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(&~NULL GEODESIC GRADIENT VECTOR FIELDS ON
A LORENTZIAN PARA-SASAKIAN MANIFOLD

Kot MaTsuMoTo, IoN MIHAI* AND RADU Rosca

Introduction

A Lorentzian para-Sasakian manifold M(yp,&,n,¢) (abr. LPS-manif
old) has been defined and studied in [9] and [10]. On the other hand,
para-Sasakian (abr. PS)-manifolds are special semi-cosymplectic man-
ifolds (in the sense of {2]), that is, they are endowed with an almost
cosympletic 2-form Q such that d?7Q = ¥ (d* denotes the cohomolog-
ical operator [6]), where the 3-form v is the associated Lefebvre form
of Q ([8]). If 5 is exact, v is a d*"-exact form, the manifold M is called
an eract Ps-manifold. Clearly, any LPS-manifold is endowed with a
semi-cosymplectic structure (abr. SC-structure).

In the present paper, we deal with LPS-manifolds which carries a &-
null geodesic gradient vector field (abr. £-NGG vector field). We recall
that the concept of {-gradient vector field on @« PS-manifold has been
recently introduced ([11]) and that on the other hand null geodesics
play an important role in different relativistic theories (where there
are called light-like geodesics).

Let M(p,Q,&,n,¢9) be a (2m + 1)-dimensional LPS-manifold and
let V,dp and U be a Levi-Civita covariant diferential operator with
respect to g, the soldering form (or line elemen: ) and a real null vector
field on M, respectively.

If U satisfies

VU=Adp+n@U +u®,

where A (resp. u = b(U)) is the associated scalar field (resp. the dual
form of U), then U is said to be a £-null geodesic gradient vector field

(abr. £ — NGG vector field).
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It is proved that the existence of U is determined by an exterior
differential system in involution (in the sense of E. Cartan [3]) and
that any manifold M which carries such an U is the local Riemannian
product M = My x M, such that

(1) My 1s a totally geodesic surface of scalar curvature-1, tangent to
U and &,
(i1) M is a totally umbilical 2-codimensional submanifold of Af.
The following properties are also proved:
i) U is an exterior concurrent vector field ([11], {13]) and has +1
as conformal scalar:
1) the conformal scalar A satisfies

Ric(pU) 4+ A? = 0;

1) U defines an infinitesimal contact transformation of 7 and the
necessary and sufficient condition that U be an infinitesimal
conformal transformation of €1, that is,

Ly =rQ,

1s that the conformal scalar » in the above equation be ex-
pressed by
r=-2n(U)+ const.

and in this case U defines an infinitesimal transformation of
1, too, i.e.,

Luy = ri,

where Ly denotes the Lie derivative with respect to U.

Finally, some properties, when an LSP-manifold M carries in addi-
tion of U a null structure conformal vector field C' (in the sense of [10])
are also discussed.

1. Preliminaries

Let (M, ¢g) be a Riemannian or pseudo-Riemannian manifold and let
V be the covariant differential operator defined by the metric tensor
g. We assume in the following that the connection V is symmetric and
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that M is orientable. Let (TM) = (M) (resp. b: TM — T*M)
be the set of sections of the tangent bundle TM (resp. the musical
isomorphism [12] defined by ¢). Following W.A.Poor [12], we set

AY M, TM) =T Hom (A'TM,TM)

and notice that elements of AY( M, TM) are vector-valued g-forms (¢ <
dim M). Denote by

d¥ AN M, TM) — A" (M. TM)
the exterior covariant derivative operator with respect to g (generally
d¥" = d% 0d¥ # 0, unlike d = dod = 0) and by dp € A (M, TM)
the soldering form of M (see [5]). One has
dV(dp) = 0.
A vector field X such that
(1.1) dV(VX)=V X =xAdp e A2 M, TM)

is said to be an exterior concurrent (abr. EC vector field ([11], [13])
and 7 is called the concurrence form of X. Then one has

(1.2) T = fb(X),
where f € C'*°(M) is a conformal scalar associated with X. One has
(1.3) S(X,Z)=—(n—1)fg(X,2);Z2 = T(TM)

where S means the Ricci tensor field of V and n = dimM.
As a consequence of the above equation, onec may write

(1.4) f=- 1 - Ric(X),

where Ric(X) means the Ricci curvature with respect to X.
Any function f such that gradf and div(gradf) are function of f is
called an ssoparametric function ([14]).
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A vector field T such that
(1.5) VI=XMp+w®T

is defined as a torse forming ([15]) and if w is a closed form, then T is
called a closed torse forming.
The operator

(1.6) 4 =d + e(w)

acting on AM, where e(w) means the exterior product by the closed
1-form w € A'M, is called the cohomology operator {[6]). Clearly one
has

(1.7) d¥od* = 0.

Any form o € AM satisfying d“« = 0 is said to be d“-closed and if w
is exact, then «a is said to be d“-ezact.

If C is a conformal vector field (i.e., the conformal version of the
Killing equation), one has

(1.8) Leg =pyg
le., g(VzC,Z")+¢(VzC,Z)=pg(Z,Z") and
2 ,
(1.9) p=—div C.
n
We recall the following basic formulae associated with C.

(1.10) Leb(Z) = pb(2) + W([C, Z]),
(1.11)  2LeS(2,Z2") = Ap(g(Z,2")) — (n — 2)(Hessvp)(Z,Z').

(1.12) LeK =(n—1)0p— pK,

where K denotes the scalar curvature of M and the covariant and
symmetric 2-tensor Hessyp satisfies

(1.13) (Hessvp)(Z2,2') = g(Z,H,Z"): H,Z' =\ z(gradp)
(see(l]).
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2. £{-Null geodesic gradient vector fields on an LPS-manifold

Let M(p,€,7,g) be a(2m+1)-dimensional Lorentzian para-Sasakian
manifold ([9], [10]). We assume that the metric tensor ¢ is of normal
hyperbolic type (see also [4]) and we agree with the following range of
indices:

A, B=01,--,2m, a,b=12-.-,2m.

Then with respect to an orthonormal vector frame {e4; A = 0,2m}
(abr. 0-basis) one has

(2.1) glea,e) = cabap; €a=—1, g0 =+1
Next, by reference to [10], the soldering form dp of M is expressed by
(2.2) dp=—w e, +nQE £=¢

and E. Cartan’s structure equations, with respect to the metric (2.1),
are given by

(2.3) { Ve, =w, Qe +wt ©F,
' VE=w*@e, =—-dp+nQ¢E.
) dn =0.
(2.5 dolt =0 +w i Awlb +w AW
a a a c

In the above equations, the 1-form w® denote the dual basis with e,
and the 1-form w,’ (resp. the 2-form Q) are the local connection
forms in the bundle O(M) (resp. the curvature forms on M).

On the other hand, the para-Sasakian structure is expressed by the
following formulae (see [10])

PP =T—-n&é dp=0, n() =1,
(2.6) § (Ve)Z=-b2Z)DE—n(Z)dp+20(Z)n© & Z € T(TM),
Vz€ = pZ.
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If, in addition, one has
(2.6") wZ =-Z+n(2),

{¢,€,7m,9) is called a special para-Sasakian (SPS) structure.

We give an example of a Lorentzian para-Sasakian manifolds.

Let R®> be the 5-dimensional real number space with a coordinate
system (z,,2,¢,5). In R®, if we define

n=ds—yde — tdz,

£ =8/0s
g =nQn—dz* —dy* —dz* - dt*,
$(F) = —a — b
¢(‘§;) = —;%,
H7) =5t
pE)=-2, (L) =0,

then (¢,€,7m,¢) is a Lorentzian para-Sasakian structure in R®. Then
the metric tensor ¢ is expressed by

-1+y* 0 ty 0 —u

0 -1 0 0 0

g= ty 0 -1+t 0 i
0 0 0 -1 0

-y 0 —t 0 1

In [10], it has been proved that operating by d¥ on V¢ one has
(2.7) Vi =nAdp

and the above equation shows that as in the Riemannian case, £ is an
EC-vector field with +1 as conformal scalar.
It should also be noticed that by (2.6") one deduces the following

relation

(2.8) wdp+dp=n@ €= bpZ)+bZ)=n(Z).
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On the other hand, since ¢ is an EC-vector field, then by reference to
[11], the Ricci tensor S(¢, Z) is given by

(2.9) S(€,2) = —2mg(€,2); Z € T(TM)

Let now U be a null real vector field on M. We agree with the following
definition:

The vector field U is said to be a ¢-null gradient geodesic (abr.
£ — NGGQG) vector field if its covariant differential VU satisfies

(2.10) VU =AMp+nU+ucE,
where A € C*°M and u = b(U).

Since, u is the dual form of U, we have uiU) = ¢(U,U) = 0 and
from (2.10) we get

(2.11) VoU = (A +9(U)U
and
(2.12) g(VU,Z'Y=g(VzU2ZY, 2,7 € I(TM)

which show that U is a null geodesic and a gradient vector field, re-
spectively. From (2.10) one derives

(2.13) A+nU)y=0=VyU =0
and

dA
(2.14) an(U) = ot =5 =1

Following a known definition, the equation (2.13) expresses that U is
a strict geodesic.

Setting U = U + U®e,, we find n(U) = /°, and since by (2.14)
it is seen that 7 is an exact form, we conclude that if LSP-manifold
carries a £-NGG vector field, then it is an exact LSP-manifold.

Taking account of (2.6), one gets at once by (2.13) and (2.14)

(2.15) Lip=—-Xn.



24 Koji Matsumoto, Ion Mihai* and Radu Rosca

Hence, using a known definition, U defines an infinitesimal contact
transformation of the paracontact sturcture of M.
Since, u = b(U) 1s expressed by

u = U0n+2U“wa,

then by (2.10) and (2.14) and with the help of (2.4) cne checks that u
is a closed form;

(2.16) du = 0.

If we put v = b(l), it follows from (2.8), (2.14) and (2.16) that
(2.17) dv = 1)

and hence the vector field pU is also a closed vector field.

Operating now on VU by the exterior covariant derivative opertor
dV and taking account of (2.3), (2.14) and (2.16) one derives
(2.18) d¥(VU) = V2" = u A dp.

Therefore by reference to (1.1) the above equation proves the striking
fact that U is an EC-vector field.

We recall that the property of exterior concurrency is invariant un-
der the action of . One may easily check, using (2.6, that U is also
an EC-vector field, 1.e.

(2.19) ViU = v A dp.
Using (2.18) and (2.19), (1.3) becomes

(2.20) S(U,Z2)=-2mg(U,Z)
and similarly we have

(2.21) S(pU,Z) = —2mg(eU, Z).

It follows that Ric(pU) = —(U%)? = —\2.
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Since n(@U) = 0, then clearly S(@U,€&) = 0.
By (2.6) and (2.10) one finds

(2.22) VoU=-n8U+(v+U%) Q¢
and on behalf of (2.3) one gets

€. 0U) = 20U

which shows that U admits infinitesimal transformations of genera-
tors ¢ (see also [4]).

Denote now by > the exterior differential system which defines the
vector fleld U. By (2.14), (2.16) and (2.17) it is seen that the chracter-
istic numbers of ) are r = 3, sp = 1, s = 2. Therefore, by E.Cartan’s
test ([3]), 3 is in involution (i.e. r = s¢ + s1) and the existence of 3
is determined by two arbitrary functions of one argument.

Next let Dy = {U,£} be the 2-distribution spanned by U and &.
By (2.3) and (2.10) it is easily seen that Vy»U' € Dy, where U', U"
are any vector fields of Dy, In consequence of this fact and by virtue
of a known result (see also [7]), Dy is an autoparallel foliation. If we
denote by My the leaves (surfaces) of Dy, then as is known ([7] My
are totally geodesic submanifolds of M.

On the other hand, since the property of exterior concurrency is
invariant by linearisation it follows that any vector field on My is EC.
In consequence of this fact and the general properties of EC-vector
fields ([11]), we conclude that My is of scalar curvature-1.

By (2.13) and (2.14) one may write

(2.23) gradi = ¢

and since it is known ([10]) that div€é = —2m, we deduce

(2.24) div (grad\) = —(2m — 1)\

and from the definition of the Laplace operator Av = —div(gradv),

one has AX = (2m — 1)A, which proves that the conformal scalar A
associated with U is an eigenfunction of A.
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On the other hand, since £ is a time like vector field, it follows
instantly by (2.23)

(2.25) lgradi||?* = A\?

which on behalf of (2.24) proves that X is an isoparametric function
([14]).
By setting T = A{ = grad), after a short calculation we obtain from
(2.3) that
VT =—-dp+n&QT

which shows that T’ defines a closed torse forming (see (1.5)).

THEOREM. Let M(y,£,7,¢) be a Lorentzian special para-Sasakian
manifold of dimension 2m + 1 and let U be a &-null geodesic gradient
vector field on M. The existence of U is determined by an exterior
differential system in involution and any M which carries such a null
vector field U is the local Riemannian product

M = My x M#

such that

1) My is a totally geodesic surface of scalar curvature —1 tangent to
U and &:

1) M is a totally umbilical 2-codimensional submanifold having U
as normal null section.

Furthermore:

1) U is an exterior concurrent vector field:
ii) the conformal scalar A associated with U is an isoparametric
function and satisfies

Ric(U) + A = 0;

i) U defines an infinitesimal contact transformation on M and
»U admits infinitesimal transformations of generators €.
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3. Infinitesimal conformal transformations on an

LPS-manifold

We recall that in [2] it has been proved that any PS-manifold is en-
dowed with a semi-cosymplectic structure defined by the pairing (€2, 7),
where € is a 2-form of rank 2m and such that
(3.1) Q" An#£0, d"QY=1v¢, dn=0.

In (3.1), d“ denotes the cohomological operator (see (1.6)) and % is a
3-form associated with Q and called the Lefebvre form. Clearly any
LPS-manifold is endowed with semi-cosymplectic structure. If, as in
[2], we consider the globally defined 2-form

(3.2) D =w Aw' : 1= 1,m; F =14 m,

it is easily seen with the help of (2.4) that one has

(3.3) "0 =dQ+2pAQ =1 = d2p =0

and since 7 is exact one may say that the Lefebvre form 3 is d*7-exact.

Assume now that U defines an infinitesimal conformal transforma-
tion (abr. ICT) of Q, that is,

(3.4) LiyQ =r

where r is a conformal scalar. Since L and d commute, one derives

from (3.3) and (3.4)
(3.5) Lu(-2nAQ+9)=drAQ+r(yy —2n A Q)
or equivalently
Ly —=2U g AQ =2k AQ =dr AQ 4 rp — 2rn A Q.
Hence the necessary and sufficient condition that (3.4) holds good is

dr = =20 =2\
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that is by (2.14)

(3.6) r+20°% = const, or 7 =2)+ const.

and in this case U defines also an ICT of ¢, i.e.

(3.7) Loty = 14

Assume now that the LPS-manifold under consideration carries in ad-
dition of the null vector field U a null structure conformal vector field
C (in the sence of [10]). By reference to [10], C is define by

(3.8) VC = fdp+EnC, ¢(C,C)=0.

If a = b(C) denotes the dual form of C, one obtains from (3.8)

(3.9) d*a = 0,

(3.10) dC® = fy; C'+ f=0

and as is known the conformal scalar p associated with C (i.e. Leg =
pg) is given by p = 2f.

By (3.9), (3.10) and (2.14) we see that « is as % a d®p-exact form
and that the conformal scalars A and p associated wizh the null vector
fielde U and C respectively are related by p = ¢/A; ¢ = const..

Next by {2.13) one gets
(3.11) [C.U] = -fU

and making use of (1.10). onc finds
(3.12) Lou =2fu+b(C,U]) = fu = Lu

which shows that €' defines a ICT of w.
By setting now s = ¢(C,U), one deduces from (2.10) and (3.8)

(3.13) ds = —asy
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and so taking account of (2.13), one gets by (3.9)
(3.14) Lya =2Xa + 3.

By exterior differentiation we obtain d"(Lya) = 0.

Therefore one may say that the Lie derivative Ly« is d"-exact. Fi-
nally denote by D¢ = {C,U, £} the 3-dimensior.al distribution spanned
by the vector fields C, U and &.

Since C is an EC-vector field and

VO =fdp+¢(AC=fdp+a®@-nRC,

from (2.3) and (2.10) one has Ve C' € De, for any C',C" € Dc.
Thus we may state the following property: Any LPS-manifold M which
carries a £-NGG vector field U and a null structure conformal vector
field C is the local Riemannian product

M = Mc x M&

such that:

1) M is a 3-dimensional totally geodesic submanifold of scalar cur-
vature -1, tangent to C,U and &;

ii) M& is a totally umbilical 3-codimensional submanifold, having
C' and U as null normal sections.

Summing up, we may formulate the followirg

THEOREM. Let M(yp,$,£,7,¢9) be a (2m + 1)-dimensional LSPS-
manifold having  as almost cosymplectic form and let 1 be the Lefeb-
vre form associated with the semi-cosymplectic structure defined by the
pairing (1,n). Suppose that M carries a £-NGG vector field U.

Then the necessary and sufficient condition in order that U define
an infinitesimal conformal transformation of . i.e. Ly = r2, is that
the conformal scalar r be defined by r = —2n(I) 4+ const. and in this
case U7 defines also an ICT of v, i.e. Ly = ry.

If in addition of U, M carries a null structure conformal vector field
C, then M is the local Riemannian product M = M¢ x M& such that

1) Mc is a 3-dimensional submanifold of scalar curvature -1 and it
is totally geodesic and tangent to C',U and ¢&;
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i) M is totally umbilical 3-codimensional submanifold.
Furthermore, the conformal scalar p and A corresponding to C and
respectively, satisfy pA = const. and a) C defines an infinitesimal

conformal transformation of the dual form of U;

d"

2.

-1

b) the Lic derivative with respect to U of the cual form of C is

-exact.
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