, then ${\lambda}^+_1$ satisfies ${\lambda}^+_1{\geq}{\frac{S_{min}+6}{8}}$. In this paper, we remove the restriction "if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$" and prove $${\lambda}^+_1{\geq}\;\{\frac{S_{min}+6}{8}\;for\;-\frac{3}{2}<S_{min}{\leq}30, \\{\frac{1+\sqrt{2S_{min}}+4}{2}}\;for\;S_{min}{\geq}30$$.

$zeta$-null geodesic gradient vector fields on a lorentzian para-sasakian manifold

  • Matsumoto, Koji;Mihai, Ion;Rosca, Radu
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.17-31
    • /
    • 1995
  • A Lorentzian para-Sasakian manifold M$(\varphi, \zeta, \eta, g)$ (abr. LPS-manifold) has been defined and studied in [9] and [10]. On the other hand, para-Sasakian (abr. PS)-manifolds are special semi-cosympletic manifolds (in the sense of [2]), that is, they are endowed with an almost cosympletic 2-form $\Omega$ such that $d^{2\eta}\Omega = \psi(d^\omega$ denotes the cohomological operator [6]), where the 3-form $\psi$ is the associated Lefebvre form of $\Omega$ ([8]). If $\eta$ is exact, $\psi$ is a $d^{2\eta}$-exact form, the manifold M is called an exact Ps-manifold. Clearly, any LPS-manifold is endowed with a semi-cosymplectic structure (abr. SC-structure).

  • PDF

ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • KIM, JEONG-SIK;TRIPATHI MUKUT MANI;CHOI, JAE-DONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.713-724
    • /
    • 2005
  • We prove that a (k, $\mu$)-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, $\mu$)­manifolds with C-Bochner curvature tensor B satisfying B $(\xi,\;X)\;\cdot$ S = 0, where S is the Ricci tensor, are classified. N(K)-contact metric manifolds $M^{2n+1}$, satisfying B $(\xi,\;X)\;\cdot$ R = 0 or B $(\xi,\;X)\;\cdot$ B = 0 are classified and studied.

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Kumara, Huchchappa Aruna;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.639-651
    • /
    • 2020
  • Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.

PSEUDO-HERMITIAN MAGNETIC CURVES IN NORMAL ALMOST CONTACT METRIC 3-MANIFOLDS

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1269-1281
    • /
    • 2020
  • In this article, we show that a pseudo-Hermitian magnetic curve in a normal almost contact metric 3-manifold equipped with the canonical affine connection ${\hat{\nabla}}^t$ is a slant helix with pseudo-Hermitian curvature ${\hat{\kappa}}={\mid}q{\mid}\;sin\;{\theta}$ and pseudo-Hermitian torsion ${\hat{\tau}}=q\;cos\;{\theta}$. Moreover, we prove that every pseudo-Hermitian magnetic curve in normal almost contact metric 3-manifolds except quasi-Sasakian 3-manifolds is a slant helix as a Riemannian geometric sense. On the other hand we will show that a pseudo-Hermitian magnetic curve γ in a quasi-Sasakian 3-manifold M is a slant curve with curvature κ = |(t - α) cos θ + q| sin θ and torsion τ = α + {(t - α) cos θ + q} cos θ. These curves are not helices, in general. Note that if the ambient space M is an α-Sasakian 3-manifold, then γ is a slant helix.

C-parallel Mean Curvature Vector Fields along Slant Curves in Sasakian 3-manifolds

  • Lee, Ji-Eun;Suh, Young-Jin;Lee, Hyun-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.1
    • /
    • pp.49-59
    • /
    • 2012
  • In this article, using the example of C. Camci([7]) we reconfirm necessary sufficient condition for a slant curve. Next, we find some necessary and sufficient conditions for a slant curve in a Sasakian 3-manifold to have: (i) a $C$-parallel mean curvature vector field; (ii) a $C$-proper mean curvature vector field (in the normal bundle).

A CLASSIFICATION OF (κ, μ)-CONTACT METRIC MANIFOLDS

  • Yildiz, Ahmet;De, Uday Chand
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.327-339
    • /
    • 2012
  • In this paper we study $h$-projectively semisymmetric, ${\phi}$-pro-jectively semisymmetric, $h$-Weyl semisymmetric and ${\phi}$-Weyl semisym- metric non-Sasakian ($k$, ${\mu}$)-contact metric manifolds. In all the cases the manifold becomes an ${\eta}$-Einstein manifold. As a consequence of these results we obtain that if a 3-dimensional non-Sasakian ($k$, ${\mu}$)-contact metric manifold satisfies such curvature conditions, then the manifold reduces to an N($k$)-contact metric manifold.

LOXODROMES AND TRANSFORMATIONS IN PSEUDO-HERMITIAN GEOMETRY

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.817-827
    • /
    • 2021
  • In this paper, we prove that a diffeomorphism f on a normal almost contact 3-manifold M is a CRL-transformation if and only if M is an α-Sasakian manifold. Moreover, we show that a CR-loxodrome in an α-Sasakian 3-manifold is a pseudo-Hermitian magnetic curve with a strength $q={\tilde{r}}{\eta}({\gamma}^{\prime})=(r+{\alpha}-t){\eta}({\gamma}^{\prime})$ for constant 𝜂(𝛄'). A non-geodesic CR-loxodrome is a non-Legendre slant helix. Next, we prove that let M be an α-Sasakian 3-manifold such that (∇YS)X = 0 for vector fields Y to be orthogonal to ξ, then the Ricci tensor 𝜌 satisfies 𝜌 = 2α2g. Moreover, using the CRL-transformation $\tilde{\nabla}^t$ we fine the pseudo-Hermitian curvature $\tilde{R}$, the pseudo-Ricci tensor $\tilde{\rho}$ and the torsion tensor field $\tilde{T}^t(\tilde{S}X,Y)$.