ξ-NULL GEODESIC GRADIENT VECTOR FIELDS ON A LORENTZIAN PARA-SASAKIAN MANIFOLD

KOJI MATSUMOTO, ION MIHAI* AND RADU ROSCA

Introduction

A Lorentzian para-Sasakian manifold $M(\varphi, \xi, \eta, g)$ (abr. LPS-manifold) has been defined and studied in [9] and [10]. On the other hand, para-Sasakian (abr. PS)-manifolds are special semi-cosymplectic manifolds (in the sense of [2]), that is, they are endowed with an almost cosympletic 2-form Ω such that $d^{2\eta}\Omega = \psi(d^w)$ denotes the cohomological operator [6]), where the 3-form ψ is the associated Lefebvre form of Ω ([8]). If η is exact, ψ is a $d^{2\eta}$ -exact form, the manifold M is called an exact Ps-manifold. Clearly, any LPS-manifold is endowed with a semi-cosymplectic structure (abr. SC-structure).

In the present paper, we deal with LPS-manifolds which carries a ξ -null geodesic gradient vector field (abr. ξ -NGG vector field). We recall that the concept of ξ -gradient vector field on a PS-manifold has been recently introduced ([11]) and that on the other hand null geodesics play an important role in different relativistic theories (where there are called light-like geodesics).

Let $M(\varphi, \Omega, \xi, \eta, g)$ be a (2m+1)-dimensional LPS-manifold and let ∇, dp and U be a Levi-Civita covariant differential operator with respect to g, the soldering form (or line element) and a real null vector field on M, respectively.

If U satisfies

$$\nabla U = \lambda dp + \eta \otimes U + u \otimes \xi,$$

where λ (resp. u = b(U)) is the associated scalar field (resp. the dual form of U), then U is said to be a ξ -null geodesic gradient vector field (abr. $\xi - NGG$ vector field).

Received August 13, 1993.

^{*} Doctoral Research Fellow of the Research Council of the K.U.Lewven.

It is proved that the existence of U is determined by an exterior differential system in involution (in the sense of E. Cartan [3]) and that any manifold M which carries such an U is the local Riemannian product $M = M_U \times M_U^{\perp}$, such that

- (i) M_U is a totally geodesic surface of scalar curvature-1, tangent to U and ξ ,
- (ii) M_U^{\perp} is a totally umbilical 2-codimensional submanifold of M. The following properties are also proved:
 - i) U is an exterior concurrent vector field ([11], [13]) and has +1 as conformal scalar;
 - ii) the conformal scalar λ satisfies

$$\operatorname{Ric}(\varphi U) + \lambda^2 = 0;$$

iii) U defines an infinitesimal contact transformation of η and the necessary and sufficient condition that U be an infinitesimal conformal transformation of Ω , that is,

$$L_U\Omega = r\Omega$$
,

is that the conformal scalar r in the above equation be expressed by

$$r = -2\eta(U) + \text{const.}$$

and in this case U defines an infinitesimal transformation of ψ , too, i.e.,

$$L_U\psi=r\psi,$$

where L_U denotes the Lie derivative with respect to U.

Finally, some properties, when an LSP-manifold M carries in addition of U a null structure conformal vector field C (in the sense of [10]) are also discussed.

1. Preliminaries

Let (M, g) be a Riemannian or pseudo-Riemannian manifold and let ∇ be the covariant differential operator defined by the metric tensor g. We assume in the following that the connection ∇ is symmetric and

that M is orientable. Let $\Gamma(TM) = (M)$ (resp. $b: TM \to T^*M$) be the set of sections of the tangent bundle TM (resp. the musical isomorphism [12] defined by g). Following W.A.Poor [12], we set

$$A^q(M, TM) = \Gamma \text{ Hom } (\Lambda^q TM, TM)$$

and notice that elements of $A^q(M,TM)$ are vector-valued q-forms ($q < \dim M$). Denote by

$$d^{\nabla}: A^q(M, TM) \to A^{q+1}(M, TM)$$

the exterior covariant derivative operator with respect to g (generally $d^{\nabla^2} = d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^2 = d \circ d = 0$) and by $dp \in A^1(M, TM)$ the soldering form of M (see [5]). One has

$$d^{\nabla}(dp) = 0.$$

A vector field X such that

(1.1)
$$d^{\nabla}(\nabla X) = \nabla^2 X = \pi \wedge dp \in A^2(M, TM)$$

is said to be an exterior concurrent (abr. EC) vector field ([11], [13]) and π is called the concurrence form of X. Then one has

$$(1.2) \pi = fb(X),$$

where $f \in C^{\infty}(M)$ is a conformal scalar associated with X. One has

$$(1.3) S(X,Z) = -(n-1)fg(X,Z); Z \in \Gamma(TM)$$

where S means the Ricci tensor field of ∇ and $n = \dim M$.

As a consequence of the above equation, one may write

$$(1.4) f = \frac{1}{n-1} \operatorname{Ric}(X),$$

where Ric(X) means the Ricci curvature with respect to X.

Any function f such that gradf and div(gradf) are function of f is called an isoparametric function ([14]).

A vector field T such that

$$(1.5) \nabla T = \lambda dp + \omega \otimes T$$

is defined as a torse forming ([15]) and if ω is a closed form, then T is called a closed torse forming.

The operator

$$(1.6) d^{\omega} = d + \epsilon(\omega)$$

acting on ΛM , where $e(\omega)$ means the exterior product by the closed 1-form $\omega \in \Lambda^1 M$, is called the cohomology operator ([6]). Clearly one has

$$(1.7) d^{\omega} \circ d^{\omega} = 0.$$

Any form $\alpha \in \Lambda M$ satisfying $d^{\omega}\alpha = 0$ is said to be d^{ω} -closed and if ω is exact, then α is said to be d^{ω} -exact.

If C is a conformal vector field (i.e., the conformal version of the Killing equation), one has

$$(1.8) L_C q = pq$$

i.e., $g(\nabla_Z C, Z') + g(\nabla_{Z'} C, Z) = pg(Z, Z')$ and

$$\rho = \frac{2}{n} \ div \ C.$$

We recall the following basic formulae associated with C.

(1.10)
$$L_C b(Z) = \rho b(Z) + b([C, Z]),$$

$$(1.11) 2L_C S(Z, Z') = \Delta \rho(g(Z, Z')) - (n-2)(Hess_{\nabla}\rho)(Z, Z'),$$

$$(1.12) L_C K = (n-1)\Delta \rho - \rho K,$$

where K denotes the scalar curvature of M and the covariant and symmetric 2-tensor $Hess_{\nabla}\rho$ satisfies

$$(1.13) \qquad (Hess_{\nabla}\rho)(Z,Z') = g(Z,H_{\rho}Z'): \ H_{\rho}Z' = \nabla_{Z'}(grad\rho)$$

$$(see[1]).$$

2. ξ -Null geodesic gradient vector fields on an LPS-manifold

Let $M(\varphi, \xi, \eta, g)$ be a (2m+1)-dimensional Lorentzian para-Sasakian manifold ([9], [10]). We assume that the metric tensor g is of normal hyperbolic type (see also [4]) and we agree with the following range of indices:

$$A, B = 0, 1, \dots, 2m,$$
 $a, b = 1, 2, \dots, 2m.$

Then with respect to an orthonormal vector frame $\{e_A; A = 0, 2m\}$ (abr. 0-basis) one has

(2.1)
$$g(e_A, e_B) = \varepsilon_A \delta_{AB}; \quad \varepsilon_a = -1, \quad \varepsilon_0 = +1.$$

Next, by reference to [10], the soldering form dp of M is expressed by

(2.2)
$$dp = -\omega^a \otimes e_a + \eta \otimes \xi; \quad \xi = e_0$$

and E. Cartan's structure equations, with respect to the metric (2.1), are given by

(2.3)
$$\begin{cases} \nabla e_a = \omega_a^{\ b} \otimes \epsilon_b + \omega^a \otimes \xi, \\ \nabla \xi = \omega^a \otimes e_a = -dp + \eta \otimes \xi. \end{cases}$$

(2.4)
$$\begin{cases} d\omega^a = \omega^b \wedge \omega_b{}^a - \eta \wedge \omega^a, \\ d\eta = 0. \end{cases}$$

(2.5)
$$d\omega_a^{\ b} = \Omega_a^{\ b} + \omega_a^{\ c} \wedge \omega_c^{\ b} + \omega^{\ a} \wedge \omega^b.$$

In the above equations, the 1-form ω^a denote the dual basis with e_a and the 1-form ω_a^b (resp. the 2-form Ω_a^b) are the local connection forms in the bundle O(M) (resp. the curvature forms on M).

On the other hand, the para-Sasakian structure is expressed by the following formulae (see [10])

$$(2.6) \begin{cases} \varphi^2 = I - \eta \otimes \xi, & d\eta = 0, & \eta(\xi) = 1, \\ (\nabla \varphi)Z = -b(Z) \otimes \xi - \eta(Z)dp + 2\eta(Z)\eta \otimes \xi; & Z \in \Gamma(TM), \\ \nabla_Z \xi = \varphi Z. \end{cases}$$

If, in addition, one has

$$(2.6') \varphi Z = -Z + \eta(Z)\xi,$$

 (φ, ξ, η, g) is called a special para-Sasakian (SPS) structure.

We give an example of a Lorentzian para-Sasakian manifolds.

Let R^5 be the 5-dimensional real number space with a coordinate system (x, y, z, t, s). In R^5 , if we define

$$\eta = ds - ydx - tdz,$$

$$\xi = \partial/\partial s,$$

$$g = \eta \otimes \eta - dx^2 - dy^2 - dz^2 - dt^2,$$

$$\begin{cases} \phi(\frac{\partial}{\partial x}) = -\frac{\partial}{\partial x} - y\frac{\partial}{\partial s}, \\ \phi(\frac{\partial}{\partial y}) = -\frac{\partial}{\partial y}, \\ \phi(\frac{\partial}{\partial z}) = -\frac{\partial}{\partial z} - t\frac{\partial}{\partial s}, \\ \phi(\frac{\partial}{\partial t}) = -\frac{\partial}{\partial t}, \ \phi(\frac{\partial}{\partial s}) = 0, \end{cases}$$

then (ϕ, ξ, η, g) is a Lorentzian para-Sasakian structure in \mathbb{R}^5 . Then the metric tensor g is expressed by

$$g = \begin{pmatrix} -1+y^2 & 0 & ty & 0 & -y\\ 0 & -1 & 0 & 0 & 0\\ ty & 0 & -1+t^2 & 0 & -t\\ 0 & 0 & 0 & -1 & 0\\ -y & 0 & -t & 0 & 1 \end{pmatrix}$$

In [10], it has been proved that operating by d^{∇} on $\nabla \xi$ one has

$$(2.7) \nabla^2 \xi = \eta \wedge dp$$

and the above equation shows that as in the Riemannian case, ξ is an EC-vector field with +1 as conformal scalar.

It should also be noticed that by (2.6') one deduces the following relation

(2.8)
$$\varphi dp + dp = \eta \otimes \xi \Rightarrow b(\varphi Z) + b(Z) = \eta(Z)\eta.$$

On the other hand, since ξ is an EC-vector field, then by reference to [11], the Ricci tensor $S(\xi, Z)$ is given by

$$(2.9) S(\xi, Z) = -2mg(\xi, Z); \quad Z \in \Gamma(TM)$$

Let now U be a null real vector field on M. We agree with the following definition:

The vector field U is said to be a ξ -null gradient geodesic (abr. $\xi - NGG$) vector field if its covariant differential ∇U satisfies

(2.10)
$$\nabla U = \lambda dp + \eta \otimes U + u \otimes \xi,$$

where $\lambda \in C^{\infty}M$ and u = b(U).

Since, u is the dual form of U, we have u(U) = g(U, U) = 0 and from (2.10) we get

(2.11)
$$\nabla_U U = (\lambda + \eta(U))U$$

and

$$(2.12) g(\nabla_Z U, Z') = g(\nabla_{Z'} U, Z); \quad Z, Z' \in \Gamma(TM)$$

which show that U is a null geodesic and a gradient vector field, respectively. From (2.10) one derives

(2.13)
$$\lambda + \eta(U) = 0 \Rightarrow \nabla_U U = 0$$

and

(2.14)
$$d\eta(U) = \eta(U)\eta \Rightarrow \frac{d\lambda}{\lambda} = \eta.$$

Following a known definition, the equation (2.13) expresses that U is a strict geodesic.

Setting $U = U^0 \xi + U^a e_a$, we find $\eta(U) = U^0$, and since by (2.14) it is seen that η is an exact form, we conclude that if LSP-manifold carries a ξ -NGG vector field, then it is an exact LSP-manifold.

Taking account of (2.6), one gets at once by (2.13) and (2.14)

$$(2.15) L_U \eta = -\lambda \eta.$$

Hence, using a known definition, U defines an infinitesimal contact transformation of the paracontact sturcture of M.

Since, u = b(U) is expressed by

$$u = U^0 \eta + \sum_a U^a \omega^a,$$

then by (2.10) and (2.14) and with the help of (2.4) one checks that u is a closed form;

$$(2.16) du = 0.$$

If we put $v = b(\varphi U)$, it follows from (2.8), (2.14) and (2.16) that

$$(2.17) dv = 0$$

and hence the vector field φU is also a closed vector field.

Operating now on ∇U by the exterior covariant derivative opertor d^{∇} and taking account of (2.3), (2.14) and (2.16) one derives

(2.18)
$$d^{\nabla}(\nabla U) = \nabla^2 U = u \wedge dp.$$

Therefore by reference to (1.1) the above equation proves the striking fact that U is an EC-vector field.

We recall that the property of exterior concurrency is invariant under the action of φ . One may easily check, using (2.6'), that φU is also an EC-vector field, i.e.

(2.19)
$$\nabla^2 \varphi U = v \wedge dp.$$

Using (2.18) and (2.19), (1.3) becomes

(2.20)
$$S(U,Z) = -2mq(U,Z)$$

and similarly we have

(2.21)
$$S(\varphi U, Z) = -2mg(\varphi U, Z).$$

It follows that $Ric(\varphi U) = -(U^0)^2 = -\lambda^2$.

ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold 25

Since $\eta(\varphi U) = 0$, then clearly $S(\varphi U, \xi) = 0$. By (2.6) and (2.10) one finds

(2.22)
$$\nabla \varphi U = -\eta \otimes U + (v + U^{0}\eta) \otimes \xi$$

and on behalf of (2.3) one gets

$$[\xi, \varphi U] = 2\varphi U$$

which shows that φU admits infinitesimal transformations of generators ξ (see also [4]).

Denote now by \sum the exterior differential system which defines the vector field U. By (2.14), (2.16) and (2.17) it is seen that the chracteristic numbers of \sum are r = 3, $s_0 = 1$, $s_1 = 2$. Therefore, by E.Cartan's test ([3]), \sum is in involution (i.e. $r = s_0 + s_1$) and the existence of \sum is determined by two arbitrary functions of one argument.

Next let $D_U = \{U, \xi\}$ be the 2-distribution spanned by U and ξ . By (2.3) and (2.10) it is easily seen that $\nabla_{U''}U' \in D_U$, where U', U'' are any vector fields of D_U . In consequence of this fact and by virtue of a known result (see also [7]), D_U is an autoparallel foliation. If we denote by M_U the leaves (surfaces) of D_U , then as is known ([7] M_U are totally geodesic submanifolds of M.

On the other hand, since the property of exterior concurrency is invariant by linearisation it follows that any vector field on M_U is EC. In consequence of this fact and the general properties of EC-vector fields ([11]), we conclude that M_U is of scalar curvature-1.

By (2.13) and (2.14) one may write

$$(2.23) grad\lambda = \lambda \xi$$

and since it is known ([10]) that $\operatorname{div} \xi = -2m$, we deduce

(2.24)
$$\operatorname{div}(\operatorname{grad}\lambda) = -(2m-1)\lambda$$

and from the definition of the Laplace operator $\Delta \nu = -\text{div}(grad\nu)$, one has $\Delta \lambda = (2m-1)\lambda$, which proves that the conformal scalar λ associated with U is an eigenfunction of Δ .

On the other hand, since ξ is a time like vector field, it follows instantly by (2.23)

which on behalf of (2.24) proves that λ is an isoparametric function ([14]).

By setting $T=\lambda\xi=grad\lambda,$ after a short calculation we obtain from (2.3) that

$$\nabla T = -dp + \eta \otimes T$$

which shows that T defines a closed torse forming (see (1.5)).

THEOREM. Let $M(\varphi, \xi, \eta, g)$ be a Lorentzian special para-Sasakian manifold of dimension 2m+1 and let U be a ξ -null geodesic gradient vector field on M. The existence of U is determined by an exterior differential system in involution and any M which carries such a null vector field U is the local Riemannian product

$$M = M_U \times M_U^{\perp}$$

such that

- i) M_U is a totally geodesic surface of scalar curvature -1 tangent to U and ξ :
- ii) M_U^{\perp} is a totally umbilical 2-codimensional submanifold having U as normal null section.

Furthermore:

- i) U is an exterior concurrent vector field:
- ii) the conformal scalar λ associated with U is an isoparametric function and satisfies

$$Ric(\varphi U) + \lambda^2 = 0;$$

iii) U defines an infinitesimal contact transformation on M and φU admits infinitesimal transformations of generators ξ .

3. Infinitesimal conformal transformations on an LPS-manifold

We recall that in [2] it has been proved that any PS-manifold is endowed with a semi-cosymplectic structure defined by the pairing (Ω, η) , where Ω is a 2-form of rank 2m and such that

(3.1)
$$\Omega^m \wedge \eta \neq 0, \quad d^{2\eta}\Omega = \psi, \quad d\eta = 0.$$

In (3.1), d^{ω} denotes the cohomological operator (see (1.6)) and ψ is a 3-form associated with Ω and called the Lefebvre form. Clearly any LPS-manifold is endowed with semi-cosymplectic structure. If, as in [2], we consider the globally defined 2-form

(3.2)
$$\Omega = \omega^{i} \wedge \omega^{i^{*}}: i = 1, m; i^{*} = i + m,$$

it is easily seen with the help of (2.4) that one has

(3.3)
$$d^{2\eta}\Omega = d\Omega + 2\eta \wedge \Omega = \psi \Rightarrow d^{2\eta}\psi = 0$$

and since η is exact one may say that the Lefebvre form ψ is $d^{2\eta}$ -exact.

Assume now that U defines an infinitesimal conformal transformation (abr. ICT) of Ω , that is,

$$(3.4) L_U \Omega = r \Omega$$

where r is a conformal scalar. Since L and d commute, one derives from (3.3) and (3.4)

(3.5)
$$L_U(-2\eta \wedge \Omega + \psi) = dr \wedge \Omega + r(\psi - 2\eta \wedge \Omega)$$

or equivalently

$$L_U\psi - 2U^0\eta \wedge \Omega - 2r\eta \wedge \Omega = dr \wedge \Omega + r\psi - 2r\eta \wedge \Omega.$$

Hence the necessary and sufficient condition that (3.4) holds good is

$$dr = -2U^0 \eta = 2\lambda \eta$$

that is by (2.14)

(3.6)
$$r + 2U^0 = const, \quad \text{or} \quad r = 2\lambda + const.$$

and in this case U defines also an ICT of ψ , i.e.

$$(3.7) L_U \psi = r \psi$$

Assume now that the LPS-manifold under consideration carries in addition of the null vector field U a null structure conformal vector field C (in the sence of [10]). By reference to [10], C is define by

(3.8)
$$\nabla C = f dp + \xi \wedge C, \quad g(C, C) = 0.$$

If $\alpha = b(C)$ denotes the dual form of C, one obtains from (3.8)

$$(3.9) d^{2\eta}\alpha = 0.$$

(3.10)
$$dC^0 = f\eta; \quad C^0 + f = 0$$

and as is known the conformal scalar ρ associated with C (i.e. $L_C g = \rho g$) is given by $\rho = 2f$.

By (3.9), (3.10) and (2.14) we see that α is as ψ a $d^2\eta$ -exact form and that the conformal scalars λ and ρ associated with the null vector fields U and C respectively are related by $\rho = c/\lambda$; c = const..

Next by (2.13) one gets

$$[C, U] = -fU$$

and making use of (1.10), one finds

(3.12)
$$L_C u = 2fu + b([C, U]) = fu = \frac{\rho}{2}u$$

which shows that C defines a ICT of u.

By setting now s = g(C, U), one deduces from (2.10) and (3.8)

$$(3.13) ds = -s\eta$$

and so taking account of (2.13), one gets by (3.9)

$$(3.14) L_U \alpha = 2\lambda \alpha + s\eta.$$

By exterior differentiation we obtain $d^{\eta}(L_U \alpha) = 0$.

Therefore one may say that the Lie derivative $L_U\alpha$ is d^{η} -exact. Finally denote by $D_C = \{C, U, \xi\}$ the 3-dimensional distribution spanned by the vector fields C, U and ξ .

Since C is an EC-vector field and

$$\nabla C = f dp + \xi \wedge C = f dp + \alpha \otimes \xi - \eta \otimes C,$$

from (2.3) and (2.10) one has $\nabla_{C''}C' \in D_C$, for any $C', C'' \in D_C$. Thus we may state the following property: Any LPS-manifold M which carries a ξ -NGG vector field U and a null structure conformal vector field C is the local Riemannian product

$$M = M_C \times M_C^{\perp}$$

such that:

- i) M_C is a 3-dimensional totally geodesic submanifold of scalar curvature -1, tangent to C, U and ξ ;
- ii) M_C^{\perp} is a totally umbilical 3-codimensional submanifold, having C and U as null normal sections.

Summing up, we may formulate the following

THEOREM. Let $M(\varphi, \Omega, \xi, \eta, g)$ be a (2m + 1)-dimensional LSPS-manifold having Ω as almost cosymplectic form and let ψ be the Lefebvre form associated with the semi-cosymplectic structure defined by the pairing (Ω, η) . Suppose that M carries a ξ -NGG vector field U.

Then the necessary and sufficient condition in order that U define an infinitesimal conformal transformation of Ω , i.e. $L_U\Omega = r\Omega$, is that the conformal scalar r be defined by $r = -2\eta(U) + const$, and in this case U defines also an ICT of ψ , i.e. $L_U\psi = r\psi$.

If in addition of U, M carries a null structure conformal vector field C, then M is the local Riemannian product $M = M_C \times M_C^{\perp}$ such that

i) M_C is a 3-dimensional submanifold of scalar curvature -1 and it is totally geodesic and tangent to C, U and ξ ;

ii) M_C^{\perp} is totally umbilical 3-codimensional submanifold.

Furthermore, the conformal scalar ρ and λ corresponding to C and U respectively, satisfy $\rho\lambda = const.$ and a) C defines an infinitesimal conformal transformation of the dual form of U;

b) the Lie derivative with respect to U of the dual form of C is d^{η} -exact.

References

- 1. T. Branson, Conformally covariant equations on differential forms, Comm. Partial Diff. Equations 7(4) (1982), 393-431.
- M. T. Calapso and R. Rosca, Semi cosymplectic manifolds, Rend. Circ. Mat. Palermo 39 (1990), 459-472.
- 3. E. Cartan, Systemes differentiels exterieurs et leures applications geometriques, Hermann, Paris, 1945.
- 4. Y. Choquet-Bruhat, Geometrie differentielle et systemes exterieurs, Dunod Paris, 1968.
- J. Dieudonne, Treatise on analysis, vol. 4 Academic Press New York, London, 1974.
- F. Guedira and A. Lichnerowicz, Geometrie des algebres de Lie locales de Kirilov, J. Math. Pures Appl. 63 (1984), 407-484.
- S. Kobayashi and K. Nomizu, Foundations of differential geometry, 2 Interscience Publ, New York, 1963.
- 8. J. Lefebvre, Transformations conformes et automorphismes de certainnes structures presque symplectiques, CR Acad. Sci. Paris, Ser. A-B 266 (1966), 752-754.
- 9. K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para Sasakian manifold, Tensor, N.S. 47 (1988), 189-197.
- 10. I. Mihai and R. Rosca, On Lorentzian para Sasakian manifolds, Clasical Analysis; World Scientific Publ. Co. (1992), 155-169.
- M. Petrovic, R. Rosca and L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds I, Some general results; Soochow J. Math. 15 (1989), 179-187.
- 12. W. A. Poor, Differential geometric structures, Mc Graw-Hill, New York, 1981.
- 13. R. Rosca, Exterior concurrent vector fields on a conformal cosymplectic manifold endowed with a Sasakian steucture, Libertas Math. 6 (1986), 167-174.
- A. West, Isoparametric systems; Geometry and topology of submanifolds, World Scientific Publ. Co. (1989), 222-230.
- K. Yano, On the torse-forming directions on a Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944), 340-345.

Koji Matsumoto Department of Mathematics Faculty of Education ξ -null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold 31

Yamagata University Yamagata 990, Japan

Ion Mihai Faculty of Mathematics University of Bucharest Str. Academiei Nr.14 Bucharest, Romania

Radu Rosca 59 Avenue Emile Zola 75015 Paris, France