Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.2.431

THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS  

Kim, Eui Chul (Department of Mathematics College of Education Andong National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.2, 2013 , pp. 431-440 More about this Journal
Abstract
Let ($M^3$, $g$) be a 3-dimensional closed Sasakian spin manifold. Let $S_{min}$ denote the minimum of the scalar curvature of ($M^3$, $g$). Let ${\lambda}^+_1$ > 0 be the first positive eigenvalue of the Dirac operator of ($M^3$, $g$). We proved in [13] that if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$, then ${\lambda}^+_1$ satisfies ${\lambda}^+_1{\geq}{\frac{S_{min}+6}{8}}$. In this paper, we remove the restriction "if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$" and prove $${\lambda}^+_1{\geq}\;\{\frac{S_{min}+6}{8}\;for\;-\frac{3}{2}<S_{min}{\leq}30, \\{\frac{1+\sqrt{2S_{min}}+4}{2}}\;for\;S_{min}{\geq}30$$.
Keywords
Dirac operator; eigenvalues; Sasakian manifolds;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Agricola, The Srni lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5-84.
2 M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.   DOI   ScienceOn
3 F. A. Belgun, Normal CR structure on compact 3-manifolds, Math. Z. 238 (2001), no. 3, 441-460.   DOI
4 D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston/Basel/Berlin, 2002.
5 Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980), 117-146.   DOI
6 Th. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, AMS, Providence, RI, 2000.
7 Th. Friedrich, The second Dirac eigenvalue of a nearly parallel $G_{2}$-manifold, Adv. Appl. Clifford Algebr. 22 (2012), no. 2, 301-311.   DOI
8 Th. Friedrich and E. C. Kim, The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), no. 1-2, 128-172.   DOI   ScienceOn
9 N. Ginoux, The Dirac Spectrum, Lecture Notes in Mathematics, Springer-Verlag, Berlin/Heidelberg, 2009.
10 O. Hijazi, Eigenvalues of the Dirac operator on compact Kahler manifolds, Comm. Math. Phys. 160 (1994), no. 3, 563-579.   DOI
11 E. C. Kim, The A-genus and symmetry of the Dirac spectrum on Riemannian product manifolds, Differential Geom. Appl. 25 (2007), no. 3, 309-321.   DOI   ScienceOn
12 E. C. Kim, Dirac eigenvalues estimates in terms of divergencefree symmetric tensors, Bull. Korean Math. Soc. 46 (2009), no. 5, 949-966.   과학기술학회마을   DOI   ScienceOn
13 E. C. Kim, Estimates of small Dirac eigenvalues on 3-dimensional Sasakian manifolds, Differential Geom. Appl. 28 (2010), no. 6, 648-655.   DOI   ScienceOn
14 S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45.   DOI
15 A. Moroianu, Operateur de Dirac et submersions riemanniennes, Thesis, Ecole Polytechnique, 1996.