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GRADIENT EINSTEIN-TYPE CONTACT METRIC

MANIFOLDS

Huchchappa Aruna Kumara and Venkatesha Venkatesha

Abstract. Consider a gradient Einstein-type metric in the setting of K-

contact manifolds and (κ, µ)-contact manifolds. First, it is proved that,
if a complete K-contact manifold admits a gradient Einstein-type metric,

then M is compact, Einstein, Sasakian and isometric to the unit sphere
S2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds

admits a gradient Einstein-type metric, then it is flat in dimension 3, and

for higher dimension, M is locally isometric to the product of a Euclidean
space En+1 and a sphere Sn(4) of constant curvature +4.

1. Introduction

Let (M, g) be a smooth Riemannian manifold of dimension ≥ 3. We say that
(M, g) is an Einstein-type manifold or that (M, g) supports an Einstein-type
structure if there exist a vector field V on M and a smooth function λ : M → R
such that

αS +
β

2
£V g + νV # ⊗ V # = γg = (ρr + λ)g(1)

for some constants α, β, ν, ρ ∈ R with (α, β, ν) 6= 0. Here £ and V #(X) =
g(V,X) stand for the Lie derivative and the 1-form metrically dual to the vector
field V , respectively. If V = ∇f for some smooth function f : M → R, we say
that (M, g) is a gradient Einstein-type manifold. In this case, the equation (1)
can be written as

αS + β∇2f + νdf ⊗ df = γg,(2)

where S is Ricci tensor and ∇2 stands for the Hessian of f . We refer to f as
the potential function.

The concept of Einstein-type manifold was studied and introduced by Catino
et al. as a generalization of Einstein spaces [8]. In case f is constant we say that
the Einstein-type structure is trivial. Notice that, an Einstein-type structure
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on a Riemannian manifold (M, g) unifies several particular cases well studied
in the literature, such as Ricci solitons [15,22], Ricci almost solitons [23], gradi-
ent Ricci solitons, Yamabe solitons [6, 10], Yamabe quasi-solitons [16], confor-
mal gradient solitons [25], m-quasi-Einstein manifolds [7], (m, ρ)-quasi-Einstein
manifold [17] and ρ-Einstein solitons [9].

There has been a growing interest in the study of Einstein condition and
its various generalizations in the setting of contact metric manifolds in a re-
cent years. In [4], Boyer-Galicki studied Einstein and η-Einstein K-contact
manifolds and they proved that any compact K-contact Einstein manifold is
Sasakian. In [24], the author generalizing Boyer-Galicki result proved that
if a complete K-contact metric represents a gradient Ricci soliton, then it is
compact Einstein and Sasakian. Extending these for gradient Ricci almost
solitons, the author [11] proved that if a compact K-contact metric represents
a gradient Ricci almost soliton, then it is isometric to a unit sphere S2n+1.
Recently, Ghosh studied m-quasi-Einstein, generalized m-quasi-Einstein and
(m, ρ)-quasi-Einstein metric within the background of contact geometry re-
spectively in [13], [14] and [12]. These works of Ghosh inspires us to study the
gradient Einstein-type condition within the background of K-contact manifolds
and (κ, µ)-contact manifolds.

In this paper, we confine our study to the gradient Einstein-type metric
within the framework of K-contact and (κ, µ)-contact manifolds. In Section 2,
we gathered some preliminary definitions and formulas on contact manifolds.
In Section 3, we prove that if complete K-contact manifolds admit a gradient
Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to
the unit sphere S2n+1. In Section 4, we consider (κ, µ)-contact manifold which
admits a gradient Einstein-type metric and we prove that if a non-Sasakian
(κ, µ)-contact manifold supports a gradient Einstein-type structure, then for
n = 1, M is flat, and for n > 1, M is locally isometric to En+1 × Sn(4).

We have borrowed some ideas and arguments from [21], but our goals and
main results are different from [21].

2. Preliminaries

Let us recall the basic concepts and formulas of contact metric manifolds.
A (2n+ 1)-dimensional smooth manifold M is said to be contact if it admits a
global 1-form η such that η ∧ (dη)n 6= 0 on M . This 1-form is called a contact
1-form. For a contact 1-form η, there exists a unique vector field ξ such that
dη(ξ,X) = 0 for all vector field X and η(ξ) = 1. Polarizing dη on the contact
sub-bundle D (defined by η = 0), we obtain a Riemannian metric g and a
(1, 1)-tensor field ϕ such that

dη(X,Y ) = g(X,ϕY ), η(X) = g(X, ξ), ϕ2X = −X + η(X)ξ(3)

for all X,Y ∈ TM . It can also be deduced from these equations:

ϕξ = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).(4)
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The structure (ϕ, ξ, η, g) on M is known as a contact metric structure and the
metric g is called an associated metric. A Riemannian manifold M together
with the structure (ϕ, ξ, η, g) is said to be a contact metric manifold and we
denote it by (M,ϕ, ξ, η, g). On a contact metric manifold (see [1])

∇Xξ = −ϕX − ϕhX, hϕ+ ϕh = 0,(5)

(∇Xϕ)Y + (∇ϕXϕ)ϕY = 2g(Y,X)ξ − η(Y )(X + hX + η(Z)ξ),(6)

for any vector field X,Y on M and ∇ denotes the operator of covariant dif-
ferentiation of g. If the vector field ξ is Killing (equivalently, h = 0) with
respect to g, then the contact metric manifold M is said to be K-contact. On
a K-contact (Sasakian) manifold the following formulas are known [1]

∇Xξ = −ϕX,(7)

Qξ = 2nξ,(8)

(∇Xϕ)Y = R(ξ,X)Y,(9)

where Q and R denote the Ricci operator and the Riemann curvature tensor of
g, respectively. A contact metric manifold is said to be Sasakian if it satisfies

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X.(10)

On a Sasakian manifold the curvature tensor satisfies

R(X,Y )ξ = η(Y )X − η(X)Y.(11)

Also, the contact metric structure on M is said to be Sasakian if the almost
Käehler structure on the metric cone (M ×R+, r2g + dr2) over M , is Käehler
[1]. Any Sasakian manifold is K-contact, and the converse only holds when the
dimension is 3. See [1] and [5] for more information about it.

3. K-contact manifold satisfying the gradient Einstein-type metrics

Here, consider a K-contact metric as a gradient Einstein-type metric. The
following will be needed to prove our main result.

Lemma 3.1. If (M, g, α, β, ν, γ) is a gradient Einstein-type contact metric
manifold, then the curvature tensor R has the expression

βR(X,Y )Df = α[(∇YQ)X − (∇XQ)Y ] +
νγ

β
[(Xf)Y − (Y f)X]

+
να

β
[(Y f)QX − (Xf)QY ] + [(Xγ)Y − (Y γ)X](12)

for any vector fields X,Y on M .

Proof. The gradient Einstein-type equation (2) can be expressed as

αQY + β∇YDf + νg(Y,Df)Df = γY,(13)
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where D is the gradient operator of g. Differentiate (13) covariantly along X,
we obtain

α(∇XQ)Y + αQ∇XY + β∇X∇YDf + νg(∇XY,Df)Df

+ νg(Y,∇XDf)Df + νg(Y,Df)∇XDf = (Xγ)Y + γ∇XY.(14)

Then the required result follows by applying this equation and (13) to the well
known expression R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. �

Theorem 3.2. Let (M,ϕ, ξ, η, g) be a complete K-contact manifold of dimen-
sion 2n + 1. If there exists a gradient Einstein-type structure (f, α, β, ν, γ)
associated with the contact metric g, then M is compact, Einstein, Sasakian
and isometric to the unit sphere S2n+1.

Proof. Applying the covariant derivative to (8) and then employing (7), we
obtain

(∇XQ)ξ = QϕX − 2nϕX.(15)

At this point we remember that for a K-contact manifold ξ is Killing, and
hence LξQ = 0. In view of (7) and (8), we obtain ∇ξQ = Qϕ−ϕQ. Replacing
ξ with X in (12) and making use of ∇ξQ = Qϕ− ϕQ, (15) and (9), we get

−βg((∇Y ϕ)X,Df) = αg(ϕQY − 2nϕY,X) +

[
(ξγ) +

νγ

β
(ξf)

]
g(Y,X)

+

[
ν(2nα− γ)

β

]
(Y f)η(X)− (ξf)

να

β
g(QY,X)

− (Y γ)η(X).(16)

Replacing X and Y by ϕX and ϕY respectively in relation (16), adding the
resulting equation with (16) and then using (6) (where h = 0, as M is K-
contact) and (7), we have

− 2β(ξf)g(Y,X) + β(Y f)η(X) + β(ξf)η(Y )η(X)

= αg((ϕQ+Qϕ)Y,X) + 2

[
(ξγ) +

νγ

β
(ξf)

]
g(Y,X)

+ (ξf)
να

β
g(ϕQϕY −QY,X)−

[
(ξγ) +

νγ

β
(ξf)

]
η(Y )η(X)

+
ν(2nα− γ)

β
(Y f)η(X)− 4nαg(ϕY,X)− (Y γ)η(X).(17)

Since Q is self-adjoint, anti-symmetrizing the above equation gives

β[(Y f)η(X)− (Xf)η(Y )] = 2αg((ϕQ+Qϕ)Y,X)− 8nαg(ϕY,X)

+
ν(2nα− γ)

β
[(Y f)η(X)− (Xf)η(Y )]

+ [(Xγ)η(Y )− (Y γ)η(X)].(18)
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Now replacing X by ϕX and Y by ϕY in the equation (18) and applying the
K-contact condition (8), (3), η ◦ ϕ = 0 and ϕξ = 0 gives

g((ϕQ+Qϕ)Y,X) = 4ng(ϕY,X)

for all vector fields Y, Z on M . It follows from last equation that

(ϕQ+Qϕ)Y = 4nϕY.(19)

In view of above equation, it follows from (18) that

ν(2nα− γ)− β2

β
[(Y f)η(X)− (Xf)η(Y )] = [(Y γ)η(X)− (Xγ)η(Y )].(20)

Next, taking σ = ν(2nα− γ)− β2. So Dσ = −νDγ. On account of these, (20)
can be exhibited as

σDf +
β

ν
Dσ =

{
σ(ξf) +

β

ν
(ξσ)

}
ξ.(21)

Differentiating (21) in the direction of X and utilization of (7) provides

(Xσ)Df + σ∇XDf +
β

ν
∇XDσ = X

{
σ(ξf) +

β

ν
(ξσ)

}
ξ

−
{
σ(ξf) +

β

ν
(ξσ)

}
ϕX.(22)

Taking inner product of (22) with Y and then anti-symmetrizing the resulting
equation, we obtain

(Xσ)(Y f)− (Y σ)(Xf) = X

{
σ(ξf) +

β

ν
(ξσ)

}
η(Y )

− Y
{
σ(ξf) +

β

ν
(ξσ)

}
η(X)

− 2

{
σ(ξf) +

β

ν
(ξσ)

}
g(ϕX, Y ).(23)

Now we can write the equation (21) as

(Xσ) =

{
σν

β
(ξf) + (ξσ)

}
η(X)− σν

β
(Xf).(24)

Substituting (24) in (23), inserting X by ϕX, Y by ϕY in the resulting equation
and noting that g(ϕX, Y ) 6= 0 for any contact metric manifold, we obtain

σ(ξf) +
β

ν
(ξσ) = 0.(25)

Making use of (25) in (21), we get

(ν(2nα− γ)− β2)(Xf) = −β
ν

(Xσ).(26)
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On the other hand, taking the trace of (12) over X we obtain[
β2 + να

β

]
S(Y,Df) =

α

2
(Y r) +

ν(rα− 2nγ)

β
(Y f)− 2n(Y γ).(27)

Let {ei, ϕei, ξ}, i = 1, 2, 3, . . . , n be an orthonormal ϕ-basis of M such that
Qei = ρiei. Thus, we have ϕQei = ρiϕei. Substituting ei for Y in (19), we
obtain Qϕei = (4n− ρi)ϕei. Using the ϕ-basis and (8), the scalar curvature r
is given by

r = g(Qξ, ξ) +

n∑
i=1

[g(Qei, ei) + g(Qϕei, ϕei)]

= g(Qξ, ξ) +

n∑
i=1

[ρig(ei, ei) + (4n− ρi)g(ϕei, ϕei)]

= 2n(2n+ 1).

Making use of the constancy of r, Dσ = −νDγ and (26) in (27), it follows that
QDf = 2nDf . Differentiating this along X and recalling (13) and QDf =
2nDf , we obtain

(∇XQ)Df − α

β
Q2X +

(γ + 2nα)

β
QX − 2nγ

β
X = 0.

Contracting the foregoing equation over X and observing that r = 2n(2n+ 1),
we get

2n+1∑
i=1

g((∇eiQ)Df, ei)−
α

β
|Q|2 + r

(γ + 2nα)

β
− rγ

β
= 0.(28)

Using that the scalar curvature is constant, the first term vanishes because
divQ = 1

2dr (this follows from the contraction of Bianchi’s second identity).

From (28), we deduce |Q|2 = 2nr. Then, since r = 2n(2n+ 1), we get∣∣∣∣Q− r

2n+ 1
I

∣∣∣∣2 = |Q|2 +
r2

2n+ 1
− 2r2

2n+ 1

= 2nr − r2

2n+ 1

= 4n2(2n+ 1)− 4n2(2n+ 1) = 0.

Since the symmetric tensor Q− r
2n+1I is of length zero, we get

Q =
r

2n+ 1
I = 2nI.

This shows that M is Einstein with Einstein constant 2n. Since M is complete,
compactness of M follows from Myers’ theorem [19]. Applying the result of
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Boyer-Galicki [4], we can conclude that M is Sasakian. Consequently, (13)
reduces to

∇YDf =
(γ − 2nα)

β
Y − ν

β
g(Y,Df)Df.(29)

Now consider a smooth function u = e
ν
β f onM . From this we have the following

relation (see Gomes [18]);

Du =
ν

β
uDf,(30)

∇YDf +
ν

β
g(Y,Df)Df =

β

νu
∇YDu.(31)

Comparing (29) and (31), we get

∇YDu =
(γ − 2nα)νu

β2
Y.(32)

As M is Einstein with constant scalar curvature r = 2n(2n+ 1), the equation
(27) takes the form (γν− 2nνα+β2)Df = −βDγ. Using (30) in the foregoing
equation we immediately infer that

(γν − 2nνα+ β2)Du = −νuDγ.

From this we can write γνDu + νuDγ = (2nνα − β2)Du, which is equivalent
to D(γνu) = (2nνα− β2)Du. In other words, γνu = (2nνα− β2)u+ k, where
k is a constant. This together with (32) gives

∇YDu =

(
−u+

k

β2

)
Y.(33)

As a result of Theorem 2 of Tashiro [25] it follows that M is isometric to unit
sphere S2n+1. This completes the proof. �

Corollary 3.3. Let (M, g, α, β, ν, γ) be a complete gradient Einstein-type man-
ifold. If g represents a Sasakian metric, then it is compact, Einstein and iso-
metric to the unit sphere S2n+1.

Proof. This follows with the same proof as Corollary 3.1 in [21]. �

Further, we remark that our Theorem 3.2 generalizes the results of Ghosh
[11,12,14] on K-contact manifold admitting Ricci almost soliton, (m, ρ)-quasi-
Einstein metric and generalized m-quasi-Einstein metric.

4. (κ, µ)-contact manifold satisfying gradient Einstein-type metrics

Blair et al. [2] introduced a (κ, µ)-contact manifold which is a contact metric
manifold (M,ϕ, ξ, η, g) whose curvature tensor satisfies

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }(34)
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for all vector fields X,Y on M and for some real numbers (κ, µ). Later on,
Boeckx [3] classified these manifolds completely. This type of manifold is ob-
tained by applying the D-homothetic deformation to a contact metric manifold
that satisfies R(X,Y )ξ = 0. This class contains Sasakian manifolds (for κ = 1)
and the trivial sphere bundle En+1 × Sn(4) (for κ = µ = 0). Examples of
non-Sasakian (κ, µ)-contact metric manifolds are the unit tangent bundles of
Riemannian manifolds of constant curvature 6= 1. A lot of examples of (κ, µ)-
contact structures can be constructed because of a D-homothetic deformation
preserves (κ, µ)-contact structures (see [2]). On non-Sasakian (κ, µ)-contact
manifolds, the following formulas are also true [2]:

QX = [2(n− 1)− nµ]X + [2(n− 1) + µ]hX

+ [2(1− n) + n(2κ+ µ)]η(X)ξ,(35)

Qξ = 2nκξ,(36)

h2 = (κ− 1)ϕ2, κ < 1.(37)

For the non-Sasakian case, i.e., κ < 1, the equation (34) determines the cur-
vature of M completely. As a result of this, it is proved that a non-Sasakian
(κ, µ)-contact manifold is locally homogeneous and hence analytic [3]. More-
over, the scalar curvature r of such manifold is given

r = 2n(2(n− 1) + κ− nµ),(38)

which is constant. On a (κ, µ)-contact manifold we have

(∇ξQ)X = µ(2(n− 1) + µ)hϕX(39)

for any vector field X on M .
Here we intend to examine the existence of gradient Einstein-type metric on

(κ, µ)-contact manifold, and prove the following fruitful outcome.

Theorem 4.1. Let (M,ϕ, ξ, η, g) be a non-Sasakian (κ, µ)-contact manifold.
If there exists a gradient Einstein-type structure (f, α, β, ν, γ) associated with
the metric g, then for n = 1, M is flat, and for n > 1, M is locally isometric
to En+1 × Sn(4).

Proof. First, differentiate (36) covariantly along an arbitrary vector field X
and utilization of (5), we obtain

(∇XQ)ξ = Q(ϕ+ ϕh)X − 2nk(ϕ+ ϕh)X.(40)

Thus, taking the scalar product of (12) with ξ and using (36), the equation
(40) gives

g(R(X,Y )Df, ξ) =
α

β
{g(QϕY + ϕQY,X) + g(QϕhY + hϕQY,X)

− 4nkg(ϕY,X)}+
ν(2nkα− γ)

β2
{(Y f)η(X)− (Xf)η(Y )}
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+
1

β
{(Xγ)η(Y )− (Y γ)η(X)}.(41)

Replacing X with ϕX, and Y with ϕY in (41), and observing that R(ϕX,ϕY )ξ
= 0 (this follows from (34)), we get

α{QϕY + ϕQY − ϕQhY − hQϕY − 4nkϕY } = 0.

Since α 6= 0, the above equation gives

QϕY + ϕQY − ϕQhY − hQϕY − 4nkϕY = 0.(42)

As a result of (35), one can get

(Qϕ+ ϕQ)Y = 2[2(n− 1)− nµ]ϕY.

Inserting X by ϕX in (35) and then applying h to the resulting equation, and
utilization of (37) implies that

hQϕX = [2(n− 1)− nµ]hϕX − (κ− 1)[2(n− 1) + µ]ϕX.

Moreover, applying ϕ to (35) and then using hX instead of X in the resulting
equation, and using (37), we get

ϕQhX = [2(n− 1)− nµ]ϕhX − (κ− 1)[2(n− 1) + µ]ϕX.

Utilization of last three equations in the equation (42) yields

κ(µ− 2) = µ(n+ 1).(43)

Substituting ξ instead of X in (41), recalling (34) and (36) we obtain

µβhDf =

[
ν(2nkα− γ)

β
− κβ

]
{Df − (ξf)ξ}+ {(ξγ)ξ −Dγ}.(44)

Since the scalar curvature is constant, it follows from (27) that

Dγ =
ν(rα− 2nγ)

2nβ
Df − (β2 + να)

2nβ
QDf.(45)

This in combination with (44) implies that

µhDf =

[
4n2κνα− 2nkβ2 − νrα

2n

]
Df +

[
rνα− 2nkνα− 4n2κνα

2n

]
(ξf)ξ

+
β2 + να

2n
QDf.(46)

In a (κ, µ)-contact manifold, the following relationship is well established (see
[2])

(∇ξh) = µhϕ.(47)

From (13), we have

∇ξDf =
γ − 2nkα

β
ξ − ν

β
(ξf)Df.(48)
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Differentiating (46) along ξ and taking into account (39), (46)-(48) we ulti-
mately obtain

µ2hϕDf =
νb

β
(ξf)ξ +

[
a(γ − 2nkα) + b(γ − 2nkα− ν(ξf)2)

β

]
ξ

+
β2 + να

2n
[µ(2(n− 1) + µ)hϕDf ],(49)

where we used g(∇ξDf, ξ) = ξ(ξf). Here,

a =
4n2κνα− 2nkβ2 − νrα

2n
and b =

rνα− 2nkνα− 4n2κνα

2n
.

Applying ϕ to the above equation, we obtain{
µ2 − µ

(
β2 + να

2n

)
[2(n− 1) + µ]

}
hDf = 0.(50)

Furthermore, operating the preceding equation by h and using (37), it follows
that

µ
[
µ(2n− (β2 + να))− 2(β2 + να)(n− 1)

]
(κ− 1)ϕ2Df = 0.(51)

Since M is non-Sasakian, we have either (i) µ = 0 or (ii) ϕ2Df = 0 or (iii)

µ = 2(β2+να)(n−1)
2n−(β2+να) .

Case (i). Here, it follows from (43) that κ = 0 because of µ = 0. Hence
R(X,Y )ξ = 0, according to the result of Blair [1] we obtain that M is flat
in dimension 3 and in higher dimensions it is locally isometric to the trivial
bundle E(n+1) × Sn(4).

Case (ii). Making use of (3) in ϕ2Df = 0 yields Df = (ξf)ξ. Differentiat-
ing this along X, employing (3) gives that∇XDf = X(ξf)ξ−(ξf)(ϕX+ϕhX).
As a result of Poincare lemma g(∇XDf, Y ) = g(∇YDf,X), the last equation
provides

X(ξf)η(Y )− Y (ξf)η(X) + 2(ξf)g(X,ϕY ) = 0.

Replacing X and Y with ϕX and ϕY , respectively, in the above equation
furnishes ξf = 0, where we applied g(X,ϕY ) 6= 0 for any contact metric struc-
ture. By virtue of this, we have Df = 0, i.e., f is constant and consequently
(13) shows that M is Einstein, i.e., QX = γ

αX = 2nκX by (48). Contract-
ing this over X we find that the scalar curvature r = 2nκ(2n + 1). It shows
nµ = 2(n − 1) − 2nκ in combination with (38). On the other hand, we can
easily find [2(n − 1) + µ]h = 0 from (35) on the basis of last equation and
QX = 2nκX. Since M is non-Sasakian, we must have 2(n− 1) + µ = 0. So it
follows for dimension 3 that µ = 0 = κ, and by applying Blair’s result [1] we
obtain that M is flat. Again, for higher dimension it follows from µ = 2(1−n)
and (43) that κ = n− 1

n > 1, contradicting our assumption.
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Case (iii). Since µ = 2(β2+να)(n−1)
2n−(β2+να) , it follows from (43) that

κ =
(β2 + να)(n2 − 1)

n(β2 + να)− 2n
.

For n = 1, it follows that µ = κ = 0 and hence flat. For n > 1, making use of
(35) in (46) provides

[4n2κνα− 2nκβ2 − νrα+ (β2 + να){2(n− 1)− nµ}]{Df − (ξf)ξ}
+ [2(β2 + να)(n− 1) + µ((β2 + να)− 2n)]hDf = 0.

By virtue of µ = 2(β2+να)(n−1)
2n−(β2+να) , the above equation entails that

[4n2κνα− 2nκβ2 − νrα+ (β2 + να){2(n− 1)− nµ}]{Df − (ξf)ξ} = 0.

If Df − (ξf)ξ = 0, then proceeding as in Case (ii) it follows that, for n > 1, a
contraction. Therefore, we only have 4n2κνα−2nκβ2−νrα+(β2 +να){2(n−
1)− nµ} = 0. This together with (38) entails that

((2n− 1)να− β2)[2(1− n) + n(2κ+ µ)] = 0,

which implies that either β2 = (2n − 1)να, or 2(1 − n) + n(2κ + µ) = 0. The
former case shows that κ > 1, a contradiction. For later case, utilization of

µ = 2(β2+να)(n−1)
2n−(β2+να) and κ = (β2+να)(n2−1)

n(β2+να)−2n , the last equation transforms into

β2 + να =
2n− 2n2

n3 − 2n2 + 1
.

Making use of this in κ = (β2+να)(n2−1)
n(β2+να)−2n , we obtain κ = 1, and this leads to a

contradiction as M is non-Sasakian. This establishes the proof. �

It is known [18] that a compact Riemannian manifold admitting a nontrivial
gradient Einstein-type metric with constant scalar curvature is isometric to the
standard sphere. But a contact metric manifold of constant curvature is a
Sasakian manifold of constant curvature in dimension > 3 [20]. On the other
hand, in dimension 3, it is either flat or Sasakian manifold of constant curvature
1 (see Blair [1]). From (38) we see that the scalar curvature of a (κ, µ)-space is
constant. Thus, for a compact (κ, µ)-contact manifold we have the following:

Corollary 4.2. If a compact (κ, µ)-contact manifold admits a gradient
Einstein-type metric, then in dimension 3 it is either flat or Sasakian and
for higher dimensions it is isometric to a unit sphere S2n+1.
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