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A CLASSIFICATION OF (k,u)-CONTACT METRIC
MANIFOLDS

ABMET YiILDIZ AND UDAY CHAND DE

ABSTRACT. In this paper we study h-projectively semisymmetric, ¢-pro-
jectively semisymmetric, h-Weyl semisymmetric and ¢-Weyl semisym-
metric non-Sasakian (k, u)-contact metric manifolds. In all the cases the
manifold becomes an 7-Einstein manifold. As a consequence of these re-
sults we obtain that if a 3-dimensional non-Sasakian (k, )-contact metric
manifold satisfies such curvature conditions, then the manifold reduces to
an N(k)-contact metric manifold.

1. Introduction

As is well-known, the local geodesic symmetries on a locally Riemannain
symmetric space are isometries and hence they are volume-preserving local dif-
feomorphisms. However, there are many Riemannian manifolds all of whose ge-
odesic symmetries are volume-preserving but which are not locally symmetric.
To our knowledge it is not even known if such spaces are locally homogeneous.

The notion of local symmetry of a Riemannian manifold has been weakend
by many authors in several ways to a different extent. As a weaker version of
local symmetry, T. Takahashi [8] introduced the notion of locally ¢-symmetry
on a Sasakian manifold. Generalizing the notion of ¢-symmetry, De, Shaikh
and Biswas [4] introduced the notion of ¢-recurrent Sasakian manifold. In
the context of contact geometry the notion of ¢-symmetry is introduced and
studied by Boeckx, Buecken and Vanhecke [3] with several examples.

A (0, p)-tensor field T on (M, g) is called parallel when it is invariant under
parallel translation, i.e., when

VT =0,
in particular, if the (0,4)-Riemann-Christoffel curvature tensor R is parallel,
ie.,

VR =0,
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then M is said to be locally symmetric.

This property justifies the name given to such manifolds [10] locally they are
symmetric with respect to each of their points. If each geodesic symmetry s,
p € M, is a global isometry of M, then M is called a symmetric space. Thus
VR = 0 for every symmetric space and conversely, every complete and simply
connected locally symmetric space is symmetric.

A Riemannian manifold (M?"+1, g) is said to be semi-symmetric if its cur-
vature tensor R satisfies R(X,Y)- R =0, X,Y € x(M), where R(X,Y) acts
on R as a derivation ([5], [7]).

The projective curvature tensor is an important tensor from the differen-
tial geometric point of view. Let M be a (2n + 1)-dimensional Riemannian
manifold. If there exists a one-to-one correspondence between each coordinate
neighbourhood of M and a domain in Euclidian space such that any geodesic
of the Riemannian manifold corresponds to a straight line in the Euclidean
space, then M is said to be locally projectively flat. For n > 1, M is locally
projectively flat if and only if the well-known projective curvature tensor P
vanishes. Here P is defined by

(1.1) P(X,Y)Z=R(X,Y)Z — %{S(K 2)X - S(X, Z)Y},

where ' is the Ricci tensor of M.
In an (2n + 1)-dimensional Riemannian manifold, the conformal curvature
tensor C' is given by [11]

C(X,Y)Z =R(X,Y)Z

12) g (SMLZ)X —S(X2Y + (Y, 2)QX — 4(X, 2)QV}
o I DX (X, 2)Y),

where 7 is a scalar curvature and @) is the Ricci operator defined by g(QX,Y) =
S(X,Y).

In the present paper after introduction, in Section 2 we give some preliminary
results of (k, p)-contact metric manifolds. In Section 3, we study #n-Einstein
(k, p)-contact metric manifolds. Section 4 deals with h-projectively semisym-
metric non-Sasakian (k, y)-contact metric manifolds. Section 5 is devoted to
study ¢-projectively semisymmetric non-Sasakian (k, u)-contact metric man-
ifolds. In Section 6, we study h-Weyl semisymmetric non-Sasakian (k, u)-
contact metric manifolds. The last section contains ¢-Weyl semisymmetric
non-Sasakian (k, p)-contact metric manifolds. In all the cases the manifold
becomes an 7n-Einstein manifold. As a consequence of these results we obtain
that if a 3-dimensional non-Sasakian (k, u)-contact metric manifold satisfies
such curvature conditions, then the manifold reduces to an N (k)-contact met-
ric manifold.
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2. (k, p)-contact metric manifolds

A (2n + 1)-dimensional differentiable manifold M?"*1 is called a contact
manifold if it carries a global differentiable 1-form 7 such that n A (dn)™ # 0
everywhere on M?"+1, This 1-form 7 is called the contact form of M2"+1. A
Riemannian metric g is said to be associated with a contact manifold if there
exists a (1, 1) tensor field ¢ and a contravariant global vector field &, called the
characteristic vector field of the manifold such that

(2.1) P =—IT+n®¢ nE)=1, ¢=0, nop=0,
(2.2) 9(¢X,¢Y) = g(X,Y) = n(X)n(Y),

(2.3) 9(X,9Y) = —g(Y,¢X), g(X,§) =n(X),
(2.4) 9(X,9Y) = dn(X,Y),

for all vector fields X,Y on M. In a contact metric manifold we define a (1,1)
tensor field h by h = %ff ¢¢, where £ denotes the Lie differentiation. Then h
is symmetric and satisfies h¢p = —ph. We have Trh = Tre¢h = 0 and h€ = 0.
Also,

(2.5) Vxé = —¢X — ¢hX,

holds in a contact metric manifold. A contact metric manifold is said to be
n-Einstein if

(2.6) Q=ald+nRE,

where a, b are smooth functions on M?7+1,

D. E. Blair, T. Koufogiorgos and B. J. Papantoniou [1] considered the (k, u)-
nullity condition on a contact metric manifold and gave several reasons for
studying it. The (k, p)-nullity distribution N(k, ) ([1], [6]) of a contact metric
manifold M is defined by
Nk, 1) : p—> N (k, p)={W € T, M | ROCY)W=(T-+ 1) (9(Y. W)X —g (X, W)Y)}
for all X,Y € TM, where (k, ) € R%2. A contact metric manifold M?"*+! with
& € N(k,u) is called a (k, p)-contact metric manifold, we have
(2.7) R(X,Y)§ = En(Y)X —n(X)Y] + p[n(Y)hX —n(X)RY].

Also, in a (k, p)-contact metric manifold, the following relations hold ([1],

[2])

(2.8) = (k—1)¢% k<1,
(2.9) R(&,X)Y = k[g(X,Y)E —n(Y)X] + plg(hX,Y)E = n(Y)hX],
(2.10) S(X, &) = 2nkn(X),

S(X,Y) = [2(n = 1) — nalg(X.Y) + [2(n — 1) + plg(hX.,Y)

(211) 201 = )+ n(2k 4+ Wl (XIn(Y), n > 1,
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(2.12)  S(¢X,9Y)=S(X,Y) —2nkn(X)n(Y) —2(2n — 2+ pn)g(hX,Y),

where S is the Ricci tensor of type (0,2) of the manifold.

If p = 0, the (k, p)-nullity distribution N (k, u) is reduced to the k-nullity
distribution [9], where k-nullity distribution N (k) of a Riemannian manifold
M is defined by

N(k) : p— Ny(k) = {W € T,M | R(X,Y)W = k(g(Y, W)X — g(X,W)Y)}.

If £ € N(k), then we call a contact metric manifold M an N (k)-contact metric
manifold.

The class of (k, 1)-contact metric manifolds contains both the class of Sasa-
kian (k = 1 and h = 0) and non-Sasakian (k # 1 and h # 0) manifolds.
For example, the unit tangent sphere bundle of a flat Riemannian manifold
with the usual contact metric structure is a non-Sasakian (k, y)-contact metric
manifold. Throught the present paper we study of (2n + 1)-dimensional non-
Sasakian (k, pt)-contact metric manifolds.

3. n-Einstein (k, p)-contact metric manifolds

It is well known that in a Sasakian manifold the Ricci operator () commutes
with ¢. But in a (k, u)-contact metric manifold, @) does not commute with ¢.
In general, in a (k, u)-contact metric manifold D. E. Blair, T. Koufogiorgos and
B. J. Papantoniou [1] proved the following:

Proposition 1. Let M?"*! be a (k,u)-contact metric manifold. Then the
relation

Qb — ¢Q = 2[2(n — 1) + plho,

holds.
From the definition of n-Einstein manifold it follows easily that Q¢ = ¢Q.
Hence from Proposition 1 we obtain either 4 = —2(n — 1), or the manifold is

Sasakian. Using p = —2(n—1) from (2.11) we get the manifold is an 7-Einstein
manifold. Therefore we obtain the following:

Proposition 2. In a non-Sasakian (k, 1)-contact metric manifold the following
conditions are equivalent: (i) n-Einstein manifold, (ii) Q¢ = ¢Q.

For n = 1, from Proposition 1 and Proposition 2 we obtain the following:
Corollary 1. A 3-dimensional non-Sasakian (k, u)-contact n-FEinstein mani-

fold is an N(k)-contact metric manifold.

4. h-projectively semisymmetric non-Sasakian (k, pu)-contact metric
manifolds

Definition 1. A Riemannian manifold (M?"*1 g), n > 1, is said to be h-
projectively semisymmetric if

P(X,Y)-h=0
holds on M.
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Before we state our first result we need the following lemma which was
proved in [1].

Lemma 1 ([1]). Let M*" "1 (¢,£,m,9) be a contact metric manifold with &
belonging to the (k, p)-nullity distribution. Then for any vector fields X, Y, Z
R(X,Y)hZ — hR(X,Y)Z
= {klg(hY, Z)n(X) — g(hX, Z)n(Y)]
+ p(k = Dg(X, Z2)n(Y) = g(Y, Z)n(X)]}¢
(4.1) + k{g(Y, 0Z)phX — g(X, 9Z)phY + g(Z, 9hY )X — g(Z, phX )Y
+n(Z)[n(X)hY —n(Y)rX]}
— p{n(Y)[(X = k)n(2)X + pn(X)hZ]
—n(X)[(X = E)n(Z2)Y + un(Y)hZ] + 29(X, ¢Y )ohZ}.
Theorem 1. Let M?"t1(¢, & n,g) be a non-Sasakian (k,p)-contact metric

manifold. If M is h-projectively semisymmetric, then M is an n-FEinstein man-
ifold.

Proof. Let M be a (2n + 1)-dimensional h-projectively semisymmetric non-
Sasakian (k, u)-contact metric manifold. The condition P(X,Y) - h = 0 turns
into

(4.2) (P(X,Y)-h)Z = P(X,Y)hZ — hP(X,Y)Z = 0,
for any vector fields X, Y, Z. Using (1.1) and (4.1) in (4.2), we have

(4.3)
{klg(nY, Z)n(X) — g(hX, Z)n(Y)]

+ plk = Dlg(X, 2)n(Y) — (Y, 2)n(X)]}3¢

+ k{g(Y,0Z)phX — g(X,¢Z)phY + g(Z,¢hY)pX — g(Z,phX)pY
+ ()XY —n(Y)hX]} — p{n(Y)[(1 - k)n(Z2)X + pn(X)hZ]
= (X)L =k)n(2)Y + pn(Y)hZ] +29(X, ¢Y)phZ}

+ %[S(Y, Z)hX —S(X,Z)hY + S(X,h2)Y — S(Y,hZ)X]| =

Replacing X by hX and using symmetry property of h, we obtain from (4.3)
= kg(hX,hZ)n(Y)S + pu(k — 1)g(hX, Z)n(Y)§
+ k{g(Y, 62)$h>X — g(hX, $Z)OhY + g(Z, ohY )gphX
1)~ 9(Z.ORX)OY —q(Zn(YIWX + u(k — n(Y In(Z)hX
+2g(hX, Y )phZ}
+ %[S(Y, Z)h*X — S(hX,Z)hY + S(hX,hZ)Y — S(Y,hZ)hX] = 0.
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Now using (2.8) and (2.11) in (4.4), we get
kg(Y,hZ)hX + (k= 1)g(X, 2)Y — (k = D)n(X)n(2)Y
+ (k= 1g(Y, 2)X — (k= 1)g(Y, Z)n(X)¢§ + g(hX, Z)hY'}
+p(k = D{g(Y,hZ)n(X)€ = g(Y, hZ) X + g(X, Z)hY
—n(Xm(2)hY + g(Y,hZ)hX + (k- 1)g9(X, Z)Y
@5 (k= Dg(X. Z)n(Y )
— (k= Dn(X)n(2)Y + (k = Dn(X)n(Y)n(Z)¢}

+ o (k= DS, Z)n(X)E — (h~ DSV, 2)X

— S(hX,Z)hY — S(Y,hZ)hX + S(hX,hZ)Y} = 0.

Taking the inner product with W in (4.5) and then using symmetry property
of h, we get
(4.6)

kg(Y,hZ)g(hX, W) + (k — 1)g(X, Z)g(Y, W)

— (k= 1)g(Y,W)n(X)n(Z) + (k = 1)g(Y, Z)g(X, W)

— (k= 1D)g(Y, Z)n(X)m(W) + g(X,hZ)g(hY, W)}

+ p(k = D{g(Y, hZ)n(X)n(W) — g(Y, hZ)g(X, W)

+9(X, Z)g(hY, W) — g(hY, W)n(X)n(Z) + g(hY, Z)g(hX, W)

+ (k= 1)g(X, Z)g(Y, W) — (k = 1)g(X, Z)n(Y )n(W)

— (k= Dg(Y, W)n(X)n(Z) + (k = Dn(X)n(Y)n(Z)n(W)}

+ o (0= DS, Z(X)(W) — (5~ 1)S(Y, 2)g(X, W)

—S(X,hZ)g(hY,W) — S(Y,hZ)g(hX, W) + S(hX,hZ)g(Y,W)} = 0.
Let é;,i=1,..., 2n + 1, be an orthonormal ¢-basis of vector fields in M?2"*1,

If we put X = W = ¢; in (4.6) and sum up with respect to 4, then using (2.11),
we obtain

2n
= [2n = 1)(k = D)k + p(k — 1)*g(Y, Z)
+u[2n(1 = k)g(Y,hZ) = (k= 1)*n(Y)n(Z)).

[(2n — Y 1)] S(Y, Z)

(4.7)

Again using (2.11) in (4.7), we obtain
(4.8) S, Z) = Aig(Y, Z) + Bin(Y)n(Z),
where

[2(n — 1) + p][2nk(2n — 1) + 2n(k — V)] + 4n2pu[2(n — 1) — np)
dn2p+ (2n —1)[2(n — 1) 4 ] ’

Ay =
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and
B — 4n2u2(1 —n) + n(2k + p)] — 2nu(k — 1)[2(n — 1) + y
: 42+ @n— D2(n—1) + 4] |
Thus M is an n-Einstein manifold. O

Now from Corollary 1 we can state the following:

Corollary 2. If a 3-dimensional non-Sasakian (k, p)-contact metric manifold
is h-projectively semisymmetric, then the manifold is an N(k)-contact metric
manifold.

5. ¢-projectively semisymmetric non-Sasakian (k, p)-contact metric
manifolds

Definition 2. A Riemannian manifold (M?"*! g), n > 1, is said to be ¢-
projectively semisymmetric if
P(X,Y)-¢=0
holds on M.
Now we need the following:
Lemma 2 ([1]). Let M*" "1 (¢,£,m,9) be a contact metric manifold with &
belonging to the (k, u)-nullity distribution. Then for any vector fields X, Y, Z
R(X,Y)¢Z — pR(X,Y)Z
= {1 = k)lg(¢Y, Z)n(X) — g(¢X, Z)n(Y)]
+ (1= w)lg(enY, Z)n(X) — g(ohX, Z)n(Y)]}¢
(5.1) —g9(Y +hY, Z2)(¢X + ¢hX) + g(X + hX, Z)(¢Y + ¢hY)
—g(oY + ¢hY, Z)(X + hX) + g(¢X + ¢hX, Z)(Y + hY)
—n(ZH{(1 = k)[n(X)oY —n(Y)oX]
+ (L= p)(X)phY —n(Y)phX]}.
Theorem 2. Let M?"*1(4,£,m,9) be a non-Sasakian (k, p)-contact metric

manifold. If M is ¢-projectively semisymmetric, then M is an n-Einstein man-

ifold.

Proof. Let M be a (2n + 1)-dimensional ¢-projectively semisymmetric non-
Sasakian (k, u)-contact metric manifold. The condition P(X,Y) - ¢ = 0 turns
into
(5.2) (P(X,Y) $)Z = P(X,Y)6Z — 6P(X,Y)Z =0,
for any vector fields X, Y, Z. Using (1.1) and (5.1) in (5.2), we have

{1 =R)g(0Y, Z)n(X) — g(¢X, Z)n(Y)]

+(1 = wlg(ehY, Z)n(X) — g(ohX, Z)n(Y)]}¢

(6.3) —g(Y +RhY, Z2)(¢X + ohX) + g(X + hX, Z) (Y + ¢hY)
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—g(Y + ¢hY, Z)(X + hX) + g(¢X + ¢hX, Z)(Y + hY)
({1 = E)[n(X)¢Y —n(Y)¢X] + (1 — p)[n(X)phY —n(Y)phX]}

QL[ (Y, 62)X — S(X,02)Y + S(X, Z)¢Y — S(Y,Z)pX] = 0.

Replacing X by ¢X, we obtain from (5.3)
(1 =k)g(X, Z)n(Y)§ —n(Y)n(Z2)X]
+(u = D[g(hX, Z)n(Y)§ — n(Y)n(Z)hX]
+9(Y, 2)X — g(Y, Z)n(X)E + g(hY, Z)X — g(hY, Z)n(X)§

(5.4) —9(Y,Z)hX — g(hY, Z)hX + g(¢0X, Z)Y + g(¢ X, Z)phY
+9(h¢ X, Z)pY + g(h¢ X, Z)phY — g(¢Y, Z)pX — g(¢Y, Z)ho X
—9(X, 2)Y +n(X)n(2)Y — g(X, Z)hY +n(X)n(Z)hY

(

(WX, 2)Y — g(hX, 2)RY — - [S(Y,62)0X — S(6X, 62)¥
FS(9X, 2)6Y + S(Y, 2)X ~ S(Y, Z)n(X)¢] =0.

Taking the inner product with W in (5.4) and then using symmetry property
of h, we get

(1= k)g(X, 2)n(Y)n(W) — g(X, W)n(Y)n(Z)]
+(p = D[g(X, hZ)n(Y )n(W) — g(h X, W)n(Y)n(Z)]
+9(Y, Z)g(X, W) — g(Y, Z)n(X)n(W) + g(hY, Z)g(X, W)
—g(hY, Z)n(X)n(W) — g(Y, Z)g(hX, W) — g(hY, Z)g(hX, W)
(5.5)  +9(¢X, 2)g(dY, W) + g(¢X, Z)g(phY, W) + g(¢ X, hZ)g(¢Y, W)
+9(¢ X, hZ)g(dhY, W) — g(8Y, Z)g(p X, W) — g(9Y, Z)g(¢ X, hW)
—9(X, Z)g(Y, W) + g(Y, W)n(X)n(Z) — g(X, Z)g(hY, W)
+g(hY Wn(Xm(Z) + g(X,hZ)g(Y, W) — g(X,hZ)g(hY, W)

5 [S(Y,62)9(6X, W) — S(9X, 62)g(Y, W)
+5(9X, Z2)g(¢Y, W) + S(Y, Z)g(X, W) = S(Y, Z)n(X)n(W)] = 0.

Let é;,i=1,..., 2n + 1, be an orthonormal ¢-basis of vector fields in M?"+1,
If we put X = W = ¢; in (5.5) and sum up with respect to ¢, then using (2.2),
(2.8) and (2.12), we obtain

] 502 - et - alatv.2)

(5.6) - [Zn -

—[2n = 4)(k = Dn(Y)n(Z) = 0.
Now using (2.11) in (5.6), we get
S(Y,Z) = Axg(Y, Z) + Ban(Y)n(Z),

2(n—1)+p (Y, Z)
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where
Ay — [2n + 2k —4][2(n — 1) + pln — [2(n — 1)% — p][2(n — 1) — ny
ny
and
5, = 10— k= D[2(n = 1) + 4] = 21 = 1 = @201 ) + 2k + )]
ny
Hence M is an n-Einstein manifold. O

So from Corollary 1 we can give the following;:

Corollary 3. If a 3-dimensional non-Sasakian (k, p)-contact metric manifold
is ¢-projectively semisymmetric, then the manifold is an N(k)-contact metric
manifold.

6. h-Weyl semisymmetric non-Sasakian (k, u)-contact metric
manifolds

Definition 3. A Riemannian manifold (M?"*+1 g), n > 1, is said to be h-Weyl
semisymmetric if

C(X,Y)-h=0
holds on M.

Theorem 3. Let M?"*1(4,£,m,9) be a non-Sasakian (k, p)-contact metric
manifold. If M is h-Weyl semisymmetric, then M is an n-FEinstein manifold.

Proof. Let M be a (2n + 1)-dimensional h-Weyl semisymmetric non-Sasakian
(k, u)-contact metric manifold. The condition C(X,Y) - h = 0 turns into
(6.1) (C(X,Y)-h)Z=C(X,Y)hZ —hC(X,Y)Z =0,
for any vector fields X, Y, Z. Using (1.2) and (4.1) in (6.1), we have
{klg(nY; Z)n(X) — g(hX, Z)n(Y)]
+p(k = Dg(X, Z)n(Y) = g(Y, Z)n(X)]}€
+k{g(Y, 0Z)phX — g(X, ¢Z)phY + g(Z, phY )X
—9(Z,6hX)pY +n(Z)[n(X)hY —n(Y)hX]}
(6.2) —p{n(V)[(1 = k)n(Z2)X + pn(X)hZ]
—n(X)[(1 = k)n(2)Y +un(Y)hZ] + 29(X, ¢Y)ohZ}

2n1_ 1{S(Y, hZ)X — S(X,hZ)Y +g(Y,hZ)QX — g(X,hZ)QY }

4T
2n(2n — 1)

Replacing X by hX, taking the inner product with W and using symmetry
property of h, we obtain from (6.2)

{9(Y,hZ)X — g(X,hZ)Y — g(Y, Z)hX + g(X, Z)hY} = 0.
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k(k —D){g(X, 2)n(Y)n(W) — n(X)n(Z)n(Y)n(W)}

+u(k = 1)g(hX, Z)n(Y)n(W)

k{g(hX,0Z)g(hY,¢W) — (k — 1)g(X, oW )g(Z, ¢Y')

+9(hY,9Z)g(h X, W) — (k — 1)g(X, ¢Z)g(¢Y, W)

+(k = Dg(X, Wn(Y)n(Z) — (k = Dn(X)n(Z)n(Y )n(W)}
(6.3) +u(k Dg(hX, W)n(Y)n(Z) + 2ug(hX, ¢Y)g(hZ, oW)
—{S(V,hZ)g(hX, W) = S(hX.hZ)g(Y, W) + S(hX, W)g(hY, Z)

) —
" on
+(k — )(XZ)( W) — (k= 1D)S(Y, W)n(X)n(Z)
+(k = 1)S(Y, 2)g(X, W) + (k — )S(Y, Z)n(X)n(W)
+S(hX, Z)g(hY, W) — S(hX,hW)g(Y, Z) + S(Y, hW)g(X, hZ)}

@ =1y DX W) + (k= 1)g(X, 2)g(V, W)

—(k = Dg(Y,W)n(X)n(Z) + (k — 1)g(X, W)g(Y, 2)
—(k = Dg(Y Z)n(X)n(W) + g(hX, Z)g(hY, W)} = 0
Now taking Y = W = ¢ in (6.3), we get

n? nk(2n—1) — 7
S(hX,h7) = {4 T } (k - 1)g(X, 2)
(6.4) ~ (2~ Da(k — Dg(hX. 2)
{2%(27;;(;;__?; it T} (k = 1)n(X)n(2).

Again replacing X by hX and Z by hZ in (6.4) and using (2.1) and (2.8), we
have

oy P et D 4. 2) - (20 - Dug(nx. 2)
{4” i _22725752111_) D-r7, an] n(X)n(2).

Now using (2.11) in (6.5), we get
S(X, Z) = Aig(X, Z) + Bin(X)n(Z),

where
i =D+ (7 = 20k) + (20 — Dp2(n — 1) —ny
' 2(n—1+nu) )
and
B, = 2= 1)+ pl(nk = 7) + (2n — Duf2(1 —n) +n(2k + p)]

2(n — 1+ npu)
So M is an n-Einstein manifold. (]
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Thus from Corollary 1 we have the following:

Corollary 4. If a 3-dimensional non-Sasakian (k, p)-contact metric manifold
is h-Weyl semisymmetric, then the manifold is an N(k)-contact metric mani-
fold.

7. ¢-Weyl semisymmetric non-Sasakian (k, u)-contact metric
manifolds

Definition 4. A Riemannian manifold (M?"+1 g), n > 1, is said to be ¢-Weyl
semisymmetric if

CX,)Y)-¢=0
holds on M.

Theorem 4. Let M?"t1(¢,&,m,9) be a non-Sasakian (k,p)-contact metric
manifols. If M is ¢-Weyl semisymmetric, then M is an n-Finstein manifold.

Proof. Let M be a (2n + 1)-dimensional ¢-Weyl semisymmetric non-Sasakian
(k, p)-contact metric manifold. The condition C'(X,Y) - ¢ = 0 turns into
for any vector fields X, Y, Z. Using (1.2) and (5.1) in (7.1), we have
(1= K)lg(eY; 2)n(X)§ — g(6X, Z)n(Y )¢]
+(1 = wlg(ehY, Z)n(X)§ — g(ohX, Z)n(Y)¢E]
—g(Y + 1Y, Z)(¢X + ¢hX) + g(X + hX, Z)(¢Y + ¢hY)
(7.2) —g(¢Y + ¢hY, Z)(X + hX) + g(¢X + ¢hX, Z)(Y + hY)
—n(Z2){(1 = kF)[n(X)oY —n(Y)X] + (1 — w)[n(X)phY —n(Y)phX]}
S IS(V.02)X — S(X,02)Y + (Y, 62)QX - 4(X, 62)QX
—S(Y,2)pX + S(X, Z)oY — g(Y, Z2)9QX + g(X, Z)¢QX]
[9(Y,0Z)X — g(X,62)Y —g(Y, Z)¢X + g(X, Z)$X] = 0.

N T

2n(2n — 1)

Replacing X by ¢X, taking the inner product with W and using (2.1) and
symmetry property of h, we obtain from (7.2)

(k = D[=g(X, Z)n(Y )n(W) + n(X)n(Z)n(Y)n(W)]

+(u =D g(hX, Z)n(Y)n(W) + g(Y, Z2)g(X, W) — g(Y, Z)n(X)n(W)
—9(Y, Z)g(hX, W) + g(hY, Z)g(X, W) — g(hY, Z)n(X)n(W)
—g(hY, Z)g(hX, W) — g(X,9Z)g(¢Y, W) — g(X, ¢Z)g(¢hY, W)

(7.3)  +9(X,h¢Z)g(dY, W) + g(X, h¢Z)g(dhY, W) — g(8Y, Z)g(¢ X, W)

—9(8Y, 2)g(¢ X, hW) — g(¢hY, Z)g(¢ X, W) + g(hY, ¢Z)g(¢ X, hW)
—9(X, Z)g(Y, W) + g(Y, W)n(X)n(Z) — 9(X, Z)g(hY, W)

+g(h Wn(X)n(Z) + g(hX, Z)g(Y, W) + g(hX, Z)g(hY, W)
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+(k = Dg(X, W)n(Y)n(Z) + (k = Dn(X)n(Z)n(Y)n(W)
= Dg(hX, Wyn(¥)n(Z) — - [S(Y,62)g(6X, W)

—S(¢X,0Z)g(Y, W) + S(¢X,W)g(Y,¢Z) — S(Y,W)g(X, Z)
+S(Y, W)n(X)n(Z) + S(Y, Z)g(X, W) — S(Y, Z)n(X)n(W)
+5(¢X, Z)g(dY, W) — S(¢X, W )g(Y, Z) + g(X, Z)S(Y, W )]
o =T Y 0290, W) = g(X, Z2)g(Y, W)
+9(Y,W)n(X)n(Z) + g(X,W)g(Y, Z) — g(Y, Z)n(X)n(W)
—9(X,9Z)g(¢Y,W)] = 0.

Replacing Y and W by £ in (7.3), we obtain

(7.4)

S(X,Z) = [i — Kg(X, Z) + [6n — 4+ ulg(hX, Z) + [2nk —

T

o T kln(X)n(Z).

Now using (2.11) in (7.4), we get
S(X, Z) = A29(X, Z) + Ban(X)n(2),

where

= [2(n—=1) + pl(T — 2nk) — 2n(6n — 4+ p)[2(n — 1) — nyl

AZ = )

4n(1 — 2n)
and
5, 20— 1)+ pl(2n(2n + Dk — 7) — 20(6n — 4 + p)[2(1 — ) + n(2k + )
z An(1 = 2n) '

Thus M is an n-Einstein manifold. O

Hence from Corollary 1 we get the following:

Corollary 5. If a 3-dimensional non-Sasakian (k, u)-contact metric manifold

is ¢-Weyl semisymmetric, then the manifold is an N(k)-contact metric mani-
fold.
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