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EXISTENCE OF PROPER CONTACT CR PRODUCT

AND MIXED FOLIATE CONTACT CR SUBMANIFOLDS

OF E2m+1(−3)

Hyang Sook Kim, Eunmi Pak, and Jin Suk Pak

Abstract. The first purpose of this paper is to study contact CR sub-

manifolds of Sasakian manifolds and investigate some properties con-
cernig with φ-holomorphic bisectional curvature. The second purpose

is to show an existence theorem of mixed foliate proper contact CR sub-

manifolds in the standard Sasakian space form E2m+1(−3) with constant
φ-sectional curvature −3.

1. Introduction

A submanifold Mn+1 of a Sasakian manifold M̄2m+1 with structure tensors
(φ, ξ, η, g) is called a contact CR submanifold if there exists two differentiable
distributions D and D⊥ on M such that

(a) TM = D⊕D⊥⊕Span{ξ} and (b) φDx = Dx, φD⊥
x ⊂ TxM⊥ for each x ∈M,

where D,D⊥ and Span{ξ} are mutually orthogonal to each other. A contact
CR submanifold is said to be proper if neither dimD = 0 nor dimD⊥ = 0. A
contact CR submanifold is said to be mixed foliate if

(a) D ⊕ Span{ξ} is integrable and (b) h(X,Y ) = 0, X ∈ D, Y ∈ D⊥,

where h is the second fundamental form of M . A contact CR submanifold M
is called a contact CR product if

(a)D⊕Span{ξ} is integrable and (b)M is locally a Riemannain productM>×M⊥,

where M>and M⊥ are leafs of D ⊕ Span{ξ} and D⊥, respectively.
In 1986, Bejancu[1] proved that there is no proper contact CR product in

Sasakian space form M̄(c) with constant φ-sectional curvature c < −3.
The first purpose of this paper is to study contact CR submanifolds of

Sasakian manifolds and to investigate some properties concernig with φ-holomorphic
bisectional curvature H̄B and prove Theorem A which yields Bejancu’s result[1].
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The second purpose is to show Theorem B as an existence theorem of mixed
foliate proper contact CR submanifolds in the standard Sasakian space form
E2m+1(−3) with constant φ-sectional curvature c = −3.

Theorem A. Let M̄ be a Sasakian manifold with H̄B < −2. Then every con-
tact CR product in M̄ is either an invariant submanifold or an anti-invariant
submanifold. In other words, there exists no proper contact CR product in
any Sasakian manifold with H̄B < −2.

Theorem B. Let M be a mixed foliate proper contact CR submanifold of the
standard Sasakian space form E2m+1(−3). If

h(X,Y ) ∈ φD⊥, X, Y ∈ D⊥,

then for a point x ∈M there exists a unique complete totally geodesic invariant
submanifold M ′ of E2m+1(−3) such that x ∈M ′ and TxM

′ = TxM ⊕ φD⊥
x .

2. Submanifolds of Sasakian manifold

Let M̄ be a (2m+ 1)-dimensional Sasakian manifold with structure tensors
(φ, ξ, η, g). Then, by definition(cf. [2], [3], [7], [8], [9]), the structure tensors
satisfy

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)
(2.1)

for any vector fields X, Y tangent to M̄ . Moreover, denoting by ∇̄ the operator
of covariant differentiation with respect to the metric g on M̄ , M̄ also satisfy

∇̄Xξ = φX, (∇̄Xφ)Y = R̄(X, ξ)Y = −g(X,Y )ξ + η(Y )X, (2.2)

where R̄ denotes the Riemannian curvature tensor of M̄ .
Let M be an (n+ 1)-dimensional submanifold isometrically immersed in M̄

tangent to the structure vector field ξ. We denote by the same g the Riemannian
metric tensor field induced on M from that of M̄ . The operator of covariant
differentiation with respect to the induced connection on M will be denoted by
∇. Then the Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h(X,Y ), ∇̄XV = −AVX +∇⊥
XV (2.3)

for any vector fields X,Y tangent to M and any vector field V normal to M ,
where ∇⊥ denotes the operator of covariant differentiation with respect to the
connection induced in the normal bundle TM⊥ of M . h and AV appeared in
(2.3) are called the second fundamental form of M and the shape operator in
the direction of V , respectively and they are related by

g(h(X,Y ), V ) = g(AVX,Y ). (2.4)

If the second fundamental form h vanishes identically, then M is said to be
totally geodesic. The covariant derivative ∇Xh of h is defined to be

(∇Xh)(Y, Z) = ∇⊥
Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ) (2.5)
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and the covariant derivative ∇XA of A is defined to be

(∇XA)V Y = ∇X(AV Y )−A∇⊥
XV

Y −AV∇XY.

Let R and R⊥ be the Riemannian curvature tensor field of M and the curvature
tensor field of the normal bundle TM⊥ of M , respectively. Then we have
equations of Gauss, Codazzi and Ricci respectively

g(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W )−g(h(X,W ), h(Y,Z))+g(h(Y,W ), h(X,Z)),
(2.6)

(R̄(X,Y )Z)⊥ = (∇Xh)(Y,Z)− (∇Y h)(X,Z), (2.7)

g(R̄(X,Y )U, V ) = g(R⊥(X,Y )U, V ) + g([AV , AU ]X,Y ) (2.8)

for any tangent vector fields X,Y, Z,W and any normal vector fields U, V
to M , where (R̄(X,Y )Z)⊥ denotes the normal component of R̄(X,Y )Z(cf.
[1], [4], [8], [9]).

For any vector field X tangent to M , we put

φX = PX + FX, (2.9)

where PX is the tangential part and FX the normal part of φX. Then P is
an endomorphism on the tangent bundle TM and F is a normal bundle valued
1-form on TM . Similarly, for any vector field V normal to M , we put

φV = tV + fV, (2.10)

where tV is the tangential part and fV the normal part of φV . Then f is an
endomorphism of the normal bundle TM⊥, and t is a tangent bundle valued 1-
form on TM⊥. For any vector fields X,Y tangent to M , g(φX, Y ) = g(PX, Y )
because of (2.9) and consequently g(PX, Y ) is skew-symmetric. Similarly, for
any vector fields U, V normal to M , (2.10) yields g(φV,U) = g(fV, U) and
hence g(fV, U) is also skew-symmetric. From (2.9) and (2.10) we also have the
relation between F and t such that

g(FX, V ) = −g(X, tV ) (2.11)

for any tangent vector field X and any normal vector field V to M . Since the
structure vector field ξ is assumed to be tangent to M , it follows immediately
from (2.1) and (2.9) that

Pξ = 0, F ξ = 0. (2.12)

Now applying φ to (2.9) and using (2.1), (2.9) and (2.10), we have

P 2 = −I − tF + η ⊗ ξ, FP + fF = 0. (2.13)

Similarly, applying φ to (2.10) and using (2.1), (2.9) and (2.10), we find

Pt+ tf = 0, f2 = −I − Ft. (2.14)

On the other hand, from (2.2) and (2.3), it follows that

∇̄Xξ = φX = ∇Xξ + h(X, ξ)
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for any vector field X tangent to M , and this combined with (2.3), (2.9) and
(2.10) implies

∇Xξ = PX, FX = h(X, ξ), AV ξ = −tV (2.15)

where V is a vector field normal to M .
Differentiating (2.9) covariantly along M and using (2.2) and (2.3), we can

easily obtain

(∇XP )Y = −g(X,Y )ξ + η(Y )X +AFYX + th(X,Y ), (2.16)

(∇XF )Y = fh(X,Y )− h(X,PY ) (2.17)

for any tangent vector fieldsX,Y , where we have defined (∇XP )Y and (∇XF )Y
respectively by

(∇XP )Y = ∇X(PY )− P (∇XY ), (∇XF )Y = ∇⊥
X(FY )− F (∇XY ).

Similarly, for any vector field X tangent to M and any vector field V normal
to M , we have from (2.10)

(∇Xt)V = AfVX − PAVX, (∇Xf)V = −FAVX − h(X, tV ) (2.18)

with the aid of (2.2) and (2.3), where we have defined (∇Xt)V and (∇Xf)V
respectively by

(∇Xt)Y = ∇X(tV )− t(∇⊥
XV ), (∇Xf)V = ∇⊥

X(fV )− f(∇⊥
XV )

(cf. [1], [8]).

3. Contact CR submanifolds in Sasakian manifolds

Let M̄ be a real (2m + 1)-dimensional Sasakian manifold with structure
tensors (φ, ξ, η, g).

Definition 1. Let M be a real (n+ 1)-dimensional submanifold isometrically
immersed in M̄ tangent to the structure vector field ξ. Then M is called a
contact CR submanifold (or semi-invariant submanifold (cf. [2])) of M̄ if there
exist two differentiable distributions D and D⊥ on M satisfying the following
conditions:

(a) TM = D ⊕D⊥ ⊕ Span{ξ},
where D,D⊥ and Span{ξ} are mutually orthogonal to each other,

(b) the distribution D is invariant by φ, that is, φDx = Dx for each x ∈M ,
and

(c) the distribution D⊥ is anti-invariant by φ, that is, φD⊥
x ⊂ TxM

⊥ for
each x ∈M .

It is well known (cf. [1], [3]) that for a contact CR submanifold of a Sasakian
manifold the following relations are established

FP = 0, fF = 0, tf = 0, P t = 0. (3.1)
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Remark 1. Let M be a contact CR submanilfold of a Sasakian manifold M̄ .
If dimD⊥ = 0 (resp. dimD = 0), then M is an invariant(resp. anti-invariant)
submanifold of M̄ . If dimD⊥ = dimTM⊥, then M is a generic submanifold
of M̄ . In particular, a contact CR submanifold is said to be proper if neither
dimD = 0 nor dimD⊥ = 0.

For a contact CR submanifold M of M̄ , (2.2) and (2.3) give

∇̄X(φZ) = −AφZX +∇⊥
XφZ,

and
∇̄X(φZ) = −g(X,Z)ξ + η(Z)X + φ(∇XZ) + φh(X,Z) (3.2)

for X,Z tangent to M Thus we obtain

φ(∇XZ) + φh(X,Z)− g(X,Z)ξ = −AφZX +∇⊥
XφZ (3.3)

for X tangent to M and Z ∈ D⊥.
From now on we shall give some basic lemmas for later use.

Lemma 3.1. Let M be a contact CR submanifold of M̄ . Then we have

g(∇Y Z,X) = g(φAφZY,X),(3.4)

AFZW = AFWZ,(3.5)

AFNX = −ANPX(3.6)

for any vector field Y tangent to M , X ∈ D, Z,W ∈ D⊥, and N ∈ ν.

Proof. Applying φ to (3.3), we obtain

∇Y Z + h(Y, Z)− η(∇Y Z)ξ = φAφZY − φ∇⊥
Y φZ,

and consequently

g(∇Y Z + h(Y,Z)− η(∇Y Z)ξ,X) = g(φAφZY,X) + g(∇⊥
Y φZ, φX).

Thus we have (3.4).
Next, we will show (3.5). For Z,W ∈ D⊥, PZ = PW = 0 and hence, for

any vector field Y tangent to M

g((∇Y P )Z,W ) = g(∇Y (PZ),W )− g(P (∇Y Z),W ) = 0.

Therefore, (2.16) implies

0 = g((∇Y P )Z,W )

= g(−g(Y, Z)ξ + η(Z)Y +AφZY + th(Y, Z),W )

= g(Y,AFZW )− g(h(Y,Z), FW ),

which then implies (3.5).
On the other hand, it clear that from (2.3) and (3.2)

g(h(PX, Y ), N) = g(∇̄Y (PX), N)− g(∇Y PX,N)

= g(P (∇YX), N) + g(Fh(Y,X), N)

= −g(h(Y,X), FN),
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that is,
g(ANPX, Y ) = −g(AFNX,Y ),

which yields (3.6). �

Lemma 3.2. Let M be as in Lemma 3.1. Then for Z,W ∈ D⊥ we have

∇⊥
WφZ −∇⊥

ZφW ∈ φD⊥. (3.7)

Proof. For N ∈ ν and Z,W ∈ D⊥, it follows from (2.2) and (2.3) that

g(AφNZ,W ) = g(−ANZ +∇⊥
ZN,φW )

= g(∇⊥
ZN,φW )

= −g(N,∇⊥
ZφW ),

and consequently

g(N,∇⊥
WφZ −∇⊥

ZφW ) = −g(AφNW,Z) + g(AφNZ,W ) = 0.

Thus we obtain (3.7). �

From Lemma 3.1 and 3.2 we have some fundamental lemmas without proof

Lemma 3.3. ([1], [3]) The anti-invariant distribution D⊥ of a contact CR
submanifold in a Sasakian manifold is integrable.

For the invariant distribution D we have

Lemma 3.4. ([1], [3]) Let M be as in Lemma 3.1. Then D ⊕ Span{ξ} is
integrable if and only if

g(h(X,φY ), φZ) = g(h(φX, Y ), φZ) (3.8)

for X,Y ∈ D and Z ∈ D⊥.

Lemma 3.5. ([1], [3]) For a contact CR submanifold M in a Sasakian manifold
M̄ , the leaf M⊥ of D⊥ is totally geodesic in M if and only if

g(h(D,D⊥), φD⊥) = 0. (3.9)

4. Proof of Theorem A

A Sasakian space form M̄(c) is a Sasakian manifold of constant φ-sectional
curvature c. The curvature tensor of a Sasakian space form M̄(c) is given by

R̄(X,Y )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }

− c− 1

4
{η(Y )η(Z)X − η(X)η(Z)Y + g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ − g(φY,Z)φX + g(φX,Z)φY + 2g(φX, Y )φZ},

(4.1)

for any X,Y, Z ∈ TM .
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According to Lemma 3.3, we can see that every contact CR submanifold
M of a Sasakian manifold is foliated by anti-invariant submanifolds. Now we
shall study the problem when a contact CR submanifold M is a Riemannian
product of an invariant submanifold and an anti-invariant submanifold(for the
definition, cf. [9]).

Definition 2. A contact CR submanifold M of a Sasakian manifold M̄ is
called a contact CR product if the distribution D ⊕ Span{ξ} is integrable and
M is locally a Riemannain product M> ×M⊥, where M> and M⊥ are leafs
of D ⊕ Span{ξ} and D⊥, respectively.

First we give a characterization of contact CR product as follows.

Lemma 4.1. ([1]) A contact CR submanifold M of a Sasakian manifold M̄ is
a contact CR product if and only if

∇YX ∈ D ⊕ Span{ξ} (4.2)

for Y ∈ TM and X ∈ D.

From Lemma 4.1 we have the following lemma.

Lemma 4.2. ([1], [2]) Let M be a contact CR submanifold of a Sasakian
manifold M̄ . Then the following assertions are equivalent to each other:

(i) M is a contact CR product ;
(ii) the fundamental tensors of Weingarten satisfy

AφD⊥D = 0; (4.3)

(iii) the second fundamental form of M satisfies

th(X,Y ) = 0, for X ∈ D, Y ∈ TM ; (4.4)

(iv) the second fundamental form of M satisfies

h(φX, Y ) = φh(X,Y ), for X ∈ D, Y ∈ TM. (4.5)

On the other hand, the φ-holomorphic bisectional curvature of X ∧ Z is
defined by H̄B(X,Z) = g(R̄(X,φX)φZ,Z) for any unit vector fields X,Z ∈
TM(for the definition, cf. [6])

Lemma 4.3. Let M be a contact CR product of a Sasakian manifold M̄ . Then
for any unit vectors X ∈ D and Z ∈ D⊥ we have

H̄B(X,Z) = 2‖h(X,Z)‖2 − 2g(X,X)g(Z,Z),

where H̄B(X,Z) is the φ-holomorphic bisectional curvature of X ∧ Z.
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Proof. Let M be a contact CR product of M̄ . By (2.5) and Codazzi equation
(2.7) we obtain

g(R̄(X,φX)Z, φZ) = g((∇Xh)(φX,Z)− (∇φXh)(X,Z), φZ)

= g(∇⊥
Xh(φX,Z)− h(∇X(φX), Z)− h(φX,∇XZ)

−∇⊥
φXh(X,Z) + h(∇φXX,Z) + h(X,∇φXZ), φZ).

Hence, it is clear from (2.1), (4.3) and (4.5) that

g(R̄(X,φX)Z, φZ) = g(∇⊥
Xh(φX,Z)−∇⊥

φXh(X,Z), φZ)

− g(h(∇X(φX), Z), φZ) + g(h(∇φXX,Z), φZ).
(4.6)

First of all, from (3.3) and (4.3) it follows that

g(∇⊥
Xh(φX,Z)−∇⊥

φXh(X,Z), φZ)

= −g(h(φX,Z),∇⊥
XφZ) + g(h(X,Z),∇⊥

φXφZ)

= −g(h(φX,Z), φ(∇XZ) + φh(X,Z)) + g(h(X,Z), φ(∇φXZ) + φh(φX,Z)).

On the other hand, we get∇XZ ∈ D⊥ for Z ∈ D⊥ since M⊥ is totally geodesic,
that is, φ∇XZ ∈ φD⊥ and thus from (2.1), (3.9) and (4.5) it follows thta

g(∇⊥
Xh(φX,Z)−∇⊥

φXh(X,Z), φZ) = −2‖h(X,Z)‖2.

Next, from (2.15), (2.16), (4.4) and (4.5) we find

g(h(∇X(φX), Z), φZ) = g(h((∇XP )X + P (∇XX), Z), φZ)

= −g(X,X)g(h(ξ, Z), φZ) + g(h(P (∇XX), Z), φZ)

= −g(X,X)g(FZ, φZ)

= −g(X,X)g(Z,Z)

where φX = PX ∈ D for X ∈ D ⊕ Span{ξ} and φZ = FZ for Z ∈ D⊥. On
the other hand, we can put

∇φXX = (∇φXX)D + αξ,

where (∇φXX)D denotes the D-component of ∇φXX. In fact

α = g(∇φXX, ξ) = −g(∇φXξ,X) = −g(P (φX), X) = g(X,X)

and consequently

g(h(∇φXX,Z), φZ) = g(h((∇φXX)D, Z), φZ) + g(h(g(X,X)ξ, Z), φZ)

= g(X,X)g(h(ξ, Z), φZ)

= g(X,X)g(φZ, φZ)

= g(X,X)g(Z,Z).

Finally, from (4.6) we have

g(R̄(X,φX)Z, φZ) = −2‖h(X,Z)‖2 + g(X,X)g(Z,Z) + g(X,X)g(Z,Z)
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which implies

H̄B(X,Z) = 2‖h(X,Z)‖2 − 2g(X,X)g(Z,Z).

�

Proof of Theorem A. Now we suppose that H̄B(X,Z) < −2 for X ∈ D
and Z ∈ D⊥. Then Lemma 4.3 yields

‖h(X,Z)‖2 < 0,

which is a contradiction if dimD 6= 0 and dimD⊥ 6= 0. Thus we can see that
dimD = 0 or dimD⊥ = 0 and consequently Theorem A is established. �

Corollary 4.4. Let M̄ be a Sasakian manifold with H̄B > −2, and M a proper
contact CR product in M̄ . Then (1) M is not a generic submanifold, and (2)
h(D,D⊥) 6= 0; hence M is not totally geodesic in M̄ .

Proof. Suppose that M is a generic submanifold. Since dimD⊥ = dimTM⊥,
dimν = 0. On the other hand, from (4.3) we have

g(h(X,Z), φW ) = g(AφWX,Z) = 0

for X ∈ D and Z,W ∈ D⊥, that is, h(X,Z) ∈ ν. Since dimν = 0, h(X,Z) = 0.
It is a contradiction to H̄B > −2. Hence M is not a generic submanifold.

Since M̄ is a Sasakian manifold with H̄B > −2, dimD 6= 0 or dimD⊥ 6= 0.
Therefore h(D,D⊥) 6= 0. Hence h is non-zero tensor, M is not totally geodesic
in M̄ . �

Finally, we suppose that M is a contact CR product in a Sasakian space
form M̄(c). By using the curvature tensor of M̄(c), we find

R̄(X,φX)Z =
1

4
(1− c){2g(φX, φX)φZ}

=
1

2
(1− c)g(X,X)φZ

and consequently,

g(R̄(X,φX)Z, φZ) =
1

2
(1− c)g(X,X)g(φZ, φZ)

=
1

2
(1− c)g(X,X)g(Z,Z),

which implies
1

2
(1− c)g(X,X)g(Z,Z) = −H̄B(X,Z).

Thus for any unit vector fields X,Z tangent to M

c = 2H̄B(X,Z) + 1,

which together with Theorem A yields the following.
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Corollary 4.5. ([1], [2]) There exists no proper contact CR product in Sasakian
space form M̄(c) with c < −3.

5. Mixed foliate contact CR submanifolds of a Sasakian manifold

For a contact CR submanifold M of a Sasakian manifold M̄ , the distribution
D⊥ is completely integrable(cf. [1], [3]). Integrability of the distribution D ⊕
Span{ξ} is provided in Lemma 3.4.

Definition 3. A contact CR submanifold is said to be mixed foliate if
(d) the distribution D ⊕ Span{ξ} is integrable, and
(e) h(X,Y ) = 0 for any vector fields X ∈ D, Y ∈ D⊥.

Now we prepare some lemmas concerning mixed foliate contact CR subman-
ifolds of a Sasakian manifold for later use.

Lemma 5.1. For a mixed foliate contact CR submanifold of a Sasakian man-
ifold,

AVX ∈ D, X ∈ D ; AVX ∈ D⊥ ⊕ Span{ξ}, X ∈ D⊥ (5.1)

for any vector field V normal to D.

Proof. For X ∈ D and Y ∈ D⊥, the condition (e) implies

g(AVX,Y ) = g(h(X,Y ), V ) = 0,

which together with g(AVX, ξ) = g(h(X, ξ), V ) = g(FX, V ) = 0 yields the first
assertion of (5.1). The second assertion of (5.1) can be also derived from the
same reason. �

Lemma 5.2. For a mixed foliate contact CR submanifold M of a Sasakian
manifold,

AFXP + PAFX = 0, X ∈ D⊥. (5.2)

Proof. It is clear that, for any vector field X tangent to M ,

PX(= ∇Xξ) ∈ D (5.3)

by means of PY = 0 for any Y ∈ D⊥. Moreover, from (2.14), (2.15) and (3.1)
we get

PAFZξ = −PtFZ = tfFZ = 0. (5.4)

In order to prove (5.2), we first notice that

g(AFZPX, Y ) + g(PAFZX,Y ) = 0, X, Y ∈ D, Z ∈ D⊥ (5.5)

because of the condition (d) and (3.8). On the other hand, it follows from (5.1)
and (5.3) that AV PX ∈ D and PAVX ∈ D for X ∈ D. Hence we have

g(AV PX, Y ) + g(PAVX,Y ) = 0, X ∈ D, Y ∈ D⊥,

which together with (5.4) and (5.5) yields

AFZPX + PAFZX = 0, X ∈ D. (5.6)
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But, for X ∈ D⊥, it is clear that AV PX = 0 and PAVX = 0 because of (5.1),
thus from which together with (5.4) and (5.6) we have (5.2). �

Lemma 5.3. For a mixed foliate contact CR submanifold M of a Sasakian
manifold,

∇XY ∈ D⊥, X, Y ∈ D⊥ ; ∇XY ∈ D, X ∈ D⊥, Y ∈ D (5.7)

∇⊥
XφY ∈ φD⊥, ∇⊥

ξ φY ∈ φD⊥, X ∈ D, Y ∈ D⊥. (5.8)

Proof. For any vector field X tangent to M , it follows that

g(∇XY, ξ) = −g(∇Xξ, Y ) = −g(PX, Y ) = 0, Y ∈ D⊥

because of (2.15) and (5.3). In order to prove the first equation of (5.7), it
suffices to show that

g(∇XY,Z) = 0, X, Y ∈ D⊥, Z ∈ D. (5.9)

Since φDx = Dx, there exists W ∈ Dx such that Z = φW . Thus, for X,Y ∈
D⊥, it follows that

g(∇XY, Z) = g(∇XY, φW ) = −g(P∇XY,W ) = g((∇XP )Y,W )

because of PY = 0, from which together with (2.16) and (5.1), we can easily
obtain (5.9).

Since

g(∇XY, ξ) = −g(PX, Y ) = 0, X ∈ D⊥, Y ∈ D,

the second equation of (5.7) can be easily derived from the first equation of
(5.7). In fact, for X,Z ∈ D⊥ and Y ∈ D

g(∇XY,Z) = −g(∇XZ, Y ) = 0

because of the first equation of (5.7).
Next, we will prove (5.8). It is clear from the Weingarten formula (2.3) that

∇̄XφY = −AφYX +∇⊥
XφY, X ∈ D, Y ∈ D⊥. (5.10)

On the other hand, it follows from (2.3) that ∇̄XφY = (∇̄Xφ)Y + φ(∇XY +
h(X,Y )), thus from which together with (2.2) and the condition (e), we have

∇̄XφY = φ∇XY = φ((∇XY )D + (∇XY )D⊥), X ∈ D, Y ∈ D⊥. (5.11)

Comparing (5.10) with (5.11), we find

∇⊥
XφY = φ(∇XY )D⊥ ∈ φD⊥,

which completes the first equation of (5.8). The second equation of (5.8) can
be similarly derived. �
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6. Proof of Theorem B

In this section we specialize to the case of an ambient Sasakian space form
M̄(c) and let M be a mixed foliate contact CR submanifold of M̄(c).
We first prove

Theorem 6.1. If M is a mixed foliate proper contact CR submanifold of a
Sasakian space form M̄(c), then c ≤ 1.

Proof. Let M be a mixed foliate proper contact CR submanifold of a Sasakian
space form M̄(c). Then, for X,Y ∈ D and Z ∈ D⊥, we have

(∇Xh)(Y, Z)− (∇Y h)(X,Z) = h(X,∇Y Z)− h(Y,∇XZ) (6.1)

by means of the conditions (d) and (e).
If we take a vector field V normal to M such that V = FZ, i.e., Z = −φV =

−tV , then we have ∇Y Z = PAV Y − t∇⊥
Y V by means of (2.2), (2.3) and (5.1).

Since g(X, t∇⊥
Y V ) = 0 and g(ξ, t∇⊥

Y V ) = 0, t∇⊥
Y V ∈ D⊥ and consequently

h(X, t∇⊥
Y V ) = 0 because of the condition (e). Thus (6.1) implies

(∇Xh)(Y,Z)− (∇Y h)(X,Z) = h(X,PAV Y )− h(Y, PAVX),

which together with (3.8) and (5.2) yields

g((∇Xh)(Y,Z)− (∇Y h)(X,Z), V ) = −2g(h(X,AV PY ), V ) (6.2)

On the other hand, (2.7) and (4.1) yield

(∇Xh)(Y,Z)− (∇Y h)(X,Z) =
c− 1

2
g(X,PY )FZ. (6.3)

Comparing (6.2) with (6.3), we have

c− 1

4
g(X,PY )g(V, V ) = −g(h(X,AV PY ), V ).

Putting X = PY in this equation, we have

0 ≤ g(AV PY,AV PY ) = −c− 1

4
g(PY, PY )g(V, V ),

which completes our assertion since M is proper. �

For X,Y ∈ D and Z ∈ D⊥, it follows from (6.1) and (6.3) that

−c− 1

2
g(PX, Y )FZ = h(X,∇Y Z)− h(Y,∇XZ), (6.4)

from which, taking the inner product with FW ∈ φD⊥ and replacing X by
PX, we have

c− 1

2
g(X,Y )g(Z,W ) = g(AFWX,P∇Y Z)− g(AFWY,∇PXZ)

= −g(AFWX,AFZY )− g(AFWY,∇PXZ),
(6.5)

where we have used PZ = 0, the condition (e), (2.16) and (5.2). On the other
hand, for Y ∈ D and W ∈ D⊥, it is clear from (5.1) that AFWY ∈ D at each
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point x ∈ M . Thus, in order to compute g(AFWY,∇PXZ) more precisely, it
suffices to consider only D-component of ∇PXZ. In fact, (3.4) implies

g(∇PXZ,U) = g(AFZX,U)

for any U ∈ D and consequently

g(AFWY,∇PXZ) = g(AFWY,AFZX),

which and (6.5) give

−c− 1

2
g(X,Y )g(Z,W ) = g(AFWX,AFZY ) + g(AFZX,AFWY ) (6.6)

for X,Y ∈ D, Z,W ∈ D⊥.
On the other hand, for X,Y ∈ D and Z ∈ D⊥, it is clear from the condition

(d) and (5.8) that

R⊥(X,Y )FZ ∈ φD⊥,

which together with (2.8) and (4.1) implies

g([AFZ , AN ]X,Y ) = 0, X, Y ∈ D, Z ∈ D⊥, N ∈ (φD⊥)⊥, (6.7)

where (φD⊥)⊥ denotes the orthogonal complement of φD⊥ ⊂ TM⊥.
Next, taking the inner product with N ∈ (φD⊥)⊥ in (6.4) and replacing X

by PX, we can obtain by the same method as in (6.6) that

g(ANX,AFZY ) + g(AFZX,ANY ) = 0, X, Y ∈ D, Z ∈ D⊥, N ∈ (φD⊥)⊥.
(6.8)

Combining (6.7) with (6.8) and using (5.1), we have

AFZANX = 0, X ∈ D, Z ∈ D⊥, N ∈ (φD⊥)⊥ (6.9)

because of AFZANX ∈ D. Substituting ANX into (6.6) instead of X and using
(3.5) and (6.9), we have

(c− 1)g(h(X,Y ), N)g(Z,W ) = 0, X, Y ∈ D, Z,W ∈ D⊥, N ∈ (φD⊥)⊥.

Thus we have

Lemma 6.2. Let M be a mixed foliate proper contact CR submanifold of a
Sasakian space form M̄(c)(c < 1). Then

h(X,Y ) ∈ φD⊥, X, Y ∈ D.

Lemma 6.3. Let M be a mixed foliate proper contact CR submanifold of a
Sasakian space form M̄(c)(c < 1). If

h(X,Y ) ∈ φD⊥, X, Y ∈ D⊥,

then TxM⊕φD⊥
x is the first osculating space O1(M) = TxM⊕Span{h(X,Y )|X,Y ∈

TxM} at any point x ∈M .
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Proof. Owing to Lemma 6.2 and our assumption, it suffices to show that

φD⊥
x ⊂ {h(X,Y )| X,Y ∈ TxM}

at each point x ∈ M . Suppose that there exists a unit vector φZ ∈ φD⊥
x such

that
g(h(X,Y ), φZ) = 0

for any X,Y ∈ TxM . Then AFZX = 0 for any X ∈ TxM , which and (6.6)
yield

(c− 1)g(X,Y )g(Z,W ) = 0, X, Y ∈ D, Z,W ∈ D⊥.

Therefore if c < 1, then we have g(X,X)g(Z,Z) = 0, which is a contradiction
since M is proper. �

Combining Lemma 6.3 and the theorem([5, Theorem 3.3, p.329]) provided
by Funabashi, we have Theorem B.
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