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GRADIENT EINSTEIN-TYPE CONTACT METRIC
MANIFOLDS

HucHCHAPPA ARUNA KUMARA AND VENKATESHA VENKATESHA

ABSTRACT. Consider a gradient Einstein-type metric in the setting of K-
contact manifolds and (k, p)-contact manifolds. First, it is proved that,
if a complete K-contact manifold admits a gradient Einstein-type metric,
then M is compact, Einstein, Sasakian and isometric to the unit sphere
S2n+1. Next, it is proved that, if a non-Sasakian (k, u)-contact manifolds
admits a gradient Einstein-type metric, then it is flat in dimension 3, and
for higher dimension, M is locally isometric to the product of a Euclidean
space E"t! and a sphere S™(4) of constant curvature +4.

1. Introduction

Let (M, g) be a smooth Riemannian manifold of dimension > 3. We say that
(M, g) is an Einstein-type manifold or that (M, g) supports an Einstein-type
structure if there exist a vector field V on M and a smooth function A : M — R
such that

(1) aS+§£Vg+VV#®V#:'yg:(pr+/\)g

for some constants «, 3,v,p € R with (o, 8,v) # 0. Here £ and V#(X) =
g(V, X)) stand for the Lie derivative and the 1-form metrically dual to the vector
field V, respectively. If V' = V f for some smooth function f: M — R, we say
that (M, g) is a gradient Einstein-type manifold. In this case, the equation (1)
can be written as

(2) aS + BVEf + vdf @ df =g,

where S is Ricci tensor and V? stands for the Hessian of f. We refer to f as
the potential function.

The concept of Einstein-type manifold was studied and introduced by Catino
et al. as a generalization of Einstein spaces [8]. In case f is constant we say that
the Einstein-type structure is trivial. Notice that, an Einstein-type structure
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on a Riemannian manifold (M, g) unifies several particular cases well studied
in the literature, such as Ricci solitons [15,22], Ricci almost solitons [23], gradi-
ent Ricci solitons, Yamabe solitons [6,10], Yamabe quasi-solitons [16], confor-
mal gradient solitons [25], m-quasi-Einstein manifolds [7], (m, p)-quasi-Einstein
manifold [17] and p-Einstein solitons [9].

There has been a growing interest in the study of Einstein condition and
its various generalizations in the setting of contact metric manifolds in a re-
cent years. In [4], Boyer-Galicki studied Einstein and n-Einstein K-contact
manifolds and they proved that any compact K-contact Einstein manifold is
Sasakian. In [24], the author generalizing Boyer-Galicki result proved that
if a complete K-contact metric represents a gradient Ricci soliton, then it is
compact Einstein and Sasakian. Extending these for gradient Ricci almost
solitons, the author [11] proved that if a compact K-contact metric represents
a gradient Ricci almost soliton, then it is isometric to a unit sphere S?7+1!.
Recently, Ghosh studied m-quasi-Einstein, generalized m-quasi-Einstein and
(m, p)-quasi-Einstein metric within the background of contact geometry re-
spectively in [13], [14] and [12]. These works of Ghosh inspires us to study the
gradient Einstein-type condition within the background of K-contact manifolds
and (k, 1)-contact manifolds.

In this paper, we confine our study to the gradient Einstein-type metric
within the framework of K-contact and (k, 1)-contact manifolds. In Section 2,
we gathered some preliminary definitions and formulas on contact manifolds.
In Section 3, we prove that if complete K-contact manifolds admit a gradient
FEinstein-type metric, then M is compact, Einstein, Sasakian and isometric to
the unit sphere S?"*+1. In Section 4, we consider (, u1)-contact manifold which
admits a gradient Einstein-type metric and we prove that if a non-Sasakian
(K, p)-contact manifold supports a gradient Einstein-type structure, then for
n =1, M is flat, and for n > 1, M is locally isometric to E"*1 x S"(4).

We have borrowed some ideas and arguments from [21], but our goals and
main results are different from [21].

2. Preliminaries

Let us recall the basic concepts and formulas of contact metric manifolds.
A (2n 4 1)-dimensional smooth manifold M is said to be contact if it admits a
global 1-form n such that n A (dn)™ # 0 on M. This 1-form is called a contact
1-form. For a contact 1-form 7, there exists a unique vector field £ such that
dn(&, X) = 0 for all vector field X and n(¢) = 1. Polarizing dn on the contact
sub-bundle D (defined by n = 0), we obtain a Riemannian metric g and a
(1,1)-tensor field ¢ such that

3)  dn(X,Y)=g(X,9Y), n(X)=9(X,8), ©*X=-X+n(X)¢
for all X,Y € TM. It can also be deduced from these equations:
(4) =0, nop=0, g(pX,pY)=g(X,Y)—-n(X)nY).
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The structure (¢, &,n,g) on M is known as a contact metric structure and the
metric g is called an associated metric. A Riemannian manifold M together
with the structure (¢, &, n,g) is said to be a contact metric manifold and we
denote it by (M, ¢, &, n,g). On a contact metric manifold (see [1])

(5)  Vx&=—-pX—phX,  he+ph=0,

6)  (Vx)Y + (Voxp)pY =29(Y, X)§ = n(Y)(X + hX + n(2)f),

for any vector field X,Y on M and V denotes the operator of covariant dif-
ferentiation of g. If the vector field ¢ is Killing (equivalently, h = 0) with

respect to g, then the contact metric manifold M is said to be K-contact. On
a K-contact (Sasakian) manifold the following formulas are known [1]

(7) Vx&=—pX,
(8) Q& = 2né,
9) (Vxp)Y = R(§, X)Y,

where @) and R denote the Ricci operator and the Riemann curvature tensor of
g, respectively. A contact metric manifold is said to be Sasakian if it satisfies

(10) (Vx)Y =g(X,Y)§ —n(Y)X.
On a Sasakian manifold the curvature tensor satisfies
(11) R(X,Y)§ =n(Y)X —n(X)Y.

Also, the contact metric structure on M is said to be Sasakian if the almost
Kiehler structure on the metric cone (M x R*,r%2g + dr?) over M, is Kiehler
[1]. Any Sasakian manifold is K-contact, and the converse only holds when the
dimension is 3. See [1] and [5] for more information about it.

3. K-contact manifold satisfying the gradient Einstein-type metrics

Here, consider a K-contact metric as a gradient Einstein-type metric. The
following will be needed to prove our main result.

Lemma 3.1. If (M,g,«,5,v,7) is a gradient Finstein-type contact metric
manifold, then the curvature tensor R has the expression

BR(X,Y)Df = a[(VyQ)X — (VxQ)Y] + ’%[(Xf)Y — (Y f)X]
+ %{(Yf)@x — (XN)QY] + [(X7)Y — (Y7)X]

for any vector fields X, Y on M.

(12)

Proof. The gradient Einstein-type equation (2) can be expressed as

(13) aQY + BVyDf +vg(Y,Df)Df =Y,
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where D is the gradient operator of g. Differentiate (13) covariantly along X,
we obtain

A(VxQ)Y +aQVxY + VxVyDf +vg(VxY,Df)Df
(14)  +vg(Y,VxDf)Df +vg(Y, Df)VxDf = (X7)Y + VY.
Then the required result follows by applying this equation and (13) to the well
known expression R(X,Y) = [Vx,Vy]| = V[xy]. O

Theorem 3.2. Let (M, ¢,£,1,9) be a complete K -contact manifold of dimen-
sion 2n + 1. If there exists a gradient Einstein-type structure (f,c, ,v,7)
associated with the contact metric g, then M is compact, Finstein, Sasakian
and isometric to the unit sphere S?"+1.

Proof. Applying the covariant derivative to (8) and then employing (7), we
obtain

(15) (VxQ)& = QeX — 2npX.

At this point we remember that for a K-contact manifold £ is Killing, and
hence L@ = 0. In view of (7) and (8), we obtain V¢Q = Qg — ¢Q. Replacing
¢ with X in (12) and making use of V:Q = Q¢ — ¢@Q, (15) and (9), we get

Bg(Vy @)X, D) = ag(gQY — Y. X) + [(m) T ”@f)} oY, X)

p
v(2na — ) va
+ |22 (v o) - (e S al@y. )
(16) = (Yy)n(X).

Replacing X and Y by X and ¢Y respectively in relation (16), adding the
resulting equation with (16) and then using (6) (where h = 0, as M is K-
contact) and (7), we have

= 26(&N)g(Y, X) + BY f)n(X) + BES (Y )n(X)

= ag((¢Q + Qp)Y, X) +2 [(@) + ”;(m} (Y, X)
+ (sf)%g(sonoY —QY,X) - { )+ 2 £f ] (Y )n(X)
an o+ ”””j;‘”wf)n( )~ dnag(g¥, X) — (Yy)n(X).

Since @ is self-adjoint, anti-symmetrizing the above equation gives
BIY fin(X) = (XFn(Y)] = 2ag((¢Q + Qp)Y, X) — 8nag(¢Y, X)

W[(Yf)n(X) (X )

(18) + [(X)n(Y) = (Yy)n(X)].
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Now replacing X by ¢X and Y by ¢Y in the equation (18) and applying the
K-contact condition (8), (3), no¢ =0 and p& = 0 gives

9((pQ + Qp)Y, X) = 4ng(¢Y, X)
for all vector fields Y, Z on M. It follows from last equation that

(19) (PQ + Q)Y = dngpY.

In view of above equation, it follows from (18) that

v(2na — ) — B2
B

Next, taking o = v(2na — ) — 2. So Do = —vD~. On account of these, (20)
can be exhibited as

(20) (Y F)n(X) = (X )n(YV)] = [(Y7)n(X) = (X7)n(Y)].

(21) oDf + 200 ={aten) + Dien e

Differentiating (21) in the direction of X and utilization of (7) provides
(Xo)Df +0oVxDf + gVXDO' =X {U(ﬁf) + f(fo)}ﬁ

(22) ~{oten+Zien}ex.

Taking inner product of (22) with ¥ and then anti-symmetrizing the resulting
equation, we obtain

(XY ) = (Vo) () = X {o(ef) + 2 6o) f )

v {aten + L
(23) = {U(é‘f) " f(&r)} G(eX,Y).
Now we can write the equation (21) as
(o) (o) = { G e + o) folx) - G x).

Substituting (24) in (23), inserting X by ¢ X, Y by ¢Y in the resulting equation
and noting that g(¢X,Y’) # 0 for any contact metric manifold, we obtain

B

v

(25) o(&f) +
Making use of (25) in (21), we get

(o) =0.

B(XO‘).

14

(26) (v(2na =) = B)(Xf) =
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On the other hand, taking the trace of (12) over X we obtain

B2 +va e v(ra —2n
E20) sv,pp) = Svn+ L2 (v ) - sa(ye).
Let {e;,pe;, &}, ¢ = 1,2,3,...,n be an orthonormal ¢-basis of M such that
Qe; = pie;. Thus, we have pQe; = p;pe;. Substituting e; for Y in (19), we
obtain Qye; = (4n — p;)pe;. Using the p-basis and (8), the scalar curvature r
is given by

en |

9(Q¢,€) Z (Qei, i) + g(Qepes, pes)]

9(Q¢, ) + g(eis i) + (4n — pi)g(pei, pe;)]

H'M:

=2n (2n—|—1).

Making use of the constancy of r, Do = —v D~ and (26) in (27), it follows that
QDf = 2nDf. Differentiating this along X and recalling (13) and QDf =
2nD f, we obtain

a (v + 2na) 2nry

—Q*X + QX - X =0.

g B B

Contracting the foregoing equation over X and observing that r = 2n(2n + 1),
we get

(VxQ)Df —

2n+1

(28) Y 9(VeQ)Dfes) — %W +

i=1

(+2n0) 1
B B
Using that the scalar curvature is constant, the first term vanishes because

divQ = %dr (this follows from the contraction of Bianchi’s second identity).
From (28), we deduce |Q|? = 2nr. Then, since r = 2n(2n + 1), we get

=0.

2 2 2
r r 2r
— 71 =107 —
’Q 2n—|—1‘ v |
2
r
:2 —
nr 2n+1
=4n*(2n +1) —4n*(2n + 1) = 0.
Since the symmetric tensor Q — 575 , we get
= I =2nl.
C=gnrl =

This shows that M is Einstein with Einstein constant 2n. Since M is complete,
compactness of M follows from Myers’ theorem [19]. Applying the result of
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Boyer-Galicki [4], we can conclude that M is Sasakian. Consequently, (13)
reduces to

wy - S9(Y.Df)DY.

Now consider a smooth function v = €5/ on M. From this we have the following
relation (see Gomes [18));

(29) VyDf =

v

(30) Du Bqu,
(31) VyDJ + 59(v.Df)Df = gy pu

Comparing (29) and (31), we get

(v — 2na)vu
32

As M is Einstein with constant scalar curvature r = 2n(2n + 1), the equation

(27) takes the form (yv —2nva+ 32)Df = —BD~. Using (30) in the foregoing
equation we immediately infer that

(32) VyDu = Y.

(yv — 2nva + %) Du = —vuDry.

From this we can write yvDu + vuDy = (2nva — 32)Du, which is equivalent
to D(yvu) = (2nva — 32)Du. In other words, yvu = (2nva — $%)u + k, where
k is a constant. This together with (32) gives

(33) Vy Du = (—u + ;) Y.

As a result of Theorem 2 of Tashiro [25] it follows that M is isometric to unit
sphere S?"*!. This completes the proof. O

Corollary 3.3. Let (M, g,«, B,v,7) be a complete gradient Finstein-type man-
ifold. If g represents a Sasakian metric, then it is compact, Finstein and iso-
metric to the unit sphere S?"t1.

Proof. This follows with the same proof as Corollary 3.1 in [21]. O

Further, we remark that our Theorem 3.2 generalizes the results of Ghosh
[11,12,14] on K-contact manifold admitting Ricci almost soliton, (m, p)-quasi-
Einstein metric and generalized m-quasi-Einstein metric.

4. (k, p)-contact manifold satisfying gradient Einstein-type metrics

Blair et al. [2] introduced a (k, )-contact manifold which is a contact metric
manifold (M, p, &, n, g) whose curvature tensor satisfies

(34) R(X,Y)E = r{n(Y)X = n(X)Y} + p{n(Y)hX — n(X)hY}
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for all vector fields X,Y on M and for some real numbers (k, p). Later on,
Boeckx [3] classified these manifolds completely. This type of manifold is ob-
tained by applying the D-homothetic deformation to a contact metric manifold
that satisfies R(X,Y )¢ = 0. This class contains Sasakian manifolds (for x = 1)
and the trivial sphere bundle E"*! x S™(4) (for k = p = 0). Examples of
non-Sasakian (k, u)-contact metric manifolds are the unit tangent bundles of
Riemannian manifolds of constant curvature # 1. A lot of examples of (k, u)-
contact structures can be constructed because of a D-homothetic deformation
preserves (k, u)-contact structures (see [2]). On non-Sasakian (k, p)-contact
manifolds, the following formulas are also true [2]:

QX =12n—-1)—nuX +[2(n — 1) + plhX

(35) + [2(1 = n) +n(2k + p)In(X)E,
(36) Q¢ = 2nkE,
(37) h? = (k—1)p? k<L

For the non-Sasakian case, i.e., k < 1, the equation (34) determines the cur-
vature of M completely. As a result of this, it is proved that a non-Sasakian
(K, u)-contact manifold is locally homogeneous and hence analytic [3]. More-
over, the scalar curvature r of such manifold is given

(38) r=2n(2(n—1) 4+ k — nu),
which is constant. On a (&, yt)-contact manifold we have
(39) (VeQ)X = p(2(n — 1) + p)hepX

for any vector field X on M.
Here we intend to examine the existence of gradient Einstein-type metric on
(K, p1)-contact manifold, and prove the following fruitful outcome.

Theorem 4.1. Let (M, p,&,1,9) be a non-Sasakian (k, p)-contact manifold.
If there exists a gradient Einstein-type structure (f,a, B,v,7) associated with
the metric g, then forn =1, M 1is flat, and for n > 1, M is locally isometric
to B+l x S™(4).

Proof. First, differentiate (36) covariantly along an arbitrary vector field X
and utilization of (5), we obtain

(40) (VxQ)§ = Qp + ¢h) X — 2nk(e + ph) X.
Thus, taking the scalar product of (12) with & and using (36), the equation
(40) gives

9(R(X,Y)Df,&) = %{Q(QSDY +¢QY, X) + g(QphY + heQY, X)
v(2nka — )

—4nkg(pY, X)} + 52

{(Y )n(X) = (Xn(Y)}
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(a1) + LY = (00}
Replacing X with X, and Y with ¢Y in (41), and observing that R(¢X, Y )¢
= 0 (this follows from (34)), we get

a{QeY + pQY — pQhY — hQpY — 4dnkypY} = 0.
Since « # 0, the above equation gives
(42) QpY + QY — pQhY — hQpY — dnkpY = 0.
As a result of (35), one can get

(Qe+¢Q)Y =2[2(n — 1) — nujpY.

Inserting X by ¢X in (35) and then applying h to the resulting equation, and
utilization of (37) implies that

hQeX = [2(n — 1) — nulhpX — (k — 1)[2(n — 1) + plpX.

Moreover, applying ¢ to (35) and then using hX instead of X in the resulting
equation, and using (37), we get

PQhX = [2(n — 1) = nulphX — (x = D[2(n — 1) + plX.

Utilization of last three equations in the equation (42) yields

(43) K(p—2) = p(n+1).
Substituting ¢ instead of X in (41), recalling (34) and (36) we obtain
v(2nka —
) usnpf = | "B sl (Df - (€06 + (606 - D),
Since the scalar curvature is constant, it follows from (27) that
v(ra — 2n7y) (8% +va)

4 Dy = Df — Df.
(45) g e 2 py - ) oy
This in combination with (44) implies that

dn?kva — 2nkp? — vra rva — 2nkva — 4n’kra

uhDf = | - |+ (€5
n 2n
B2 +va

4 Df.
(46)  +22QDy

In a (k, u)-contact manifold, the following relationship is well established (see
[2])

(47) (Veh) = phe.

From (13), we have

— 2nka v

(48) VeDf="1 5 5EnDs
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Differentiating (46) along ¢ and taking into account (39), (46)-(48) we ulti-
mately obtain

v — — —v 2
MZhLPDfZEb@f)f‘F aly an;a)—l—b(’; 2nka &N? ¢
2 14
(49) LB o — 1) + gD

2n
where we used g(VeDf, &) = £(Ef). Here,

dn’krva — 2nkp? — vra rva — 2nkva — 4n’kvo

a= o™ and b= o
Applying ¢ to the above equation, we obtain
2
(50) {u2 — (W) 2(n — 1)+u]}th = 0.

Furthermore, operating the preceding equation by h and using (37), it follows
that

(51)  p[p(2n — (8 +va)) — 282+ va)(n — 1)] (x — 1)p*Df = 0.

Since M is non-Sasakian, we have either (i) u = 0 or (i) ¢?Df = 0 or (iii)
_ 2(8*+va)(n—-1)
H= 2n—(B2+va) °
Case (i). Here, it follows from (43) that x = 0 because of p = 0. Hence
R(X,Y)¢ = 0, according to the result of Blair [1] we obtain that M is flat
in dimension 3 and in higher dimensions it is locally isometric to the trivial
bundle E(1) x S (4).

Case (ii). Making use of (3) in ¢>?Df = 0 yields Df = (£f)€. Differentiat-
ing this along X, employing (3) gives that Vx D f = X (£f)é—(£f) (X +phX).
As a result of Poincare lemma g(VxDf,Y) = g(VyDf, X), the last equation
provides

X(EHY) =Y (ESn(X) +2(£f)g(X, pY) = 0.

Replacing X and Y with ¢X and @Y, respectively, in the above equation
furnishes £ f = 0, where we applied g(X, ¢Y') # 0 for any contact metric struc-
ture. By virtue of this, we have Df = 0, i.e., f is constant and consequently
(13) shows that M is Einstein, i.e., QX = 1X = 2nxX by (48). Contract-
ing this over X we find that the scalar curvature r = 2nk(2n + 1). It shows
nyu = 2(n — 1) — 2nk in combination with (38). On the other hand, we can
easily find [2(n — 1) + plh = 0 from (35) on the basis of last equation and
QX = 2nkX. Since M is non-Sasakian, we must have 2(n — 1) + p = 0. So it
follows for dimension 3 that 4 = 0 = &, and by applying Blair’s result [1] we
obtain that M is flat. Again, for higher dimension it follows from p = 2(1 —n)
and (43) that k =n — % > 1, contradicting our assumption.
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Case (iii). Since p = %, it follows from (43) that

(8% +va)(n® - 1)

" n(f2+va) —2n

For n = 1, it follows that © = k = 0 and hence flat. For n > 1, making use of
(35) in (46) provides

[An’kva — 2nkB% — vra + (B2 +va){2(n — 1) —nul){Df — (££)&}
+ [2(8% + va)(n — 1) + p((B* + va) — 2n)|hDf = 0.

2(8°+va)(n—1)

(B2 tva) the above equation entails that

By virtue of u =

[An’kva — 2nkB% — vra + (B2 +va){2(n — 1) —nu}{Df — (££)€} = 0.

If Df — (£f)€ = 0, then proceeding as in Case (ii) it follows that, for n > 1, a
contraction. Therefore, we only have 4n?kva —2nk3? —vra+ (8% +va){2(n—
1) — nu} = 0. This together with (38) entails that

(2n — Vva — BH[2(1 —n) +n(2k + p)] =0,
which implies that either 3% = (2n — 1)va, or 2(1 —n) + n(2k + ) = 0. The

former case shows that x > 1, a contradiction. For later case, utilization of
2(B%+va)(n—1) _ (B%4va)(n?-1)

I o (e vy and & " (BT Tro)—3n the last equation transforms into
2n — 2n?
2
v = —4/—————.
F+ nd —2n%2+1

_ Brra)(n®-1)
- n(B%+va)—2n
contradiction as M is non-Sasakian. This establishes the proof. (]

Making use of this in & we obtain x = 1, and this leads to a

It is known [18] that a compact Riemannian manifold admitting a nontrivial
gradient Finstein-type metric with constant scalar curvature is isometric to the
standard sphere. But a contact metric manifold of constant curvature is a
Sasakian manifold of constant curvature in dimension > 3 [20]. On the other
hand, in dimension 3, it is either flat or Sasakian manifold of constant curvature
1 (see Blair [1]). From (38) we see that the scalar curvature of a (x, p1)-space is
constant. Thus, for a compact (k, pt)-contact manifold we have the following:

Corollary 4.2. If a compact (k,p)-contact manifold admits a gradient
Einstein-type metric, then in dimension 3 it is either flat or Sasakian and
for higher dimensions it is isometric to a unit sphere S?"t1,

Acknowledgement. The authors would like to express their deep thanks to
the referee for his/her careful reading and many valuable suggestions towards
the improvement of the paper.
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