EXISTENCE OF PROPER CONTACT $C R$ PRODUCT AND MIXED FOLIATE CONTACT $C R$ SUBMANIFOLDS OF $E^{2 m+1}(-3)$

Hyang Sook Kim, Eunmi Pak, and Jin Suk Pak

Abstract

The first purpose of this paper is to study contact $C R$ submanifolds of Sasakian manifolds and investigate some properties concernig with ϕ-holomorphic bisectional curvature. The second purpose is to show an existence theorem of mixed foliate proper contact $C R$ submanifolds in the standard Sasakian space form $E^{2 m+1}(-3)$ with constant ϕ-sectional curvature -3 .

1. Introduction

A submanifold M^{n+1} of a Sasakian manifold $\bar{M}^{2 m+1}$ with structure tensors (ϕ, ξ, η, g) is called a contact $C R$ submanifold if there exists two differentiable distributions \mathcal{D} and \mathcal{D}^{\perp} on M such that
(a) $T M=\mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \operatorname{Span}\{\xi\}$ and $(b) \phi \mathcal{D}_{x}=\mathcal{D}_{x}, \phi \mathcal{D}_{x}^{\perp} \subset T_{x} M^{\perp}$ for each $x \in M$, where $\mathcal{D}, \mathcal{D}^{\perp}$ and $\operatorname{Span}\{\xi\}$ are mutually orthogonal to each other. A contact $C R$ submanifold is said to be proper if neither $\operatorname{dim} \mathcal{D}=0$ nor $\operatorname{dim} \mathcal{D}^{\perp}=0$. A contact $C R$ submanifold is said to be mixed foliate if
(a) $\mathcal{D} \oplus \operatorname{Span}\{\xi\}$ is integrable and (b) $h(X, Y)=0, X \in \mathcal{D}, Y \in \mathcal{D}^{\perp}$, where h is the second fundamental form of M. A contact $C R$ submanifold M is called a contact $C R$ product if
(a) $\mathcal{D} \oplus \operatorname{Span}\{\xi\}$ is integrable and (b) M is locally a Riemannain product $M^{\top} \times M^{\perp}$, where M^{\top} and M^{\perp} are leafs of $\mathcal{D} \oplus \operatorname{Span}\{\xi\}$ and \mathcal{D}^{\perp}, respectively.

In 1986, Bejancu[1] proved that there is no proper contact $C R$ product in Sasakian space form $\bar{M}(c)$ with constant ϕ-sectional curvature $c<-3$.

The first purpose of this paper is to study contact $C R$ submanifolds of Sasakian manifolds and to investigate some properties concernig with ϕ-holomorphic bisectional curvature \bar{H}_{B} and prove Theorem A which yields Bejancu's result[1].

[^0]The second purpose is to show Theorem B as an existence theorem of mixed foliate proper contact $C R$ submanifolds in the standard Sasakian space form $E^{2 m+1}(-3)$ with constant ϕ-sectional curvature $c=-3$.

Theorem A. Let \bar{M} be a Sasakian manifold with $\bar{H}_{B}<-2$. Then every contact $C R$ product in \bar{M} is either an invariant submanifold or an anti-invariant submanifold. In other words, there exists no proper contact $C R$ product in any Sasakian manifold with $\bar{H}_{B}<-2$.
Theorem B. Let M be a mixed foliate proper contact $C R$ submanifold of the standard Sasakian space form $E^{2 m+1}(-3)$. If

$$
h(X, Y) \in \phi \mathcal{D}^{\perp}, X, Y \in \mathcal{D}^{\perp}
$$

then for a point $x \in M$ there exists a unique complete totally geodesic invariant submanifold M^{\prime} of $E^{2 m+1}(-3)$ such that $x \in M^{\prime}$ and $T_{x} M^{\prime}=T_{x} M \oplus \phi \mathcal{D}_{x}^{\perp}$.

2. Submanifolds of Sasakian manifold

Let \bar{M} be a $(2 m+1)$-dimensional Sasakian manifold with structure tensors (ϕ, ξ, η, g). Then, by definition(cf. [2], [3], [7], [8], [9]), the structure tensors satisfy

$$
\begin{align*}
& \phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad \eta(\phi X)=0, \quad \eta(\xi)=1, \\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi) \tag{2.1}
\end{align*}
$$

for any vector fields X, Y tangent to \bar{M}. Moreover, denoting by $\bar{\nabla}$ the operator of covariant differentiation with respect to the metric g on \bar{M}, \bar{M} also satisfy

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=\phi X, \quad\left(\bar{\nabla}_{X} \phi\right) Y=\bar{R}(X, \xi) Y=-g(X, Y) \xi+\eta(Y) X \tag{2.2}
\end{equation*}
$$

where \bar{R} denotes the Riemannian curvature tensor of \bar{M}.
Let M be an $(n+1)$-dimensional submanifold isometrically immersed in \bar{M} tangent to the structure vector field ξ. We denote by the same g the Riemannian metric tensor field induced on M from that of \bar{M}. The operator of covariant differentiation with respect to the induced connection on M will be denoted by ∇. Then the Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.3}
\end{equation*}
$$

for any vector fields X, Y tangent to M and any vector field V normal to M, where ∇^{\perp} denotes the operator of covariant differentiation with respect to the connection induced in the normal bundle $T M^{\perp}$ of $M . h$ and A_{V} appeared in (2.3) are called the second fundamental form of M and the shape operator in the direction of V, respectively and they are related by

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{2.4}
\end{equation*}
$$

If the second fundamental form h vanishes identically, then M is said to be totally geodesic. The covariant derivative $\nabla_{X} h$ of h is defined to be

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.5}
\end{equation*}
$$

and the covariant derivative $\nabla_{X} A$ of A is defined to be

$$
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{\nabla_{\frac{1}{X}} V} Y-A_{V} \nabla_{X} Y
$$

Let R and R^{\perp} be the Riemannian curvature tensor field of M and the curvature tensor field of the normal bundle $T M^{\perp}$ of M, respectively. Then we have equations of Gauss, Codazzi and Ricci respectively
$g(\bar{R}(X, Y) Z, W)=g(R(X, Y) Z, W)-g(h(X, W), h(Y, Z))+g(h(Y, W), h(X, Z))$,
for any tangent vector fields X, Y, Z, W and any normal vector fields U, V to M, where $(\bar{R}(X, Y) Z)^{\perp}$ denotes the normal component of $\bar{R}(X, Y) Z$ (cf. [1], [4], [8], [9]).

For any vector field X tangent to M, we put

$$
\begin{equation*}
\phi X=P X+F X, \tag{2.9}
\end{equation*}
$$

where $P X$ is the tangential part and $F X$ the normal part of ϕX. Then P is an endomorphism on the tangent bundle $T M$ and F is a normal bundle valued 1-form on $T M$. Similarly, for any vector field V normal to M, we put

$$
\begin{equation*}
\phi V=t V+f V, \tag{2.10}
\end{equation*}
$$

where $t V$ is the tangential part and $f V$ the normal part of ϕV. Then f is an endomorphism of the normal bundle $T M^{\perp}$, and t is a tangent bundle valued 1form on $T M^{\perp}$. For any vector fields X, Y tangent to $M, g(\phi X, Y)=g(P X, Y)$ because of (2.9) and consequently $g(P X, Y)$ is skew-symmetric. Similarly, for any vector fields U, V normal to $M,(2.10)$ yields $g(\phi V, U)=g(f V, U)$ and hence $g(f V, U)$ is also skew-symmetric. From (2.9) and (2.10) we also have the relation between F and t such that

$$
\begin{equation*}
g(F X, V)=-g(X, t V) \tag{2.11}
\end{equation*}
$$

for any tangent vector field X and any normal vector field V to M. Since the structure vector field ξ is assumed to be tangent to M, it follows immediately from (2.1) and (2.9) that

$$
\begin{equation*}
P \xi=0, \quad F \xi=0 . \tag{2.12}
\end{equation*}
$$

Now applying ϕ to (2.9) and using (2.1), (2.9) and (2.10), we have

$$
\begin{equation*}
P^{2}=-I-t F+\eta \otimes \xi, \quad F P+f F=0 . \tag{2.13}
\end{equation*}
$$

Similarly, applying ϕ to (2.10) and using (2.1), (2.9) and (2.10), we find

$$
\begin{equation*}
P t+t f=0, \quad f^{2}=-I-F t . \tag{2.14}
\end{equation*}
$$

On the other hand, from (2.2) and (2.3), it follows that

$$
\bar{\nabla}_{X} \xi=\phi X=\nabla_{X} \xi+h(X, \xi)
$$

for any vector field X tangent to M, and this combined with (2.3), (2.9) and (2.10) implies

$$
\begin{equation*}
\nabla_{X} \xi=P X, \quad F X=h(X, \xi), \quad A_{V} \xi=-t V \tag{2.15}
\end{equation*}
$$

where V is a vector field normal to M.
Differentiating (2.9) covariantly along M and using (2.2) and (2.3), we can easily obtain

$$
\begin{gather*}
\left(\nabla_{X} P\right) Y=-g(X, Y) \xi+\eta(Y) X+A_{F Y} X+t h(X, Y) \tag{2.16}\\
\left(\nabla_{X} F\right) Y=f h(X, Y)-h(X, P Y) \tag{2.17}
\end{gather*}
$$

for any tangent vector fields X, Y, where we have defined $\left(\nabla_{X} P\right) Y$ and $\left(\nabla_{X} F\right) Y$ respectively by

$$
\left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-P\left(\nabla_{X} Y\right), \quad\left(\nabla_{X} F\right) Y=\nabla_{X}^{\perp}(F Y)-F\left(\nabla_{X} Y\right)
$$

Similarly, for any vector field X tangent to M and any vector field V normal to M, we have from (2.10)

$$
\begin{equation*}
\left(\nabla_{X} t\right) V=A_{f V} X-P A_{V} X, \quad\left(\nabla_{X} f\right) V=-F A_{V} X-h(X, t V) \tag{2.18}
\end{equation*}
$$

with the aid of (2.2) and (2.3), where we have defined $\left(\nabla_{X} t\right) V$ and $\left(\nabla_{X} f\right) V$ respectively by

$$
\left(\nabla_{X} t\right) Y=\nabla_{X}(t V)-t\left(\nabla_{X}^{\perp} V\right), \quad\left(\nabla_{X} f\right) V=\nabla_{X}^{\perp}(f V)-f\left(\nabla_{X}^{\perp} V\right)
$$

(cf. [1], [8]).

3. Contact $C R$ submanifolds in Sasakian manifolds

Let \bar{M} be a real $(2 m+1)$-dimensional Sasakian manifold with structure tensors (ϕ, ξ, η, g).
Definition 1. Let M be a real $(n+1)$-dimensional submanifold isometrically immersed in \bar{M} tangent to the structure vector field ξ. Then M is called a contact CR submanifold (or semi-invariant submanifold (cf. [2])) of \bar{M} if there exist two differentiable distributions \mathcal{D} and \mathcal{D}^{\perp} on M satisfying the following conditions:
(a) $T M=\mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \operatorname{Span}\{\xi\}$,
where $\mathcal{D}, \mathcal{D}^{\perp}$ and $\operatorname{Span}\{\xi\}$ are mutually orthogonal to each other,
(b) the distribution \mathcal{D} is invariant by ϕ, that is, $\phi \mathcal{D}_{x}=\mathcal{D}_{x}$ for each $x \in M$, and
(c) the distribution \mathcal{D}^{\perp} is anti-invariant by ϕ, that is, $\phi \mathcal{D}_{x}^{\perp} \subset T_{x} M^{\perp}$ for each $x \in M$.

It is well known (cf. [1], [3]) that for a contact $C R$ submanifold of a Sasakian manifold the following relations are established

$$
\begin{equation*}
F P=0, \quad f F=0, \quad t f=0, \quad P t=0 . \tag{3.1}
\end{equation*}
$$

Remark 1. Let M be a contact $C R$ submanilfold of a Sasakian manifold \bar{M}. If $\operatorname{dim} \mathcal{D}^{\perp}=0($ resp. $\operatorname{dim} \mathcal{D}=0)$, then M is an invariant(resp. anti-invariant) submanifold of \bar{M}. If $\operatorname{dim} \mathcal{D}^{\perp}=\operatorname{dim} T M^{\perp}$, then M is a generic submanifold of \bar{M}. In particular, a contact $C R$ submanifold is said to be proper if neither $\operatorname{dim} \mathcal{D}=0$ nor $\operatorname{dim} \mathcal{D}^{\perp}=0$.

For a contact $C R$ submanifold M of $\bar{M},(2.2)$ and (2.3) give

$$
\bar{\nabla}_{X}(\phi Z)=-A_{\phi Z} X+\nabla_{X}^{\perp} \phi Z,
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X}(\phi Z)=-g(X, Z) \xi+\eta(Z) X+\phi\left(\nabla_{X} Z\right)+\phi h(X, Z) \tag{3.2}
\end{equation*}
$$

for X, Z tangent to M Thus we obtain

$$
\begin{equation*}
\phi\left(\nabla_{X} Z\right)+\phi h(X, Z)-g(X, Z) \xi=-A_{\phi Z} X+\nabla_{X}^{\perp} \phi Z \tag{3.3}
\end{equation*}
$$

for X tangent to M and $Z \in \mathcal{D}^{\perp}$.
From now on we shall give some basic lemmas for later use.
Lemma 3.1. Let M be a contact $C R$ submanifold of \bar{M}. Then we have

$$
\begin{align*}
g\left(\nabla_{Y} Z, X\right) & =g\left(\phi A_{\phi Z} Y, X\right), \tag{3.4}\\
A_{F Z} W & =A_{F W} Z \tag{3.5}\\
A_{F N} X & =-A_{N} P X \tag{3.6}
\end{align*}
$$

for any vector field Y tangent to $M, X \in \mathcal{D}, Z, W \in \mathcal{D}^{\perp}$, and $N \in \nu$.
Proof. Applying ϕ to (3.3), we obtain

$$
\nabla_{Y} Z+h(Y, Z)-\eta\left(\nabla_{Y} Z\right) \xi=\phi A_{\phi Z} Y-\phi \nabla_{Y}^{\perp} \phi Z
$$

and consequently

$$
g\left(\nabla_{Y} Z+h(Y, Z)-\eta\left(\nabla_{Y} Z\right) \xi, X\right)=g\left(\phi A_{\phi Z} Y, X\right)+g\left(\nabla_{Y}^{\perp} \phi Z, \phi X\right)
$$

Thus we have (3.4).
Next, we will show (3.5). For $Z, W \in \mathcal{D}^{\perp}, P Z=P W=0$ and hence, for any vector field Y tangent to M

$$
g\left(\left(\nabla_{Y} P\right) Z, W\right)=g\left(\nabla_{Y}(P Z), W\right)-g\left(P\left(\nabla_{Y} Z\right), W\right)=0
$$

Therefore, (2.16) implies

$$
\begin{aligned}
0 & =g\left(\left(\nabla_{Y} P\right) Z, W\right) \\
& =g\left(-g(Y, Z) \xi+\eta(Z) Y+A_{\phi Z} Y+\operatorname{th}(Y, Z), W\right) \\
& =g\left(Y, A_{F Z} W\right)-g(h(Y, Z), F W)
\end{aligned}
$$

which then implies (3.5).
On the other hand, it clear that from (2.3) and (3.2)

$$
\begin{aligned}
g(h(P X, Y), N) & =g\left(\bar{\nabla}_{Y}(P X), N\right)-g\left(\nabla_{Y} P X, N\right) \\
& =g\left(P\left(\nabla_{Y} X\right), N\right)+g(F h(Y, X), N) \\
& =-g(h(Y, X), F N)
\end{aligned}
$$

that is,

$$
g\left(A_{N} P X, Y\right)=-g\left(A_{F N} X, Y\right)
$$

which yields (3.6).
Lemma 3.2. Let M be as in Lemma 3.1. Then for $Z, W \in \mathcal{D}^{\perp}$ we have

$$
\begin{equation*}
\nabla \stackrel{\perp}{W} \phi Z-\nabla \frac{\perp}{Z} \phi W \in \phi \mathcal{D}^{\perp} \tag{3.7}
\end{equation*}
$$

Proof. For $N \in \nu$ and $Z, W \in \mathcal{D}^{\perp}$, it follows from (2.2) and (2.3) that

$$
\begin{aligned}
g\left(A_{\phi N} Z, W\right) & =g\left(-A_{N} Z+\nabla \frac{1}{Z} N, \phi W\right) \\
& =g\left(\nabla \frac{\perp}{Z} N, \phi W\right) \\
& =-g\left(N, \nabla \frac{1}{Z} \phi W\right),
\end{aligned}
$$

and consequently

$$
g\left(N, \nabla_{W}^{\perp} \phi Z-\nabla_{Z}^{\perp} \phi W\right)=-g\left(A_{\phi N} W, Z\right)+g\left(A_{\phi N} Z, W\right)=0
$$

Thus we obtain (3.7).
From Lemma 3.1 and 3.2 we have some fundamental lemmas without proof
Lemma 3.3. ([1], [3]) The anti-invariant distribution \mathcal{D}^{\perp} of a contact $C R$ submanifold in a Sasakian manifold is integrable.

For the invariant distribution \mathcal{D} we have
Lemma 3.4. ([1], [3]) Let M be as in Lemma 3.1. Then $\mathcal{D} \oplus \operatorname{Span}\{\xi\}$ is integrable if and only if

$$
\begin{equation*}
g(h(X, \phi Y), \phi Z)=g(h(\phi X, Y), \phi Z) \tag{3.8}
\end{equation*}
$$

for $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.
Lemma 3.5. ([1], [3]) For a contact $C R$ submanifold M in a Sasakian manifold \bar{M}, the leaf M^{\perp} of \mathcal{D}^{\perp} is totally geodesic in M if and only if

$$
\begin{equation*}
g\left(h\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \phi \mathcal{D}^{\perp}\right)=0 \tag{3.9}
\end{equation*}
$$

4. Proof of Theorem A

A Sasakian space form $\bar{M}(c)$ is a Sasakian manifold of constant ϕ-sectional curvature c. The curvature tensor of a Sasakian space form $\bar{M}(c)$ is given by

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\} \tag{4.1}\\
- & \frac{c-1}{4}\{\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y+g(Y, Z) \eta(X) \xi \\
& -g(X, Z) \eta(Y) \xi-g(\phi Y, Z) \phi X+g(\phi X, Z) \phi Y+2 g(\phi X, Y) \phi Z\}
\end{align*}
$$

for any $X, Y, Z \in T M$.

According to Lemma 3.3, we can see that every contact $C R$ submanifold M of a Sasakian manifold is foliated by anti-invariant submanifolds. Now we shall study the problem when a contact $C R$ submanifold M is a Riemannian product of an invariant submanifold and an anti-invariant submanifold(for the definition, cf. [9]).

Definition 2. A contact $C R$ submanifold M of a Sasakian manifold \bar{M} is called a contact $C R$ product if the distribution $\mathcal{D} \oplus \operatorname{Span}\{\xi\}$ is integrable and M is locally a Riemannain product $M^{\top} \times M^{\perp}$, where M^{\top} and M^{\perp} are leafs of $\mathcal{D} \oplus \operatorname{Span}\{\xi\}$ and \mathcal{D}^{\perp}, respectively.

First we give a characterization of contact $C R$ product as follows.
Lemma 4.1. ([1]) A contact $C R$ submanifold M of a Sasakian manifold \bar{M} is a contact $C R$ product if and only if

$$
\begin{equation*}
\nabla_{Y} X \in \mathcal{D} \oplus \operatorname{Span}\{\xi\} \tag{4.2}
\end{equation*}
$$

for $Y \in T M$ and $X \in \mathcal{D}$.
From Lemma 4.1 we have the following lemma.
Lemma 4.2. ([1], [2]) Let M be a contact $C R$ submanifold of a Sasakian manifold \bar{M}. Then the following assertions are equivalent to each other:
(i) M is a contact $C R$ product ;
(ii) the fundamental tensors of Weingarten satisfy

$$
\begin{equation*}
A_{\phi \mathcal{D}} \perp \mathcal{D}=0 \tag{4.3}
\end{equation*}
$$

(iii) the second fundamental form of M satisfies

$$
\begin{equation*}
\operatorname{th}(X, Y)=0, \text { for } X \in \mathcal{D}, Y \in T M \tag{4.4}
\end{equation*}
$$

(iv) the second fundamental form of M satisfies

$$
\begin{equation*}
h(\phi X, Y)=\phi h(X, Y), \text { for } X \in \mathcal{D}, Y \in T M \tag{4.5}
\end{equation*}
$$

On the other hand, the ϕ-holomorphic bisectional curvature of $X \wedge Z$ is defined by $\bar{H}_{B}(X, Z)=g(\bar{R}(X, \phi X) \phi Z, Z)$ for any unit vector fields $X, Z \in$ $T M$ (for the definition, cf. [6])

Lemma 4.3. Let M be a contact $C R$ product of a Sasakian manifold \bar{M}. Then for any unit vectors $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$ we have

$$
\bar{H}_{B}(X, Z)=2\|h(X, Z)\|^{2}-2 g(X, X) g(Z, Z),
$$

where $\bar{H}_{B}(X, Z)$ is the ϕ-holomorphic bisectional curvature of $X \wedge Z$.

Proof. Let M be a contact $C R$ product of \bar{M}. By (2.5) and Codazzi equation (2.7) we obtain

$$
\begin{aligned}
g(\bar{R}(X, \phi X) Z, \phi Z)= & g\left(\left(\nabla_{X} h\right)(\phi X, Z)-\left(\nabla_{\phi X} h\right)(X, Z), \phi Z\right) \\
= & g\left(\nabla_{X}^{\perp} h(\phi X, Z)-h\left(\nabla_{X}(\phi X), Z\right)-h\left(\phi X, \nabla_{X} Z\right)\right. \\
& \left.-\nabla_{\phi X}^{\perp} h(X, Z)+h\left(\nabla_{\phi X} X, Z\right)+h\left(X, \nabla_{\phi X} Z\right), \phi Z\right) .
\end{aligned}
$$

Hence, it is clear from (2.1), (4.3) and (4.5) that

$$
\begin{align*}
g(\bar{R}(X, \phi X) Z, \phi Z)= & g\left(\nabla_{X}^{\perp} h(\phi X, Z)-\nabla_{\phi}^{\perp} h(X, Z), \phi Z\right) \tag{4.6}\\
& -g\left(h\left(\nabla_{X}(\phi X), Z\right), \phi Z\right)+g\left(h\left(\nabla_{\phi X} X, Z\right), \phi Z\right) .
\end{align*}
$$

First of all, from (3.3) and (4.3) it follows that

$$
\begin{aligned}
& g\left(\nabla_{X}^{\perp} h(\phi X, Z)-\nabla_{\phi X}^{\perp} h(X, Z), \phi Z\right) \\
& \quad=-g\left(h(\phi X, Z), \nabla_{X}^{\perp} \phi Z\right)+g\left(h(X, Z), \nabla_{\phi X}^{\perp} \phi Z\right) \\
& \quad=-g\left(h(\phi X, Z), \phi\left(\nabla_{X} Z\right)+\phi h(X, Z)\right)+g\left(h(X, Z), \phi\left(\nabla_{\phi X} Z\right)+\phi h(\phi X, Z)\right) .
\end{aligned}
$$

On the other hand, we get $\nabla_{X} Z \in \mathcal{D}^{\perp}$ for $Z \in \mathcal{D}^{\perp}$ since M^{\perp} is totally geodesic, that is, $\phi \nabla_{X} Z \in \phi \mathcal{D}^{\perp}$ and thus from (2.1), (3.9) and (4.5) it follows thta

$$
g\left(\nabla_{X}^{\perp} h(\phi X, Z)-\nabla_{\phi}^{\perp} h(X, Z), \phi Z\right)=-2\|h(X, Z)\|^{2} .
$$

Next, from (2.15), (2.16), (4.4) and (4.5) we find

$$
\begin{aligned}
g\left(h\left(\nabla_{X}(\phi X), Z\right), \phi Z\right) & =g\left(h\left(\left(\nabla_{X} P\right) X+P\left(\nabla_{X} X\right), Z\right), \phi Z\right) \\
& =-g(X, X) g(h(\xi, Z), \phi Z)+g\left(h\left(P\left(\nabla_{X} X\right), Z\right), \phi Z\right) \\
& =-g(X, X) g(F Z, \phi Z) \\
& =-g(X, X) g(Z, Z)
\end{aligned}
$$

where $\phi X=P X \in \mathcal{D}$ for $X \in \mathcal{D} \oplus \operatorname{Span}\{\xi\}$ and $\phi Z=F Z$ for $Z \in \mathcal{D}^{\perp}$. On the other hand, we can put

$$
\nabla_{\phi X} X=\left(\nabla_{\phi X} X\right)_{\mathcal{D}}+\alpha \xi
$$

where $\left(\nabla_{\phi X} X\right)_{\mathcal{D}}$ denotes the \mathcal{D}-component of $\nabla_{\phi X} X$. In fact

$$
\alpha=g\left(\nabla_{\phi X} X, \xi\right)=-g\left(\nabla_{\phi X} \xi, X\right)=-g(P(\phi X), X)=g(X, X)
$$

and consequently

$$
\begin{aligned}
g\left(h\left(\nabla_{\phi X} X, Z\right), \phi Z\right) & =g\left(h\left(\left(\nabla_{\phi X} X\right)_{\mathcal{D}}, Z\right), \phi Z\right)+g(h(g(X, X) \xi, Z), \phi Z) \\
& =g(X, X) g(h(\xi, Z), \phi Z) \\
& =g(X, X) g(\phi Z, \phi Z) \\
& =g(X, X) g(Z, Z)
\end{aligned}
$$

Finally, from (4.6) we have

$$
g(\bar{R}(X, \phi X) Z, \phi Z)=-2\|h(X, Z)\|^{2}+g(X, X) g(Z, Z)+g(X, X) g(Z, Z)
$$

which implies

$$
\bar{H}_{B}(X, Z)=2\|h(X, Z)\|^{2}-2 g(X, X) g(Z, Z) .
$$

Proof of Theorem A. Now we suppose that $\bar{H}_{B}(X, Z)<-2$ for $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. Then Lemma 4.3 yields

$$
\|h(X, Z)\|^{2}<0
$$

which is a contradiction if $\operatorname{dim} \mathcal{D} \neq 0$ and $\operatorname{dim} \mathcal{D}^{\perp} \neq 0$. Thus we can see that $\operatorname{dim} \mathcal{D}=0$ or $\operatorname{dim} \mathcal{D}^{\perp}=0$ and consequently Theorem A is established.
Corollary 4.4. Let \bar{M} be a Sasakian manifold with $\bar{H}_{B}>-2$, and M a proper contact $C R$ product in \bar{M}. Then (1) M is not a generic submanifold, and (2) $h\left(\mathcal{D}, \mathcal{D}^{\perp}\right) \neq 0$; hence M is not totally geodesic in \bar{M}.

Proof. Suppose that M is a generic submanifold. Since $\operatorname{dim} \mathcal{D}^{\perp}=\operatorname{dim} T M^{\perp}$, $\operatorname{dim} \nu=0$. On the other hand, from (4.3) we have

$$
g(h(X, Z), \phi W)=g\left(A_{\phi W} X, Z\right)=0
$$

for $X \in \mathcal{D}$ and $Z, W \in \mathcal{D}^{\perp}$, that is, $h(X, Z) \in \nu$. Since $\operatorname{dim} \nu=0, h(X, Z)=0$. It is a contradiction to $\bar{H}_{B}>-2$. Hence M is not a generic submanifold.

Since \bar{M} is a Sasakian manifold with $\bar{H}_{B}>-2, \operatorname{dim} \mathcal{D} \neq 0$ or $\operatorname{dim} \mathcal{D}^{\perp} \neq 0$. Therefore $h\left(\mathcal{D}, \mathcal{D}^{\perp}\right) \neq 0$. Hence h is non-zero tensor, M is not totally geodesic in \bar{M}.

Finally, we suppose that M is a contact $C R$ product in a Sasakian space form $\bar{M}(c)$. By using the curvature tensor of $\bar{M}(c)$, we find

$$
\begin{aligned}
\bar{R}(X, \phi X) Z & =\frac{1}{4}(1-c)\{2 g(\phi X, \phi X) \phi Z\} \\
& =\frac{1}{2}(1-c) g(X, X) \phi Z
\end{aligned}
$$

and consequently,

$$
\begin{aligned}
g(\bar{R}(X, \phi X) Z, \phi Z) & =\frac{1}{2}(1-c) g(X, X) g(\phi Z, \phi Z) \\
& =\frac{1}{2}(1-c) g(X, X) g(Z, Z),
\end{aligned}
$$

which implies

$$
\frac{1}{2}(1-c) g(X, X) g(Z, Z)=-\bar{H}_{B}(X, Z)
$$

Thus for any unit vector fields X, Z tangent to M

$$
c=2 \bar{H}_{B}(X, Z)+1,
$$

which together with Theorem A yields the following.

Corollary 4.5. ([1], [2]) There exists no proper contact CR product in Sasakian space form $\bar{M}(c)$ with $c<-3$.

5. Mixed foliate contact $C R$ submanifolds of a Sasakian manifold

For a contact $C R$ submanifold M of a Sasakian manifold \bar{M}, the distribution \mathcal{D}^{\perp} is completely integrable(cf. [1], [3]). Integrability of the distribution $\mathcal{D} \oplus$ $\operatorname{Span}\{\xi\}$ is provided in Lemma 3.4.

Definition 3. A contact $C R$ submanifold is said to be mixed foliate if
(d) the distribution $\mathcal{D} \oplus \operatorname{Span}\{\xi\}$ is integrable, and
(e) $h(X, Y)=0$ for any vector fields $X \in \mathcal{D}, Y \in \mathcal{D}^{\perp}$.

Now we prepare some lemmas concerning mixed foliate contact $C R$ submanifolds of a Sasakian manifold for later use.

Lemma 5.1. For a mixed foliate contact $C R$ submanifold of a Sasakian manifold,

$$
\begin{equation*}
A_{V} X \in \mathcal{D}, X \in \mathcal{D} \quad ; \quad A_{V} X \in \mathcal{D}^{\perp} \oplus \operatorname{Span}\{\xi\}, X \in \mathcal{D}^{\perp} \tag{5.1}
\end{equation*}
$$

for any vector field V normal to \mathcal{D}.
Proof. For $X \in \mathcal{D}$ and $Y \in \mathcal{D}^{\perp}$, the condition (e) implies

$$
g\left(A_{V} X, Y\right)=g(h(X, Y), V)=0
$$

which together with $g\left(A_{V} X, \xi\right)=g(h(X, \xi), V)=g(F X, V)=0$ yields the first assertion of (5.1). The second assertion of (5.1) can be also derived from the same reason.

Lemma 5.2. For a mixed foliate contact $C R$ submanifold M of a Sasakian manifold,

$$
\begin{equation*}
A_{F X} P+P A_{F X}=0, \quad X \in \mathcal{D}^{\perp} \tag{5.2}
\end{equation*}
$$

Proof. It is clear that, for any vector field X tangent to M,

$$
\begin{equation*}
P X\left(=\nabla_{X} \xi\right) \in \mathcal{D} \tag{5.3}
\end{equation*}
$$

by means of $P Y=0$ for any $Y \in \mathcal{D}^{\perp}$. Moreover, from (2.14), (2.15) and (3.1) we get

$$
\begin{equation*}
P A_{F Z} \xi=-P t F Z=t f F Z=0 . \tag{5.4}
\end{equation*}
$$

In order to prove (5.2), we first notice that

$$
\begin{equation*}
g\left(A_{F Z} P X, Y\right)+g\left(P A_{F Z} X, Y\right)=0, X, Y \in \mathcal{D}, Z \in \mathcal{D}^{\perp} \tag{5.5}
\end{equation*}
$$

because of the condition (d) and (3.8). On the other hand, it follows from (5.1) and (5.3) that $A_{V} P X \in \mathcal{D}$ and $P A_{V} X \in \mathcal{D}$ for $X \in \mathcal{D}$. Hence we have

$$
g\left(A_{V} P X, Y\right)+g\left(P A_{V} X, Y\right)=0, X \in \mathcal{D}, Y \in \mathcal{D}^{\perp}
$$

which together with (5.4) and (5.5) yields

$$
\begin{equation*}
A_{F Z} P X+P A_{F Z} X=0, \quad X \in \mathcal{D} \tag{5.6}
\end{equation*}
$$

But, for $X \in \mathcal{D}^{\perp}$, it is clear that $A_{V} P X=0$ and $P A_{V} X=0$ because of (5.1), thus from which together with (5.4) and (5.6) we have (5.2).

Lemma 5.3. For a mixed foliate contact $C R$ submanifold M of a Sasakian manifold,

$$
\begin{gather*}
\nabla_{X} Y \in \mathcal{D}^{\perp}, X, Y \in \mathcal{D}^{\perp} \quad ; \quad \nabla_{X} Y \in \mathcal{D}, X \in \mathcal{D}^{\perp}, Y \in \mathcal{D} \tag{5.7}\\
\nabla_{X}^{\perp} \phi Y \in \phi \mathcal{D}^{\perp}, \quad \nabla_{\xi}^{\perp} \phi Y \in \phi \mathcal{D}^{\perp}, X \in \mathcal{D}, Y \in \mathcal{D}^{\perp} . \tag{5.8}
\end{gather*}
$$

Proof. For any vector field X tangent to M, it follows that

$$
g\left(\nabla_{X} Y, \xi\right)=-g\left(\nabla_{X} \xi, Y\right)=-g(P X, Y)=0, Y \in \mathcal{D}^{\perp}
$$

because of (2.15) and (5.3). In order to prove the first equation of (5.7), it suffices to show that

$$
\begin{equation*}
g\left(\nabla_{X} Y, Z\right)=0, X, Y \in \mathcal{D}^{\perp}, Z \in \mathcal{D} . \tag{5.9}
\end{equation*}
$$

Since $\phi \mathcal{D}_{x}=\mathcal{D}_{x}$, there exists $W \in \mathcal{D}_{x}$ such that $Z=\phi W$. Thus, for $X, Y \in$ \mathcal{D}^{\perp}, it follows that

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\nabla_{X} Y, \phi W\right)=-g\left(P \nabla_{X} Y, W\right)=g\left(\left(\nabla_{X} P\right) Y, W\right)
$$

because of $P Y=0$, from which together with (2.16) and (5.1), we can easily obtain (5.9).

Since

$$
g\left(\nabla_{X} Y, \xi\right)=-g(P X, Y)=0, X \in \mathcal{D}^{\perp}, Y \in \mathcal{D}
$$

the second equation of (5.7) can be easily derived from the first equation of (5.7). In fact, for $X, Z \in \mathcal{D}^{\perp}$ and $Y \in \mathcal{D}$

$$
g\left(\nabla_{X} Y, Z\right)=-g\left(\nabla_{X} Z, Y\right)=0
$$

because of the first equation of (5.7).
Next, we will prove (5.8). It is clear from the Weingarten formula (2.3) that

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y=-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y, X \in \mathcal{D}, Y \in \mathcal{D}^{\perp} \tag{5.10}
\end{equation*}
$$

On the other hand, it follows from (2.3) that $\bar{\nabla}_{X} \phi Y=\left(\bar{\nabla}_{X} \phi\right) Y+\phi\left(\nabla_{X} Y+\right.$ $h(X, Y)$), thus from which together with (2.2) and the condition (e), we have

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y=\phi \nabla_{X} Y=\phi\left(\left(\nabla_{X} Y\right)_{\mathcal{D}}+\left(\nabla_{X} Y\right)_{\mathcal{D}^{\perp}}\right), X \in \mathcal{D}, Y \in \mathcal{D}^{\perp} . \tag{5.11}
\end{equation*}
$$

Comparing (5.10) with (5.11), we find

$$
\nabla_{X}^{\perp} \phi Y=\phi\left(\nabla_{X} Y\right)_{\mathcal{D}^{\perp}} \in \phi \mathcal{D}^{\perp}
$$

which completes the first equation of (5.8). The second equation of (5.8) can be similarly derived.

6. Proof of Theorem B

In this section we specialize to the case of an ambient Sasakian space form $\bar{M}(c)$ and let M be a mixed foliate contact $C R$ submanifold of $\bar{M}(c)$.
We first prove
Theorem 6.1. If M is a mixed foliate proper contact $C R$ submanifold of a Sasakian space form $\bar{M}(c)$, then $c \leq 1$.
Proof. Let M be a mixed foliate proper contact $C R$ submanifold of a Sasakian space form $\bar{M}(c)$. Then, for $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$, we have

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z)=h\left(X, \nabla_{Y} Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{6.1}
\end{equation*}
$$

by means of the conditions (d) and (e).
If we take a vector field V normal to M such that $V=F Z$, i.e., $Z=-\phi V=$ $-t V$, then we have $\nabla_{Y} Z=P A_{V} Y-t \nabla_{Y}^{\perp} V$ by means of (2.2), (2.3) and (5.1). Since $g\left(X, t \nabla \frac{\perp}{Y} V\right)=0$ and $g\left(\xi, t \nabla \frac{\perp}{Y} V\right)=0, \quad t \nabla \frac{\perp}{Y} V \in \mathcal{D}^{\perp}$ and consequently $h\left(X, t \nabla \frac{\perp}{Y} V\right)=0$ because of the condition (e). Thus (6.1) implies

$$
\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z)=h\left(X, P A_{V} Y\right)-h\left(Y, P A_{V} X\right),
$$

which together with (3.8) and (5.2) yields

$$
\begin{equation*}
g\left(\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z), V\right)=-2 g\left(h\left(X, A_{V} P Y\right), V\right) \tag{6.2}
\end{equation*}
$$

On the other hand, (2.7) and (4.1) yield

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z)=\frac{c-1}{2} g(X, P Y) F Z \tag{6.3}
\end{equation*}
$$

Comparing (6.2) with (6.3), we have

$$
\frac{c-1}{4} g(X, P Y) g(V, V)=-g\left(h\left(X, A_{V} P Y\right), V\right) .
$$

Putting $X=P Y$ in this equation, we have

$$
0 \leq g\left(A_{V} P Y, A_{V} P Y\right)=-\frac{c-1}{4} g(P Y, P Y) g(V, V)
$$

which completes our assertion since M is proper.
For $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$, it follows from (6.1) and (6.3) that

$$
\begin{equation*}
-\frac{c-1}{2} g(P X, Y) F Z=h\left(X, \nabla_{Y} Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{6.4}
\end{equation*}
$$

from which, taking the inner product with $F W \in \phi \mathcal{D}^{\perp}$ and replacing X by $P X$, we have

$$
\begin{align*}
\frac{c-1}{2} g(X, Y) g(Z, W) & =g\left(A_{F W} X, P \nabla_{Y} Z\right)-g\left(A_{F W} Y, \nabla_{P X} Z\right) \tag{6.5}\\
& =-g\left(A_{F W} X, A_{F Z} Y\right)-g\left(A_{F W} Y, \nabla_{P X} Z\right)
\end{align*}
$$

where we have used $P Z=0$, the condition $(e),(2.16)$ and (5.2). On the other hand, for $Y \in \mathcal{D}$ and $W \in \mathcal{D}^{\perp}$, it is clear from (5.1) that $A_{F W} Y \in \mathcal{D}$ at each
point $x \in M$. Thus, in order to compute $g\left(A_{F W} Y, \nabla_{P X} Z\right)$ more precisely, it suffices to consider only \mathcal{D}-component of $\nabla_{P X} Z$. In fact, (3.4) implies

$$
g\left(\nabla_{P X} Z, U\right)=g\left(A_{F Z} X, U\right)
$$

for any $U \in \mathcal{D}$ and consequently

$$
g\left(A_{F W} Y, \nabla_{P X} Z\right)=g\left(A_{F W} Y, A_{F Z} X\right),
$$

which and (6.5) give

$$
\begin{equation*}
-\frac{c-1}{2} g(X, Y) g(Z, W)=g\left(A_{F W} X, A_{F Z} Y\right)+g\left(A_{F Z} X, A_{F W} Y\right) \tag{6.6}
\end{equation*}
$$

for $X, Y \in \mathcal{D}, Z, W \in \mathcal{D}^{\perp}$.
On the other hand, for $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$, it is clear from the condition (d) and (5.8) that

$$
R^{\perp}(X, Y) F Z \in \phi \mathcal{D}^{\perp}
$$

which together with (2.8) and (4.1) implies

$$
\begin{equation*}
g\left(\left[A_{F Z}, A_{N}\right] X, Y\right)=0, X, Y \in \mathcal{D}, Z \in \mathcal{D}^{\perp}, N \in\left(\phi \mathcal{D}^{\perp}\right)^{\perp} \tag{6.7}
\end{equation*}
$$

where $\left(\phi \mathcal{D}^{\perp}\right)^{\perp}$ denotes the orthogonal complement of $\phi \mathcal{D}^{\perp} \subset T M^{\perp}$.
Next, taking the inner product with $N \in\left(\phi \mathcal{D}^{\perp}\right)^{\perp}$ in (6.4) and replacing X by $P X$, we can obtain by the same method as in (6.6) that

$$
\begin{equation*}
g\left(A_{N} X, A_{F Z} Y\right)+g\left(A_{F Z} X, A_{N} Y\right)=0, X, Y \in \mathcal{D}, Z \in \mathcal{D}^{\perp}, N \in\left(\phi \mathcal{D}^{\perp}\right)^{\perp} \tag{6.8}
\end{equation*}
$$

Combining (6.7) with (6.8) and using (5.1), we have

$$
\begin{equation*}
A_{F Z} A_{N} X=0, X \in \mathcal{D}, Z \in \mathcal{D}^{\perp}, N \in\left(\phi \mathcal{D}^{\perp}\right)^{\perp} \tag{6.9}
\end{equation*}
$$

because of $A_{F Z} A_{N} X \in \mathcal{D}$. Substituting $A_{N} X$ into (6.6) instead of X and using (3.5) and (6.9), we have

$$
(c-1) g(h(X, Y), N) g(Z, W)=0, X, Y \in \mathcal{D}, Z, W \in \mathcal{D}^{\perp}, N \in\left(\phi \mathcal{D}^{\perp}\right)^{\perp} .
$$

Thus we have
Lemma 6.2. Let M be a mixed foliate proper contact $C R$ submanifold of a Sasakian space form $\bar{M}(c)(c<1)$. Then

$$
h(X, Y) \in \phi \mathcal{D}^{\perp}, X, Y \in \mathcal{D} .
$$

Lemma 6.3. Let M be a mixed foliate proper contact $C R$ submanifold of a Sasakian space form $\bar{M}(c)(c<1)$. If

$$
h(X, Y) \in \phi \mathcal{D}^{\perp}, X, Y \in \mathcal{D}^{\perp}
$$

then $T_{x} M \oplus \phi \mathcal{D}_{x}^{\perp}$ is the first osculating space $O_{1}(M)=T_{x} M \oplus \operatorname{Span}\{h(X, Y) \mid X, Y \in$ $\left.T_{x} M\right\}$ at any point $x \in M$.

Proof. Owing to Lemma 6.2 and our assumption, it suffices to show that

$$
\phi \mathcal{D}_{x}^{\perp} \subset\left\{h(X, Y) \mid X, Y \in T_{x} M\right\}
$$

at each point $x \in M$. Suppose that there exists a unit vector $\phi Z \in \phi \mathcal{D}_{x}^{\perp}$ such that

$$
g(h(X, Y), \phi Z)=0
$$

for any $X, Y \in T_{x} M$. Then $A_{F Z} X=0$ for any $X \in T_{x} M$, which and (6.6) yield

$$
(c-1) g(X, Y) g(Z, W)=0, X, Y \in \mathcal{D}, Z, W \in \mathcal{D}^{\perp} .
$$

Therefore if $c<1$, then we have $g(X, X) g(Z, Z)=0$, which is a contradiction since M is proper.

Combining Lemma 6.3 and the theorem([5, Theorem 3.3, p.329]) provided by Funabashi, we have Theorem B.

References

[1] A. Bejancu, Geometry of CR-submanifolds, D. Reidel publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
[2] , Umbilical semi-invariant submanifolds of a Sasakian manifold, Tensor N.S. 37(1982), 203-213.
[3] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. St. Univ. Al. I. Cuza Iasi. 27(1981), 163-170.
[4] B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
[5] S. Funabashi, Automorphisms and a reduction theorem in a Sasakian space form $E^{2 m+1}(-3)$, Annali di Matematica pura ed applicata (IV), CXLV(1986), 317-336.
[6] B. Watson, The differential geometry of two types of almost contact metric submersions, The mathematical heritage of C. F. Gauss, 827-861, World Sci. Publ., River Edge, NJ, 1991.
[7] K. Yano and M. Kon, Contact CR-submanifolds, Kodai Math. J. 5(1982), 238-252.
[8] _, CR-submanifolds of Kaehlerian and Sasakian Manifolds, Birkhäuser, Boston, Basel, Stuttgart, 1983.
[9] , Structures on manifolds, World Scientific, Singapore, 1984.
Hyang Sook Kim
Department of Applied Mathematics, Institute of Basic Science, Inje University, Kimhae 621-749, Korea

E-mail address: mathkim@inje.ac.kr
Eunmi Pak
Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea

E-mail address: empak@knu.ac.kr
Jin Suk Pak
An emeritus Professor, Kyungpook National University, Daegu 702-701, Korea
E-mail address: jspak@knu.ac.kr

[^0]: Received March 5, 2013; Accepted January 3, 2014.
 2000 Mathematics Subject Classification. 53C40, 53C25.
 Key words and phrases. contact $C R$ submanufold, proper contact $C R$ submanufold, contact $C R$ product, mixed foliate contact $C R$ submanifold, codimension reduction problem, Sasakian space form.

